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Advanced Dynamics of Complex Systems with
SOPHIA  '03

Lecture 1: Maple
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• Applications
Introductory example 1: A particle is moving frictionless on a given
surface, in this case a two-dimensional parabola. Analyse the motion and
the constraint force.

Dynamic law

Newton's equation of motion:
  R − m a = 0 , (1)

where

  
a =

d 2r
dt 2 , (2)

  R = Ra + Rc  (applied+constraining forces), (3)

  Ra =− mg e3 ,

  Rc = unknown?? (not completely)
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Constraints Constraining force

The constraining surface: The constraining force   Rc  keeps the particle on the surface. Its magnitude
depends on the mass and the motion of the particle, but the direction is
always orthogonal (or normal) to the surface.  (r, t) = x3 − k (x1

2 + x2
2 ) = 0 ,   k = const. . (4)

where

  r = x1e1 + x2e2 + x3e3 .
A normal to the surface is given by:

N = 1 × 2Generalised coordinates
= 

  
−2kq 1

2 cos q 2e1 + −2kq 1
2 sin q 2e2 + q 1 cos2 q 2 + sin2 q 2( )e3 .

Not all three coordinates are independent, only two are needed. It is also
possible to choose two parameters   q 1 and   q 2  (or generalised
coordinates). For example:

(7)
Another way to find this direction is to use the gradient to the surface.
Consider the surface (4) to be a level surface. The neighbouring surface of
higher 'value' points in the direction

r = r(q1,q2 ,t) →
x1 = q1 cosq2

x2 = q1sin q2

x3 = kq1
2

 

 
 

 
 

. (5)

  
∇ =

x1
e1 +

x2
e2 +

x3
e3

=   −2kx 1e1 − 2kx 2e2 + e3 . (8)Tangent vectors
Comparing the vectors, we see that   N = q 1∇ , they are indeed parallel.

The constraining force can then be written as Rc = N/ N , where now
only the 'magnitude' is unknown.

As for polar coordinates in a flat plane, these   q 1 and   q 2  also correspond
to local directions in space, tangents to the coordinate lines on the surface.

1 =
∂r
∂q1

= cos q2e1 + sin q2e2 + 2kq1e3 ,

Strategy
2 =

∂r
∂q2

= −q1 sinq2e1 + q1 cosq2e2 . (6)
Since the constraining force   Rc  is partly unknown but orthogonal to the
surface   Rc • k = 0, take the scalar product of the dynamical equations
with two independent tangent vectors   k (need not be exactly the ones we
derived):

•What does 'local' mean?
•Is it necessary to normalise these tangent vectors?
•Are there more tangent vectors?

  Ra − m a( )• k = 0 .
These are two equations in this case, with two generalised coordinates.
When they are known the complete motion of the particle is known, hence
from (1),

+ Ra − ma( ) •
N
N

= 0

provides an equation for the magnitude  of the constaining force.
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MAPLE
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Take a second look at the first problem of the introduction. Now we use
plain Maple.
> restart:
 with(linalg):

Warning, the protected names norm and trace have been
redefined and unprotected

The steps follow section 1.4.1:
"The Parabola revisited."Introductory example 2: The bead sliding along a rotating wire

Consider the motion and forces in the plane   z =0. Using a cylindrical
basis, the acceleration and constraining force take the form: Cartesian coordinates parametrized

a = ˙ ̇ − 2( )e + 2 ˙ ( )e ,   Rc = e .
> x1:=q1*cos(q2);

Note that the gravitational force is orthogonal to the considered plane. x2:=q1*sin(q2);
In this problem the bead is completely described by the coordinate . The
single tangent vector corresponding to this coordinate is e .

x3:=k*q1^2;

Following the strategy, we first solve the tangent projection of
Newton's equation:

  
m ˙ ̇ − 2( ) = 0 ⇒   (t) = c1 e t + c2 e− t .

Then the magnitude of the constraining force is found: Parameters are time dependent
  

(t) = 2m ˙ = 2m 2 c1 e t− c2 e− t( ) .

> toTimeFunction:=
{q1=q1(t),q1t=diff(q1(t),t),q1tt=diff(q1(t),t,t),q2
=q2(t),q2t=diff(q2(t),t),q2tt=diff(q2(t),t,t)}:

Observation
The velocity of the bead:

v = ˙ e + e ,
•is not orthogonal to the constraining force, whence resulting in an
important energy time rate ('power'): P = Rc • v = (t) . Simplifying the resulting expressions
• is not parallel to the tangent vector e .

toTimeExpression:={q1(t)=q1,diff(q1(t),t)=q1t,diff(
q1(t),t,t)=q1tt,q2(t)=q2,diff(q2(t),t)=q2t,diff(q2(
t),t,t)=q2tt}:
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Velocity components New example: Pendulum hanging from a rotating disc
This is a similar problem. However we show how to use a simple form of
vectors with Maple.

>
v1:=subs(toTimeExpression,diff(subs(toTimeFunction,
x1),t));

  s

  q 1

  l  q 2

  mg

>
v2:=subs(toTimeExpression,diff(subs(toTimeFunction,
x2),t));
v3:=subs(toTimeExpression,diff(subs(toTimeFunction,
x3),t));

>
Acceleration components

> for j from 1 to 3 do
a||j:=subs(toTimeExpression,diff(subs(toTimeFunctio
n,v||j),t)) od:

> for j from 1 to 3 do a||j od;

The steps follow section 1.4.2: Using Lists. Pendulum on
circular support:

Combine components and form vectors using MAPLE lists.

Position vector:
> x:=(s+l*sin(q2))*cos(q1):
y:=(s+l*sin(q2))*sin(q1):
z:=-l*cos(q2):
> r:=[x,y,z]:
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Velocity and acceleration Projection of 'inertial force' onto the tangent plane
> Pt1:=multiply(pt,tau1);

> rs:=subs(toTimeFunction,r): Pt1:=simplify(multiply(pt,tau1));
vs:=map(diff,rs,t): Pt2:=simplify(multiply(pt,tau2)):
v:=subs(toTimeExpression,vs):
as:=map(diff,vs,t):

Pt1 m l ( )sin q2 q2t2 ( )cos q1 l ( )cos q2 q2tt ( )cos q1−  + (− := 

2 l ( )cos q2 q2t ( )sin q1 q1t ( ) + s l ( )sin q2 ( )cos q1 q1t2 −  − 
( ) + s l ( )sin q2 ( )sin q1 q1tt − ) ( ) + s l ( )sin q2 ( )sin q1 m ( + 

l ( )sin q2 q2t2 ( )sin q1 l ( )cos q2 q2tt ( )sin q1−  + 

2 l ( )cos q2 q2t ( )cos q1 q1t ( ) + s l ( )sin q2 ( )sin q1 q1t2 +  − 
( ) + s l ( )sin q2 ( )cos q1 q1tt + ) ( ) + s l ( )sin q2 ( )cos q1

a:=subs(toTimeExpression,as):

Show components

> a[1];

Pt1 m 2 l ( )cos q2 q2t q1t s 2 l2 ( )cos q2 q2t q1t ( )sin q2 q1tt s2−  −  − (− := 

2 q1tt s l ( )sin q2 q1tt l2 q1tt l2 ( )cos q2 2 −  −  + )Two ways to form pt(=m*a), the rate of change of the
momentum vector. Projection of the gravitational force–the only applied force.
First way: The gravitational force is:
> pt:=evalm(m*a): > Rg:=[0, 0, -m*g]:> pt[3];

> R1:=simplify(multiply(Rg,tau1));
R2:=simplify(multiply(Rg,tau2));

Second way:

> Pt:=map(x->m*x,a):
> Pt[3];

Equations
> Eq1:=Pt1=R1:Eq2:=Pt2=R2:

Tangent vectors These equations contain second derivatives. Standard
numerical routines solving differential equations use a set of
first-order coupled equations. We introduce generalized
speeds u1=q1t and u2=q2t, to eliminate higher derivatives.
First we isolate the second-order derivatives in our
equations:

> tau1:=map(diff,r,q1);

> tau2:=map(diff,r,q2);

> Eqs:=solve({Eq1,Eq2},{q1tt,q2tt}):
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statepEq  = ∂
∂
t

( )q1 t ( )u1 t  = ∂
∂
t

( )q2 t ( )u2 t, ,{ := 

 = ∂
∂
t

( )u2 t  +  − 
1
4

( )cos ( )q2 t ( )u1 t 2 1
2

( )u1 t 2 ( )sin 2 ( )q2 t
5
2

( )sin ( )q2 t ,

 = ∂
∂
t

( )u1 t −8
( )cos ( )q2 t ( )u2 t ( )u1 t
 + 1 4 ( )sin ( )q2 t

}

We arrive at a system of first-order equations in standard
form.

>
Eqs:=simplify(subs({q1tt=u1t,q2tt=u2t,q1t=u1,q2t=u2
},Eqs)):
> Eqs[1]; > initc:= {q1(0)=0,q2(0)=1,u1(0)=0.5,u2(0)=0}:

Put into one set for MAPLE
> Eqs[2]; > deqns:=statepEq union initc:

Solving and plotting4 first-order differential equations for MAPLE.
>
st:=dsolve(deqns,{q1(t),q2(t),u1(t),u2(t)},type=num
eric,output=procedurelist);

> state:=Eqs union {q1t=u1,q2t=u2};

state  = q1t u1  = q2t u2  = u2t
 +  − ( )cos q2 u12 s l ( )cos q2 u12 ( )sin q2 g ( )sin q2

l
, , ,






 := 

 = u1t −2
( ) − s l ( )sin q2 u1 u2 ( )cos q2 l

 −  + s2 l2 l2 ( )cos q2 2








 := st proc( )  ... endrkf45_x
> with(plots,odeplot);

>odeplot(st,[[t,q1(t)],[t,q2(t)]],0..20,view=[0..20
,-2...2],numpoints=100,labels=[time,q_i]);Extend

> toTimeFunction:=toTimeFunction union
{u1=u1(t),u1t=diff(u1(t),t),u2=u2(t),u2t=diff(u2(t)
,t)}:

Choose parameter values and initial conditions
>  param:={s=1,l=4,g=10}:
> statep:=subs(param,state):
> statepEq:=subs(toTimeFunction,statep);
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Lecture 2: Configurations Vector product operations

•

  

n × n T = n1 n2 n3( ) ×
n1

n2

n3

 

 

 
 

 

 
  = 0 .

Orthonormal basis

The space can be organised using 3 orthonormal basis vectors. They are
composed into a reference triad

•

  

n T × n =
n1

n2

n3

 

 

 
 

 

 
  × n1 n2 n3( )  n = n1 n2 n3( ) . (1.1)

Its transpose composition is:

  

n T =
n1

n2

n3

 

 

 
 

 

 
  .

=
n1 × n1 n1 × n2 n1 × n3

n2 × n1 n2 × n2 n2 × n3

n3 × n1 n3 × n2 n3 × n3

 

 

 
 

 

 
 
 

=
0 n3 −n2

−n3 0 n1

n2 −n1 0

 

 

 
 

 

 
  .

Here are some algebraic rules with these triads:

Scalar product operations

•

  

n • n T = n1 n2 n3( ) •
n1

n2

n3

 

 

 
 

 

 
  

Note the order of the triads!
The 'matrix order' does not always mean that matrix rules are applicable,
for example:=n1 • n1 + n2 • n2 + n3 • n3 =3.

  
nT × n[ ]T

=− nT × n ,

•

  

n T •n =
n1

n2

n3

 

 

 
 

 

 
  • n1 n2 n3( ) and the matrix rule for vector products  is  inapplicable.

Dyadic operation
Here is another algebraic rule with these triads:

=
n1 •n1 n1 • n2 n1 • n3

n2 • n1 n2 • n2 n2 •n3

n3 • n1 n3 • n2 n3 • n3

 

 

 
 

 

 
  

=
1 0 0

0 1 0

0 0 1

 

 
  

 

 
  .

(1.2)

•

  

nn T = n1 n2 n3( )
n1

n2

n3

 

 

 
 

 

 
  

=n1n1 + n2n2 + n3n3 = U

In the last operation we obtain a new quantity, the unit dyad U .

Let the reference vectors further satisfy the 'right-hand rule':
n1 × n2( ) • n3 =1. (1.3)
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Basis expansion w = n w T nT •n n w = n w T nw ,

where for a unit base triad  nT • n  is a unit matrix.An arbitrary vector w  may be decomposed along the reference vectors

  ni :

  w=nw 1n1+
nw 2n2+nw 3n3 Transformation of basis

= n1 n2 n3( )
nw1
nw 2
nw 3

 

 

 
 
 
 

 

 

 
 
 
 

=  n
nw (1.4)

= nw1
nw2

nw3( )
n1

n2

n3

 

 

 
 
 

 

 

 
 
 

=  
nw Tn T . (1.4')

The components of a vector are organised in columns   
nw  :

nw =

nw1
nw2
nw3

 

 

 
 
 
 

 

 

 
 
 
 

. (1.5)

  
nw  is only a particular representation of the vector w  in terms of the
reference basis vectors, not the complete vector itself.

Let    a  and   b  be two alternative reference triads, composed of mutually
orthogonal unit basis vectors. Any vector w  can be decomposed in either
set of basis vectors, from which we obtain the alternative representaions

  
aw  and   

bw .Components
The operation to obtain   

nw  from the original vector is:
We now see how these are related to the relative orientations in space of
the corresponding reference triads    a  and   b . Each basis vector in   b  can
be expanded in   ai .

nw = nT •w . (1.6)

and for obtaining a single component   
n w i :

nw i = w •n i = ni • w . We have
b1 = (a1 • b1 )a1 + (a2 • b1)a2 + (a3 • b1)a3Norm

= a1 a2 a3( )
a1 • b1

a2 • b1

a3 • b1

 

 

 
 

 

 
  

Finally the norm (or length) of a vector is defined as usual
w = w •w ,

if the vector is real valued.

Using the triad decompositions (1.4) and (1.4') we find in general
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=a

a1 • b1

a2 • b1

a3 •b1

 

 

 
 
 

 

 

 
 
 

= aaT • b1 ,

The inverse matrix is obtaned by transposing the original one:

  
Rba = b T •a = aT • b( )T

= Rab
T .

Thus:   Rab = Rba
T = Rba

−1 . (1.9)

b2 = a1 a2 a3( )
a1 • b2

a2 • b2

a3 • b2

 

 

 
 
 

 

 

 
 
 

= a

a1 •b2

a2 • b2

a3 • b2

 

 

 
 
 

 

 

 
 
 

= aaT • b2 ,

b3 = a

a1 • b3

a2 •b3

a3 • b3

 

 

 
 
 

 

 

 
 
 

= aaT • b3 .

Transformation of components

Note the operation of a unit dyad   aa T  represented in the basis   a . Together
these transformation equations can be written:

b = b1 b2 b3( ) = a

a1 • b1 a1 • b2 a1 • b3

a2 • b1 a2 • b2 a2 •b3

a3 •b1 a3 • b2 a3 • b3

 

 

 
 
 

 

 

 
 
 

= aaT • b .

Formally we introduce the direction-cosine matrix   Rab :

b = a(aT • b) = aRab . (1.7-8) When we know how to transform the basis vectors we can convert

between representaions   
aw  and   

bw  of a vector w . From (1.6) and (1.4)
we getEach column of   Rab  is an   a -representation of a unit base vector, which is

orthogonal to the ones of the other columns.
  
bw = b T • w = b T • aa w( ) = b T • a( )aw ,

hence•The sum of squared components of any column is unity.

  
bw = Rba

aw ,  [remember   b = a(a T • b ) = aR ab  in(1.7-8) ].•The scalar product of two different columns vanishes.

Such a matrix is called an orthogonal matrix.
The reverse transformation involves   Rab :

  
aw = Rab

b w . (1.10)The inverse transformation matrix   Rba  is obtained explicitly, in analogy
to the above steps, by interchanging   a :s and   b :s. With the short notation:

  a = b (b T • a) = bR ba .
We see the inverse property of   Rba using also (1.7-8):

  a = bR ba = aR abRba = a .
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Solved Problems Solution

b1

b2

b3

w

n1

n2

n3P1.1
Given a reference triad   a  construct a triad   b  such that b1 is parallel to
a1 + a2  and b2  is anti-parallel to a1 − a2 . Find the matrix which
transforms reference from   b  to   a with b3 = a3 .

Solution
Clearly the constructed unit vectors in   b  are,

b1 =
1

2
a1 + a2( ) , b2 = −

1

2
a1 − a2( ) , and b3 = a3 .

It follows by inserting into the definition of   Rab  that

  

Rab = a T • b =
a1 • b1 a1 • b2 a1 • b3

a2 • b1 a2 • b2 a2 • b3

a3 •b1 a3 • b2 a3 •b3

 

 

 
 

 

 
  

=

1/ 2 −1/ 2 0

1/ 2 1/ 2 0

0 0 1

 

 

 
 

 

 

 
 

.

Let the Cartesian coordinate system be spanned by the triad   n , so that the
cylindrical basis vectors in the triad   b  are rotated an amount  about the
common n3 -direction.  Then

  

Rnb = n T • b =
n1 • b1 n1 • b2 n1 • b3

n2 • b1 n2 • b2 n2 • b3

n3 •b1 n3 • b2 n3 • b3

 

 

 
 

 

 
  =

cos − sin 0

sin cos 0

0 0 1

 

 
  

 

 
  .

But   Rba transforms the triads from   b  to   a . Transposition gives:

  

Rba =
1/ 2 1/ 2 0

−1/ 2 1/ 2 0

0 0 1

 

 

 
 

 

 

 
 . When this is applied to a position vector represented in   b  as

  

br = 0

z

 

 
  

 

 
  ,

P1.2 we get the Cartesian representation from   
nr = Rnb

b r :Derive the transformation matrix between Cartesian and cylindrical
(polar) reference triads with a common   z -axis. Apply the transformation
to an arbitrary position vector.

  

nr =
x

y

z

 

 
  

 

 
  =

cos − sin 0

sin cos 0

0 0 1

 

 
  

 

 
  0

z

 

 
  

 

 
  =

cos

sin

z

 

 
  

 

 
  .



Advanced Dynamics with SOPHIA  '03/Thylwe
11

They combine, according to the matrix product rule to the Cartesian-
spherical basis transformation:

P1.3
Derive the transformation matrix between Cartesian and spherical basis

triads. Apply it to an arbitrary position vector representation   
sr  in the

spherical triad. R ns =
cos −sin 0

sin cos 0

0 0 1

 

 

 
 
 

 

 

 
 
 

cos 0 sin

0 1 0

− sin 0 cos

 

 

 
 
 

 

 

 
 
 

Solution

=

cos cos − sin cos sin

sin cos cos sin sin

−sin 0 cos

 

 

 
 
 

 

 

 
 
 

.

b1

b2

b3

w

n1

n2

n3

s3

s2

s1

With the spherical triad the position vector is r = s3 . When subsequently

  Rns  is applied to   
sr  we get   

nr .:

nr =
x

y

z

 

 

 
 
 

 

 

 
 
 

=
cos cos −sin cos sin

sin cos cos sin sin

−sin 0 cos

 

 

 
 
 

 

 

 
 
 

0

0

 

 

 
 
 

 

 

 
 
 

=

cos sin

sin sin

cos

 

 

 
 
 

 

 

 
 
 

.

Comparing the components in both triads, we see that the length r =
obviously is the same.

Consider three reference triads   n ,   b  and   s . Let    n  be the Cartesian triad.
We introduce   b  as an auxiliary reference triad rotated relative to   n  an
amount  about the common n3  direction. Then the spherical triad   s is
obtained rotated relative to   b  an amount  about the common b2
direction.

–––P1.3 The spherical frame––with –  SOPHIA  –––
> restart;
> read sophia21_3_V5;

                sophia21_3 - 26 May 1998
Sophia definition of the sequence of simple rotations for the
transformationThe two simple rotation matrices are:

R nb =
cos −sin 0

sin cos 0

0 0 1

 

 

 
 
 

 

 

 
 
 

, and R bs =
cos 0 sin

0 1 0

−sin 0 cos

 

 

 
 
 

 

 

 
 
 

> rotList:=[[N,B,3,phi],[B,S,2,theta]];
> chainSimpRot(rotList);

  := rotList [ ],[ ], , ,N B 3 φ [ ], , ,B S 2 θ
Frame relation between N and B defined!
Frame relation between B and S defined!

true
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Calling the matrix of transformation ( )cos φ ( )cos θ

 +  +  + ( )cos φ 2 ( )cos θ 2 ( )sin φ 2 ( )cos θ 2 ( )sin φ 2 ( )sin θ 2 ( )cos φ 2 ( )sin θ 2



 ,

( )sin φ ( )cos θ

 +  +  + ( )cos φ 2 ( )cos θ 2 ( )sin φ 2 ( )cos θ 2 ( )sin φ 2 ( )sin θ 2 ( )cos φ 2 ( )sin θ 2
,

−
( )sin θ

 + ( )cos θ 2 ( )sin θ 2








 , ,




−

( )sin φ

 + ( )sin φ 2 ( )cos φ 2
( )cos φ

 + ( )sin φ 2 ( )cos φ 2 0

( )cos φ ( )sin θ

 +  +  + ( )cos φ 2 ( )cos θ 2 ( )sin φ 2 ( )cos θ 2 ( )sin φ 2 ( )sin θ 2 ( )cos φ 2 ( )sin θ 2



 ,

( )sin φ ( )sin θ

 +  +  + ( )cos φ 2 ( )cos θ 2 ( )sin φ 2 ( )cos θ 2 ( )sin φ 2 ( )sin θ 2 ( )cos φ 2 ( )sin θ 2
,

( )cos θ

 + ( )cos θ 2 ( )sin θ 2





> Rmx(N,B);

                  













( )cos φ − ( )sin φ 0

( )sin φ ( )cos φ 0

0 0 1
> Rmx(B,S);

                  













( )cos θ 0 ( )sin θ

0 1 0

− ( )sin θ 0 ( )cos θ
> Rmx(N,S);
> Rmx(S,N);

       













( )cos φ ( )cos θ − ( )sin φ ( )cos φ ( )sin θ

( )sin φ ( )cos θ ( )cos φ ( )sin φ ( )sin θ

− ( )sin θ 0 ( )cos θ













( )cos φ ( )cos θ ( )sin φ ( )cos θ − ( )sin θ

− ( )sin φ ( )cos φ 0

( )cos φ ( )sin θ ( )sin φ ( )sin θ ( )cos θ

> simplify(inverse(Rmx(N,S)));

    













( )cos φ ( )cos θ ( )sin φ ( )cos θ − ( )sin θ

− ( )sin φ ( )cos φ 0

( )cos φ ( )sin θ ( )sin φ ( )sin θ ( )cos θ> inverse(Rmx(N,S));

Evectors (Euclidian vectors in Sophia)
In the spherical coordinat frame we have
> rS:=S &ev [0,0,rho];

                       := rS [ ],[ ], ,0 0 ρ S
The same vector in the original (Newtonian) frame
> rN:= N &to rS;

 := rN [ ],[ ], ,( )cos φ ( )sin θ ρ ( )sin φ ( )sin θ ρ ( )cos θ ρ N
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Frames and configuration Inspection of the 'simple' rotations involved gives:
> rotList:=[[A,B,2,q1],[B,C,1,q2]];A reference frame is a reference triad + a reference point (local origin).

We need particular reference frames (inertial frames) to formulate
Newton's dynamical laws. But we may use other convenient reference
frames in intermediate steps, for example a body-fixed reference frame
which exploit the symmetry of a body. Such reference frames may depend
on time or some physical angle or some other parameters.

chainSimpRot(rotList);

Define relevant Evectors:
> r01:= A &ev [-L,0,0];Sophia in action: ML: Section 2.10.2. r12:= B &ev [-L,0,0];

Example: Specifying positions r23:= C &ev [0,L,0];
r03:= (r01 &++ r12) &++ r23;

This is the 'Illustration' problem in ML, page 41-43.
Three square plates are connected. Express the geometrical
displacement vector from the corner of the first plate at the A-origin
to the most distant corner of the third plate. See figure.

a1

a2

a3
b1

b2

b3

c1

c2

c3

  L

  L

  L

  L
  P3

Express Evector in the A-frame:
> A &to r03;

-----------------------------------------------

Lecture 3:
Velocity, angular velocity and dyads
The problem is that observed rates of changes with respect to time or
relevant parameters are measured to different values depending on which
reference frame is used.

Generalised coordinates
We denote derivatives with respect to a generalised coordinate q  relative

to a reference frame   N , by

  
N

q
. (2.1)
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Most important in our case is the total time derivative: Solved Problems

  
N d

d t
≡N .

. P2.1
Consider a thin rigid rod connected at one end to a spherical joint fixed at
the origin of a reference frame   N . Find the position and velocity vectors
of a point on the other end relative to   N . Use SOPHIA.

If   N  is an inertial frame we may sometimes omit the frame superscript.

Derivatives of scalar quantities or matrices of scalars do not depend on
reference frames. Hence we may omit the left superscript in this case as
well. For example: a projection component of a specific vector on a
specific axis is a scalar.

For a position or displacement vector r , on the other hand, we find:

  
B d

d t
r = B d

d t
bbr( ) = b

db r

dt
, (2.2)

whereas

  
N d

d t
r = N d

d t
bbr( ) = N d b

d t

 
  

 
  br + b

dbr

d t
. (2.3')

We find an additional term here. Written in terms of the full vector r, we
have

Solution
We let the Cartesian coordinate system be spanned by the reference triad
  n  and we introduce two auxiliary reference triads:

  
N d

d t
r = B d

d t
r + N d b

d t
bT 

  
 
  • r

•   b  rotated relative to   n  an amount q1  about the common direction n3 .

= 
  
B d

d t
r+N B • r. (2.3)

•   s  rotated relative to   b  an amount q2  about the common direction b2 .

Using SOPHIA we will get:
In the last equation a new symbol   N B  for a dyadic quantity has been
introduced. Similar relations are obtained if we consider differentiations
with respect to generalised coordinates.

v =  l ˙ q 1sinq2s2 + l ˙ q 2s1 ,

with respect to frame   N . This result is now shown using SOPHIA.

The operation by the dyad   N B •  on a vector can be understood as

an operation by a related vector   
N B ×   (the angular velocity vector) as

we shall see later on.

Initiation
> read sophia21_3_V5;

                       sophia21_3 - 26 May 1998

Frame relations
> dependsTime(q1,q2):
&rot[N,B,3,q1]:&rot[B,S,2,q2]:

Position and velocity
> r:=S &ev [0,0,L];
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 := r [ ],[ ], ,0 0 L S Then b2 = f2  and the rest of   b  is in the figure. Note that  b1  is tilted an
angle = π/2 − , which is time independent.Direct calculation (using frame derivative)

>v:=&simp (N &fdt r);
 := v [ ],[ ], ,q2t L q1t ( )sin q2 L 0 S ----------SOPHIA----------------

but also in this way >restart;
Angular velocity vectors for frame rotations > read sophia21_3_V5;
> wNS:= S &to (N &aV S);
> wNS:= B &to (N &aV S); Frames

> &rot[A,F1,3,q1]:
              := wNS [ ],[ ], ,− ( )sin q2 q1t q2t q1t ( )cos q2 S > &rot[F1,B,2,Pi/2-phi]:
              := wNS [ ],[ ], ,0 q2t q1t B > dependsTime(q1,q2,u1,u2):
Velocity from angular velocity Angular velocity of frames
> v:=wNS &xx r; >  wAB:= A &to (A &aV B);

 := v [ ],[ ], ,q2t L q1t ( )sin q2 L 0 S >  wAB:= B &to (A &aV B);

            := wAB [ ],[ ], ,0 0 q1t A    -----------------------------------------

b1

b3

a1

a3

 := wAB [ ],[ ], ,− ( )cos φ q1t 0 q1t ( )sin φ B
Position
>  r:=B &ev [q2,0,0] &++ (A &ev [0,0,h]);
r := 

[ ],[ ], ,( )cos q1 ( )sin φ q2 ( )sin q1 ( )sin φ q2 −  + ( )cos φ q2 h A
and velocity?
> v:=&simp (A &fdt r);
> v:=&simp (wAB &xx r);
> v:=simplify (wAB &xx r);

 

v −  + ( )sin q1 q1t ( )sin φ q2 ( )cos q1 ( )sin φ q2t,[[ := 
 + ( )cos q1 q1t ( )sin φ q2 ( )sin q1 ( )sin φ q2t − ( )cos φ q2t, ] A, ]

P2.2  := v [ ],[ ], ,− ( )sin q1 q1t ( )sin φ q2 ( )cos q1 q1t ( )sin φ q2 0 A
A rigid pipe is bent an angle  at some point along its length. Let one end
be fixed at the origin of a reference frame  A . Assume that the pipe spins
about an axis through the origin and the bend. Consider also a ball free to
move along the slanted segment. Find the position and velocity vectors of
the ball relative to   A .

  := v [ ],[ ], ,− ( )sin q1 q1t ( )sin φ q2 ( )cos q1 q1t ( )sin φ q2 0 A
Understanding the velocity now?
>  VA:=(B &ev [q2t,0,0]) &++ (wAB &xx r);
> VA:= A &fdt r;
VA ( )cos q1 ( )sin φ q2t[[ := 

( ) + ( )cos φ 2 q1t q1t ( )sin φ 2 ( )sin q1 ( )sin φ q2 − ,
( )sin q1 ( )sin φ q2t

( ) + ( )cos φ 2 q1t q1t ( )sin φ 2 ( )cos q1 ( )sin φ q2 + ,
− ( )cos φ q2t] A, ]

Solution
Define convenient reference triads   a  (fixed in  A ) and   b  (fixed at the
slanted segment). No common fixed axis in these triads, so we need an
auxiliary one   f , say.  Let f3 = a3  and f1  traces the shadow on the 'floor'.
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nD =

n D11
n D12

nD13
nD21

nD22
n D23

nD31
n D32

nD33

 

 

 
 
  

 

 

 
 
  

, (2.8)
  

VA −  + ( )sin q1 q1t ( )sin φ q2 ( )cos q1 ( )sin φ q2t,[[ := 
 + ( )cos q1 q1t ( )sin φ q2 ( )sin q1 ( )sin φ q2t − ( )cos φ q2t, ] A, ]

> VA :=B &to VA;
 := VA [ ],[ ], ,q2t q1t ( )sin φ q2 0 B we define a dyad:

    D =nn DnT=n D11n1n1+n D12n1n2+n D13n1n3 ...-----------------------------------------

    +
nD31n3n1+

nD 32n3n2+ nD33n3n3  . (2.9)
More on dyads

We may here also define the transpose of a dyad according to:A dyad is simply a pair of vectors, written in a definite order AB , A
being the antecent vector and B  the consequent one.  The dot-product
operation with another vector v  can be performed in two ways and two
simultaneous scalar operations with v  and w  likewise:

  D
T =nn DTn T . (2.10)

Examples:
w • AB[ ]• v = w • A( ) B •v( ) , a) If   

nD  is a unit matrix, then D = U , the unit dyad.
v • AB[ ]• w = v •A( ) B• w( ) . b) If  D = n1n1 + n2n2 , its action on an arbitrary vector w  is

D • w = w •D = w1n1 + w2n2 .
A dyadic is a linear combination of dyads. In fact, any dyad can be
expressed as a dyadic in terms of basis vectors. Let

This is a vector projection  of the vector on to the n1 ,n2 -plane. D  is a
projection dyad.

  A = A1n1 + A 2n2 + A 3n3 ,

  B = B1n1 + B2n2 + B3n3 . Further results
An important thing to remember is that a physical vector or a physical
dyad are quantities which are independent of reference triads. But their
representations are not. What happens to the different representations of a
dyad? Let   a  and   b  be two alternative base triads. Then

Then,

  

AB = A1B1n1n1 + A1B2n1n2 + A1B3n1n3

+ A 2B1n2 n1 + A 2B2n2 n2 + A 2B3n1n3

+ A3B1n3n1 + A 3B2n3n2 + A3B3n3n3 .   D =a aDa T =b b DbT .
In any vector expansion the expansion coefficients are a kind of scalar
products. So also for the dyadic expansions.

Consequently,

  
aD = a T •b b Db T • a = Rab

bDRba , (2.11)
from the definitions (1.7-9) of the direction cosine matrices.

To make our formalism work we write A = n nA  and B=nBT nT , so that

AB = n (nAnBT ) nT  .   (please check!) Note that a dyad can apply to a single vector, thereby producing a new
vector. It follows from equations (1.4') and (2.10) thatThe quantity inside the bracket is now a matrix.

  D • w = w •DT (2.12)
Generalisation
For any matrix:



Advanced Dynamics with SOPHIA  '03/Thylwe
17

Lecture 4: Solution
Matrix formulation of the eigenvalue problem

Velocity calculations— Let w =nnw  and D =nnDnT .
antisymmetric dyads The dyad eigenvalue problem

nnDnT •nn w = nnw( )
reduces toIf the bodyfixed triad b  is moving with time, the Newtonian velocity

calculation performes according to nnDnw = nnw( ) .

  
N d

d t
r = B d

d t
r + N d b

d t
bT 

  
 
  • r.

Finally we eliminate the n  basis to find
nD nw=nw ,

We obtain a dyad operating on the original position vector. which is a matrix formulation involving the matrix nD  and the column
nw .The new fundamental dyad 

  
N B = N d b

d t
bT 

  
 
  = ˙ b bT   (the last member

of the definition is a simplified notation) is anti-symmetric. To see this, we
first note that

The matrix representation of an arbitrary dyad in a reference triad n  is
given by

nD =
0 n D12

nD13

−n D12 0 n D23

−n D13 −nD23 0

 

 

 
 
  

 

 

 
 
  

.  
N B 

   
  

T

= ˙ b bT( )T
= b˙ b T .

Furthermore, the unit dyad expanded in the b  -triad
U = bbT , The eigenvalue equation is

− nD12
nD13

−nD12 − nD23

−nD13 −n D23 −
= 0 ,

is time independent and , hence, the relation
0 = ˙ b bT + b˙ b T .

is always true.

The first term is   N B  and the last term is our 
  

N B 
   

  
T

 and the

equation shows the antisymmetry

or in expanded form:

0 = −( ) 2+nD23
2( )−n D12

nD12+nD23
nD13( )

  
N B 

   
  

T

=−N B . +nD13
nD12

nD23 − nD13( )
= −( ) 2+n D23

2( )−nD12
nD12−n D13

nD13

= −( ) 2+n D23
2 +nD12

2 +nD13
2( ) .P2.3

Assume that D  is a real antisymmetric dyad, i.e. DT =− D  or
D • w = −w • D  if w  is a vector. Show that the eigenvalues of D  are
0, ± i   for some real quantity  .

Hence the eigenvalues of D  are:

0, ± i = ±i nD23
2 +nD12

2 +nD13
2( ) .
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P2.4
eD =

0 − 0

0 0

0 0 0

 

 

 
 
 

 

 

 
 
 

.Assume that D  is a real antisymmetric dyad with eigenvalues 0, ± i .

Show that an invariant expression for D  is e3 × U( ) , where U  is a unit

dyad and e3  is the unit eigen vector for the zero eigenvalue.
The corresponding dyad is:

Solution D =eeDeT = e2e1 − e1e2( )
= e3 × U( ) ,

Let

nD =
0 n D12

nD13

−n D12 0 n D23

−n D13 −nD23 0

 

 

 
 
  

 

 

 
 
  

.
where

e3 × U = e3 × e1e1 + e2e2 + e3e3( ) = e2e1 − e1e2 + 0 .

In the end we can write the dyadic operation on a vector as a vector cross
product:We determine the normalised eigenvector ae3 = X Y Z( )T

 corresponding
to the vanishing eigenvalue. The equations are:

0 nD12
nD13

−n D12 0 nD23

−nD13 −nD23 0

 

 

 
 
  

 

 

 
 
  

X

Y

Z

 

 

 
 
 

 

 

 
 
 

=
0

0

0

 

 

 
 
 

 

 

 
 
 

.
D • w = e3 × U( )• w = D × w

with D = e3 , i.e. in the original basis

D = e3 = nne3 = n nD32
nD13

nD21( )T
.The two first rows are written as:

nD12Y+ nD13Z = 0,

− nD12X +nD23Z = 0. P2.5
Find an explicit formula for the vector corresponding to the antisymmetric

dyad   
N B .Let arbitrarily Z = −n D12 , then the two equations result in Y =nD13  and

X = −n D23 . The real normalisation factor is simply 1/ , according to the
previous problem, which then gives the normalised vector: Solution

By definition
ne3 =

1
−n D23

nD13 −nD12( )T
=

1 nD32
nD13

nD21( )T

  N B = ˙ b b T .
Construction of the full vector gives e3 = nne3 . Its matrix representation in the   b  basis is:

  b
T•N B •b = bT • ˙ b =

=

0 b1 • ˙ b 2 b1 • ˙ b 3
b2 • ˙ b 1 0 b2 • ˙ b 3
b3 • ˙ b 1 b3 • ˙ b 2 0

 

 

 
 
  

 

 

 
 
  

,
The invariant form
There is a real basis e1 e2 e3( ) in which the antisymmetric matrix with

eigenvalues 0, ± i  takes the similar form:
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where the diagonal elements are known to vanish for all orthonormal basis
vectors, and as it should by antisymmetry of the matrix.

sophia21_3 - 28 October 1997

Warning: new definition for   norm
The prescription to construct a vector   

N B, such that Warning: new definition for   trace

  
N B • r=N B × r Analyse simple rotations between frames

> rotList:=[[A,K,3,q1],[K,B,2,-q2]];then yields

  
N B = b b3 • ˙ b 2 b1 • ˙ b 3 b2 • ˙ b 1( )T

.  chainSimpRot(rotList):

 := rotList [ ], [ ], , , A K 3 q1 [ ], , , K B 2 −q2

In particular, the vector   
N B corresponding to the angular velocity dyad

is known as the angular velocity vector.
Which parameters depend on time?
>dependsTime(q1,q2):

Alternative ways to calculate angular velocity between frames:Example: Calculation of angular velocities with SOPHIA
> wAB:=angularVelocity(B,A);
uAB:= A &aV B;

This is the 'Illustration' problem in ML, page 46-48.
 := wAB [ ], [ ]( )sin q2 q1t −q2t q1t ( )cos q2 BA pivoted rod is given. See figure. Find the angular velocity dyad, or

the corresponding vector in the B-frame.  := uAB [ ], [ ]( )sin q2 q1t −q2t q1t ( )cos q2 B

a2

a1

a3

  q 1

  q 2

k1

k2

k3

b1

b2

b3 Express Evector in the B-frame:
>BuAB:= B &to uAB;

 := BuAB [ ], [ ]( )sin q2 q1t −q2t q1t ( )cos q2 B

Express vector as a dyad (matrix):
> WAB:=&VtoD(wAB);

 := WAB





















, 





















0 −q1t ( )cos q2 −q2t
q1t ( )cos q2 0 − ( )sin q2 q1t

q2t ( )sin q2 q1t 0
B

————— –– SOPHIA –––——–———
> restart;
read sophia21_3;
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Solved Problems Velocities and frames
P2.6 P2.8 Let   P  and   Q  be two points fixed on a body, which in turn moves

relative to a space fixed reference frame   N . Find an expression for the
difference between the velocities of   P  and   Q  relative to the reference

frame   N . Find also an expression for the difference between the
accelerations of   P  and   Q  relative to the reference frame   N .

Find the angular velocity vector relating the fixed Cartesian and a moving
cylindrical coordinate bases.

c1

c2

c3

rQ

rP

rPQ

Solution
As in P1.2 we let the Cartesian coordinate system be spanned by the
reference triad   n  and introduce an auxiliary reference triad c  rotated
relative to   n  an amount  about the common direction n3 . Then since
this amounts to a simple rotation, the result is obviously Solution The position vectors corresponding to the points   P  and   Q  on

the body relative to the reference point (origin) of the frame   N  are related
by (see figure): rQ = rP + rPQ  ,  

N C = ˙ n3 .

where  rPQ  is fixed in the 'body frame'   B  with triad   b . The velocity

difference calculated in   N  is expressed as:
P2.7
Find the angular velocity vector relating the Cartesian and spherical
coordinate bases.

  
vQ − vP =N d

dt
rQ −N d

dt
rP = N d

dt
rPQ

Solution
= 

  
B d

dt
rPQ + N B × rPQ

As in P1.3 we let the Cartesian coordinate system be spanned by the
reference triad   n  and we introduce two auxiliary reference triads:

=   N B × rPQ.•   b  rotated relative to   n  an amount  about the common direction n3 .
Similarly,•   s  rotated relative to   b  an amount  about the common direction b2 .

  
aQ − aP =N d

dt
vQ −N d

dt
vP = N d

dt
N B × rPQ 

  
 
  

Then, since both these rotations are simple rotations, their angular velocity
vectors are given by

=
  

N d

dt
N B 

  
 
  × rPQ+N B × N B × rPQ 

  
 
  ,

  
N B = ˙ n3 ,  and    

B S = ˙ b2 .

 since 
  
N d

dt
rPQ=N B × rPQ . The additivity of angular velocity vectors then yields:

  
N S = ˙ n3 + ˙ b2 .
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P2.9 P2.10
Find an expression relating derivatives of dyads in different reference
frames.

Find the angular velocity vector relating the Cartesian and a general frame
defined by Euler angles, as a sequence of simple rotations.
Solution

Solution --------SOPHIA------------------------------
The partial derivative of a dyad D  with repect to a variable   q  relative to a
reference frame   B  is:

This is the 'Illustration' problem in ML, page 54-58.

> restart;

  
B

q
D = B

q
bbDbT( ) = b

bD

q
bT , read sophia21_3;
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whereas the corresponding derivative in the   A  frame is:

Warning: new definition for   norm

  
A

q
D = A

q
bbDbT( ) Warning: new definition for   trace

=
  

A b

q

 

 
  

 

 
  

bDbT + b
bD

q
bT +bbD A b

q

 

 
  

 

 
  

T Analyse simple rotations between frames:
> rotList:=[[A,H,3,q1],[H,F,1,q2],[F,B,3,q3]];
chainSimpRot(rotList):

=
  
B D

q
+ A b

q
bT

 

 
  

 

 
  • D + D • bA bT

q

 

 
  

 

 
  ,

 := rotList [ ], , [ ], , , A H 3 q1 [ ], , , H F 1 q2 [ ], , , F B 3 q3

Declare time-dependent parameters:
where we used the identity matrix   b

T • b = 1. > dependsTime(q1,q2,q3):

Identifying the angular rate dyads in the brackets, we finally get: Angular velocity vector in the A-frame:
> wABA:= A &to (A &aV B);

  
A

q
D = B D

q
+ A

q
B • D − D•A

q
B , wABA +( )cos q1 q2t ( )sin q1 ( )sin q2 q3t[[ := 

−( )sin q1 q2t ( )cos q1 ( )sin q2 q3t
+q1t ( )cos q2 q3t] A, ]where the antisymmetry property of   

A
q
B  is employed.

a2
a1

a3

b2

b3

  q 1

h1

h2

h3

  q 2

  q 3

b1

Angular acceleration vector calculated relative the A-frame and
expressed in the H-frame:
> aABA:= H &to (A &fdt wABA);

aABA +q2tt q1t ( )sin q2 q3t[[ := 
− −q1t q2t ( )cos q2 q2t q3t ( )sin q2 q3tt

− +q1tt ( )sin q2 q2t q3t ( )cos q2 q3tt] H, ]


