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Advanced Dynamics of Complex Systemswith Lecture 1: Maple
SOPHIA '03

Contents

1» Maple, configuration and frames

2¢ VVelocity, angular velocity and dyads
3¢ System Kvectors, tangent vectors

4s Constraints and reduced speeds

» Applications
Introductory example 1: A particleis moving frictionless on a given
surface, in this case atwo-dimensional parabola. Analyse the motion and

the constraint force.
Dynamic law
Newton's equation of motion:
R- ma=0, «y
where
d?r
a=—s, 2
=R, + R, (applied+constraining forces), ©)]

- mges,

R
R, =
R. = unknown??  (not completely)
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Constraints

The constraining surface:

() =x3- k(x2+x3)=0, k= const.. (4)
where

I =X€ + X565 +X363.

Generalised coordinates

Not al three coordinates are independent, only two are needed. It is also
possible to choose two parameters q4 and q , (or generalised
coordinates). For example:

+X =0, cosq,
r=r(ae.H® [x =qsing,. (5)
T % =kg

Tangent vectors

Asfor polar coordinates in aflat plane, these q4 and q , aso correspond

to local directionsin space, tangents to the coordinate lines on the surface.

T, = E =co0sg,e, +sing,e, + 2kq e,
T,
qr .
T, = =-qsng,e, +q,cosqg,.e,. (6)
10,

*What does 'local’ mean?
e|sit necessary to normalise these tangent vectors?
*Are there more tangent vectors?

Constraining force

The constraining force R, keeps the particle on the surface. Its magnitude
depends on the mass and the motion of the particle, but the direction is
always orthogonal (or normal) to the surface.

A normal to the surfaceis given by:
N = T1 ! To
= - 2 3 cosq e, + - 2kq 7 sing e, +q4(cos g, + SN g, Je.
(7)
Another way to find this direction is to use the gradient to the surface.

Consider the surface (4) to be alevel surface. The neighbouring surface of
higher 'value' pointsin the direction

N :ﬂei+a—¢92+a_¢es
0X4q X5 0X3
= - 2kx 1€ - 2kx €5 + 3. (8)
Comparing the vectors, we see that N = q,N¢ , they are indeed parallel.
The constraining force can then be written as R, =AN/|N|, where now

only the 'magnitude’ A is unknown.

Strategy

Since the constraining force R, is partly unknown but orthogonal to the
surface R, - T, = 0, take the scalar product of the dynamical equations
with two independent tangent vectors t, (need not be exactly the ones we
derived):

(R, - ma)- 7, =0.
These are two equations in this case, with two generalised coordinates.
When they are known the complete motion of the particle is known, hence
from (1),

A +(R, - ma)- N_o
IN|
provides an equation for the magnitude A of the constaining force.
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e, A

w
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Introductory example 2: The bead dliding along a rotating wire
Consider the motion and forces in the plane z =0. Using acylindrical
basis, the acceleration and constraining force take the form:

- 2 .
a= (p - pw )ep + (pr)eq,, Re =hey.
Note that the gravitational force is orthogonal to the considered plane.
In this problem the bead is completely described by the coordinate p . The
single tangent vector corresponding to this coordinateis t, = e, .

Following the strategy, we first solve the tangent projection of
Newton's equation:

m(p- p(DZ):O p p(t)=Clewt+Cze_wt.
Then the magnitude of the constraining force is found:
A1) = 2mop = 2m m2(01 et c e “’t) :

Observation
The velocity of the bead:

vV=pe, +pwe,,
*is not orthogonal to the constraining force, whence resulting in an
important energy time rate (‘power'): P=R.,-v=»A(t)pw.
« isnot parallel to the tangent vector t, =€, .

MAPLE

Take asecond look at the first problem of the introduction. Now we use
plain Maple.
>restart:

wi th(linalg):

Warni ng, the protected names norm and trace have been
redefined and unprotected

The stepsfollow section 1.4.1:
"TheParabolarevisited."

Cartesian coordinates parametrized

>x1: =ql*cos(qg2);
x2:=gl*si n(q2);
x3: =k*ql"2;

1l = T oos g2
2= gl=n g2

iF = kgl®
Parameters are time dependent

>t oTi meFuncti on: =

{ql=g1(t),qlt=diff(qgl
=g2(t),g2t=di ff(qg2(t)

-~

Simplifying the resulting expressions

t oTi meExpression: ={ql(t)=ql,di ff(qgl(t),t)=qlt, diff(
gl(t),t,t)=qltt,q2(t)=q92,diff(q2(t),t)=qg2t,diff(qg2(
t),t,t)=q2tt}:
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Velocity components

>
v1: =subs(toTi meExpression, di ff(subs(toTi neFuncti on,
x1),t));

wIi=glt oo g2) — g =in g2) g2

>
v2: =subs(t oTi neExpression, di ff (subs(toTi meFuncti on,

x2),t));
v3: =subs(t oTi neExpressi on, di ff (subs(t oTi meFuncti on,

x3),t));
v2 = g I =in gl + g oo g2 gl

vi=2Fkglglt
>

Acceleration components

>for j from1l to 3 do
al | j:=subs(toTi meExpression,diff(subs(toTi meFunctio
n,v|i|j),t)) od:
>for j froml to 3 do a|]|j od;

gt cosi g2) — 2 ¢ Tt sin(g2) g2t — ¢ cosl g2) g% — T sin(g2) g2

gIR AN g2) + 2 g Mt oom g2) g — g T sin g2) qﬁzwlmswzil g8

a
2kglt- +2kqlqgllt

New example: Pendulum hanging from a rotating disc
Thisisasimilar problem. However we show how to use a simple form of
vectors with Maple.

mg

The stepsfollow section 1.4.2: Using Lists. Pendulum on
circular support:

Combine components and form vectorsusing MAPLE lists.

Position vector:

>X: =(s+l *sin(g2
y: =(s+l *sin(qg2)
z:=-1*cos(q2):
>r:=[x,y, z]:

——
* N
*

o

o

(7))

—

o]

[EEN

~
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Velocity and acceleration

>rs: =subs(toTi neFunction,r):
vs: =map(di ff,rs,t):

v: =subs(t oTi meExpr essi on, vs):
as: =map(diff,vs,t):

a: =subs(t oTi meExpr essi on, as) :

Show components
>a[ 1] ;

~bing g2) g 21" oos(gT) + L oot g2) g2 oo g T) — & oo g2) g2 sin(gT) g I

~ (o + 2sing2)) cos(q) g 1Y — (s + Lsing g2)) sind g 1) g It

Two waysto form pt(=m*a), therate of change of the
momentum vector.

First way:
>pt: =eval n(nra):
>pt[3];
m(leos(gl) g2t~ + 1 sin(g2) g2#)
Second way:

>Pt : =map(x->ntx, a):
>Pt[3];

m (lcos(g2) qZIE +{sin(g2) g2t
Tangent vectors

>taul: =map(diff,r,ql);

tl =[—{s +{sin(g2)) sinigd), (5 +Isin(g2)) cos(gd) 0]
>tau2: =map(di ff,r,g2);

12 =[lecos(gl) cos(gd), [cos(gl) sinigl), I sin(g2)]

Projection of 'inertial force' onto the tangent plane
>Pt1: =mul tiply(pt,taul);
Pt1l:=sinmplify(multiply(pt,taul));
Pt2:=sinmplify(multiply(pt,tau2)):

Ptl:=-m(-1 sin(g2) q2t2 cog(ql) + 1 cos(g2) g2tt cog(ql)

- 21 cosg2) g2t sin(gl) glt- (s+1sin(g2)) cos(ql) qlt2

- (s+1sin(g2)) sin(gl) gltt) (s+1sin(g2)) sin(gl) + m(

-1 sin(qg2) q2t2 sin(qgl) + 1 cog(g2) g2tt sin(ql)

+ 21 coqg2) g2t cog(ql) qlt- (s+1sin(g2)) sin(gl) qlt2

+ (s+1sin(g2)) cog(ql) gltt) (s+1sin(g2)) cos(qgl)
PtL:=-m(-21 co(q2) g2t qlt s- 212 cox(g2) g2t glt sin(q2) - qltt s

- 2qltt sl sin(g2) - gltt I2+ gatt Izcos(q2)2)
Proj ection of the gravitational for ce-the only applied for ce.
Thegravitational forceis:

>Rg:=[0, 0, -n¥g]:

>RL: =sinmplify(multiply(Rg,taul));
R2: =sinplify(multiply(Rg,tau2));

2

Rl =0

F2 =—-mglsin(gZ2)
Equations
>Eql: =Pt 1=R1: Eq2: =Pt 2=R2:

These equations contain second derivatives. Standard
numerical routines solving differential equations use a set of
first-order coupled equations. Weintroduce generalized
speeds ul=qglt and u2=q2t, to eliminate higher derivatives.
First weisolate the second-order derivativesin our
equations:

>Eqgs: =sol ve({Eql, Eq2}, {qltt,q2tt}):
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Wearrive at a system of first-order equationsin standard
form.

>
Egs: =si npl i fy(subs({qgltt=ult, g2tt=u2t, qlt =ul, g2t =u2

}, Egs)):
>Eqs[ 1] ;
ul w22 cos(g2)s +1sn(2 g2))
ult=2 = -
257 —4s5lsinig2) -1~ +I7 cos(2 g2)
>Eqs][ 2] ;
) -
o | Zeos(g2)ul™ s +iul™ sn(2 g2) -2 g sinig?)
ulf=—

2 {
4first-order differential equationsfor MAPLE.
>state: =Eqs uni on {qlt=ul, q2t =u2};

cog(g2) u12 s+ cog(g2) ulzsin(qZ) - gsin(g2)

state ;= § glt = ul, g2t = u2, uzt = I

L1t o (S718N(a2)) ul u2 cos(2) | E

52- I2+|2(:os(q2)2

Extend

>t oTi neFuncti on: =t oTi meFuncti on uni on
{ul=ul(t),ult=diff(ul(t),t),u2=u2(t), u2t=diff(u2(t)
1)}

Choose parameter values and initial conditions
> param ={s=1, | =4, g=10} :

>st at ep: =subs(param st ate):

>st at epEQ: =subs(t oTi neFuncti on, st at ep) ;

statepEq = { % g1(t) = ul(t), % g2(t) = u2(t),

T 2(t) = 2 cos(az(t)) u(t)2 + £ ui() 2 sin(2 q2(1)) - 2 sin(g(t
5 U2(0) = cos(02(1) ul() + 5 ul()2 §n(2 G2(1)) - 5 Sn(aR(1),

cos(g2(t)) u2(t) ul(t)
1+4sin(g2(t))

%ul(t) =-8

>initc:= {g1(0)=0,q2(0)=1, ul(0)=0.5, u2(0)=0}:

Put into one set for MAPLE
> deqns: =st at epEq union initc:

Solving and plotting

>
st: =dsol ve(deqns, {gq1(t),g2(t),ul(t),u2(t)}, type=num
eric, out put =procedurel ist);

st :=proc(rkf45_x) ... end
>wi t h(pl ots, odepl ot);

>odepl ot (st,[[t,ql(t)],[t,q2(t)]],0..20,viewsO..20
,-2...2],nunpoi nt s=100, | abel s=[tinme,q_i]);

27

9 1' Yy i B
WVVVVV VN
0 R S R

fime
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L ecture 2: Configurations

Orthonormal basis

The space can be organised using 3 orthonormal basis vectors. They are
composed into areference triad

n=(n n, n3) . (1)
Its transpose composition is:
an o
n' = 8”23 :
ensg
Here are some algebraic rules with these triads:

Scalar product operations

a0
« nonT=(ny n, ng)e 8”23
en; g
=Nny-ng+n,- Ny, +ng- N3=3.
a6
. nT-nzgnzj-(nl ny ng)
enso

&N Np-Np Ng-N3Q
=8n2-n1 Ny- Ny Np-N3x
éng-nN; Ng-N, Nz-N3@
ad 0 O
:%O 1 0:
e0 0 1o

(1.2)

Vector product operations
a0
« n'n"=(n n, ny) &n,1=0.
enyg
a6
. n'’ n:gnzi’ (ng n, ng)
enso
an ' n ongTomp ngongd
=gn2' ng N, n, n, ngt
en3’ Ny N3’ n, ng’ nNy@
&0 n3 -nyH
= 8 ng O n+
en, -n; O o

Note the order of the triads!

The 'matrix order' does not always mean that matrix rules are applicable,
for example:

-
[nT’ n] =-n'’ n,
and the matrix rule for vector products is inapplicable.
Dyadic operation
Hereis another algebraic rule with these triads:
an, o

T_ -
* nn'=(n ”3)8”2;
:nlnl + n2n2 + n3n3 =U
In the last operation we obtain a new quantity, the unit dyad U .

L et the reference vectors further satisfy the 'right-hand rule”:
(n; " n,)- ng =1. (1.3)
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Basis expansion WM=v"w'n' -n"w=y"w' "w,
An arbitrary vector w may be decomposed along the reference vectors where for aunit basetriad n' - n isaunit matrix.
n;:
w="wn+"W ono+"w gng Transformation of basis
?ng L
=(ng ny nz){"wyi=n"w (14
n -
W3g
&, 0
n n n \& T_on oToT :
= ( wWip  Wop Wg)(;nzzz wn . (14)
ez g as
The components of a vector are organised in columns "w :
an O
¢ Wi+
"w=¢"w, 7 (1.5) a
énW:-sB
"W isonly aparticular representation of the vector w in terms of the Let a and b betwo alternative reference triads, composed of mutually
reference basis vectors, not the complete vector itself. orthogonal unit basis vectors. Any vector w can be decomposed in either
set of basis vectors, from which we obtain the alternative representaions
Components w and "w .

. - n .. .
The operation to obtain “w from the original vector is: We now see how these are related to the relative orientations in space of

N, — T i . . .
w=n -w. (1.6) the corresponding reference triads a and b . Each basis vector in b can

and for obtaining a single component "w ; : be expanded in g .

nwi=w-ni=ni-w. We have
Norm b; =(a - by)a +(a; - by)a; +(a3- by)ag
Finally the norm (or length) of a vector is defined as usual Ry - b6

W =vw - w, =(a a as)gaz'bli
if the vector isreal valued. ea; - byo

Using the triad decompositions (1.4) and (1.4') we find in general
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%1 . blo
¢ T
=a(;a2 . b]_:: aa - b]_,
eas - b]_I.Z)
By - b0 Ry - by 0
¢ T ¢ T_o.T
by=(aq a as)%az' by+=a&ay - byt=aa - by,
e3-brg eaz- o
&y - bg0
& T
b3: a(;a2 . bgzz aa - b3.
eag - b3!ZI
Note the operation of a unit dyad aa T represented in the basis a . Together
these transformation equations can be written:

by &by a-bgd
b=(by by bs)=aCay- by ay- by ay-bg=aa -b.
eag-by az-by a3 bsg
Formally we introduce the direction-cosine matrix R, :
b=a(@' - b)=aRy,. (1.7-8)

Each column of R, isan a -representation of a unit base vector, which is
orthogonal to the ones of the other columns.

*The sum of sguared components of any column is unity.
*The scalar product of two different columns vanishes.

Such amatrix is called an orthogonal matrix.

The inverse transformation matrix Ry, isobtained explicitly, in analogy
to the above steps, by interchanging a :sand b :s. With the short notation:
a=b(b'-a)=bRy,.
We see the inverse property of Ry, using also (1.7-8):
a=bR, =aR Ry, = a.

The inverse matrix is obtaned by transposing the original one:
T
Rba =bT . a=(aT : b) =R;-b'

Thus: R., =Rps =Ria. (19)
Transformation of components
g

)

When we know how to transform the basis vectors we can convert

between representaions *w and bW of avector w. From (1.6) and (1.4)
we get

bw=bT - w=h". (aaw) =(bT : a)aw,
hence
W =Ry, %w, [remember b=a(a' - b)=aR,, in(1.7-8)].

The reverse transformation involves R :
"W =Ry w. (1.10)
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Solved Problems

P1.1

Given areferencetriad a construct atriad b such that b, is paralel to
& +a, and b, isanti-parallel to & - a,. Find the matrix which
transforms reference from b to a with by = a;.

Solution
Clearly the constructed unit vectorsin b are,
blzﬁ(al"'aﬂ)v by =- %2(31' 8),and by =a.
It follows by inserting into the definition of R, that
oy - by a-by a-b3o
Ry, =a'-b =ga2- by a b, a;-bgz
eaz;-b; az-b, az-byo
&/J2 -1/J2 05
:gllﬁ 1/J2 0.
e O 0 1g
But Ry, transforms the triads from b to a . Transposition gives:
®1/J2 UJ2 05
Rpa =g-1/J§ 1/ J2 07

e O 0 1g

P1.2

Derive the transformation matrix between Cartesian and cylindrical
(polar) reference triads with acommon z -axis. Apply the transformation
to an arbitrary position vector.

10

Solution
w
ng bs
b,
o / ny
n "bl
»

L et the Cartesian coordinate system be spanned by the triad n, so that the
cylindrical basisvectorsinthetriad b are rotated an amount ¢ about the
common ns-direction. Then

an -b; ni-b, ng-by6 aeosep -sing 0p
R = n"-b :gnz- by ny-b, ny- b3i=%sincp cosp Oz

éng-b; ng-b, ng-bzg € 0 0 1o
When thisis applied to a position vector representedin b as
PO
°r =803,
ezo

we get the Cartesian representation from "r = Rnbb r:
&y aeosy -sSng O0papy 8P CosSey
”rzgyizgsincp cosp  0:£0:=Epsing:.

ezo € 0 0 19678 € z @
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P1.3
Derive the transformation matrix between Cartesian and spherical basis

triads. Apply it to an arbitrary position vector representation °r in the
spherical triad.

Solution

Consider threereferencetriads n, b ands. Let n bethe Cartesian triad.

Weintroduce b asan auxiliary reference triad rotated relativeto n an
amount ¢ about the common n5 direction. Then the spherical triad sis

obtained rotated relative to b an amount & about the common b,
direction.

The two simple rotation matrices are:
&osp -sing 00 &cosy 0 sn9doO
Rnb:%sincp CoSgp 0'_+,and RbS:% 0 1 O —
0 0 10 8 snd 0 cosdg

11

They combine, according to the matrix product rule to the Cartesian-
spherical basis transformation:

®osp -sing 00%&cos® O sindO
Rns=%sincp CoS® O—g 0 1 0—
§0 0 1s8sn9 O cosop
&osg cosd - sing  cospsin®O
=¢singcosd  cosg sincpsinﬂ%_.

8 -snY 0 cosd o

With the spherical triad the position vector is r = ps;. When subsequently
R, isappliedto °r weget "r .:
&0 &ospcos? -sing cosg sind 0a®0
n _g T % : . -
r=gy+=¢singcosy cosp sSingsind-+¢0+
&p & -sno 0 cosd 'ﬂgpé
& cosp sin90
¢ .
=¢psingsiny +.
pcos® @

Comparing the componentsin both triads, we see that the length |r|=p
obvioudly isthe same.

—-P1.3 The spherical frame—with — SOPHIA —
>restart;
> read sophi a2l 3 V5;
sophia2l_3- 26 May 1998

Sophia definition of the sequence of smplerotationsfor the
transformation
> rotList:=[[N B, 3,phi],[B,S 2,theta]];
> chai nSi npRot (rotLi st);

rotList :=[[N,B,3,f],[B,S 2,q]]
Frame relation between N and B defined!
Frame relation between B and Sdefined!

true
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12
Calling the matrix of transformation é cos(f ) cos(q)
> RN Bty - sin(t) 0p cos(f)zcos(q>2+s'n(f)2cos<q;:(:)s:c§;)qz)sn(q)2+cos(f)zsn(q)z’
sin(f)  cos(f) 0f cos(f )2 cos(q)2 + sin(f )2 cos(q) 2 + sin(f )2 sin(q) 2 + cos(f ) 2 sin(q) 2
0 o 1f  sin(g) E
> RX(B, 9); o cos(q) 2 + sin(q) 2
scos() 0 sin(a)p sin(f) cos(f) ol
o 1 0 g sm(f)2+cos(f)2’sin(f)2+cos(f.)2' H
sin(q) 0 cos(q) E COS(f ) sin(q)
> R(N, S); cos(f )2 cos(q) 2 + sin(f ) cos(q) 2 + sin(f )2 sin(q) 2 + cos(f ) % sin(q) 2
> RX(S,N); _ _ . sin(f ) sin(q)
os(f) cos(q) -sin(f) cos(f)sin(q)y 5 5 > 5 5 5 5 >
_ ’ cos(f )= cos(q)“ + sin(f )~ cos(q) ~ + sin(f )~ sin(g) = + cos(f )~ sin(q)
sin(f) cos(q) cos(f) sin(f) Sln(OI) cos(q) E
-sin(q) 0 cos(q) cos(q)? + sin(q)?
cos(f) cos(q) sin(f) cos(q) -sin(q)y > sinp ]llfysil nversfe(Rm< (N9)); .
sn(f) cos(f) o 2c0s( )c: q) sin( )CfOS(q) sg(q)
cos(f)sin(q) sin(f)sin(q) cos(q) @ -sm(.) _ COS(_) ¢
> inverse(R(N, S)); cos(f) sin(q) sin(f)sin(g) cos(q) €

Evectors (Euclidian vectorsin Sophia)
In the spherical coordinat frame we have

>rS: =S &ev [0,0,rho];

rS:=[[0,0,r],5
The same vector in theoriginal (Newtonian) frame
>IN=N&o rS
rN :=[[cos(f) sin(q) r,sin(f) sin(q) r,cos(q) r ], N]
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Frames and configuration

A reference frame is a reference triad + a reference point (local origin).
We need particular reference frames (inertial frames) to formulate
Newton's dynamical laws. But we may use other convenient reference
frames in intermediate steps, for example a body-fixed reference frame
which exploit the symmetry of abody. Such reference frames may depend
on time or some physical angle or some other parameters.

Sophiain action: ML: Section 2.10.2.

Example: Specifying positions

Thisisthe'lllustration’ problemin ML, page 41-43.

Three square plates are connected. Express the geometrical
displacement vector from the corner of thefirst plate at the A-origin
to themost distant corner of the third plate. Seefigure.

13

Inspection of the'simpl€e' rotationsinvolved gives:
>rotList:=[[A B, 2,q1],[B,C 1,92]];
chai nSi npRot (rot Li st);

rotlist = [[A B 2, qI] [E C. 1 q2]]
Frame relation between A and B defined!
Frame relation between F and © defined!

rue

Definerelevant Evectors:
>r0l:= A &ev [-L,0,0];

ri2:= B &ev [-L,0,0];
r23:= C &v [0, L,0];
rod:= (r0l &++ rl12) &++ r23;

rol =[[-L 0 0] A]
ri2 =[[-L 0, 0] F]
r23:=[[0, L, 0] <]
i3 =[[—cosigl) L - L, -sin(g2) sin(gl) L + L, —cos(g2) sinigl) L], C]

Express Evector in the A-frame:
>A & o r03;

[[L{—cosigl) — 1 +sin(gl)sin(g2)) cosig2) L, L {siniql) + cos(gl) sinig2))], A]

Lecture 3:
Velocity, angular velocity and dyads

The problem is that observed rates of changes with respect to time or
relevant parameters are measured to different values depending on which
reference frameis used.

Generalised coordinates
We denote derivatives with respect to a generalised coordinate g relative

to areferenceframe N , by

N d
— 2.1
aq (21)
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Most important in our case is the total time derivative:
Nd N -
dt
If N isaninertia frame we may sometimes omit the frame superscript.

Derivatives of scalar quantities or matrices of scalars do not depend on
reference frames. Hence we may omit the left superscript in this case as
well. For example: a projection component of a specific vector on a
specific axisisascaar.

For aposition or displacement vector r , on the other hand, we find:

gd Bd /. d°r
L, = p=t 2.2
dtr dt(br) bdt’ (22)
whereas
) X
N o N ey S DG, pd 2.3)

dt dt dtg  dt’
We find an additional term here. Written in terms of the full vector r, we
have

Nd Bﬂr@*@bﬁ.r
dt dt dt 2
= BEHN QB- r. (2.3)
dt

In the last equation a new symbol NGB for adyadic quantity has been
introduced. Similar relations are obtained if we consider differentiations
with respect to generalised coordinates.

The operation by the dyad No B on avector can be understood as

an operation by arelated vector N B

we shall seelater on.

(the angular velocity vector) as

14

Solved Problems

P2.1
Consider athin rigid rod connected at one end to a spherical joint fixed at

the origin of areference frame N . Find the position and velocity vectors
of apoint on the other end relativeto N . Use SOPHIA.

Vs g

We let the Cartesian coordinate system be spanned by the reference triad
n and we introduce two auxiliary reference triads:

* b rotated relativeto n an amount g, about the common direction n5.
* s rotated relativeto b an amount g, about the common direction b,.

Using SOPHIA we will get:
V=(q,Sinq,s, + (0,8,
with respect to frame N . Thisresult is now shown using SOPHIA.

Initiation
> read sophi a2l 3 V5;

sophia21_3 - 26 May 1998

Framerelations
> dependsTi ne(ql, gq2):
&ot[N B, 3,ql]:&o0t[B, S 2,92]:

Position and velocity
>r:=S &v [0,0,L];
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r:=[[0,0,L],S]
Direct calculation (using frame derivative)
>V —&SI (N &dt r);

=[[g2tL, q1tsm(q2) L,0],S]

but also in thisway

Angular velocity vectorsfor framerotations
>WN\S:= S &o (N &V S);

> WN\S:= B &o (N &V S);

WNS:=[[- sin(g2) qlt, g2t, qlt cos(g2)], S]
wNS:=[[0, g2t, qlt], B]
Ve ocity from angular velocity

> v:=WNS &X r;
v:=[[g2tL, q1tsm(q2) L,0],S]

pP2.2
A rigid pipeis bent an angle ¢ at some point along its length. Let one end

be fixed at the origin of areference frameA. Assume that the pipe spins
about an axis through the origin and the bend. Consider also aball freeto
move aong the slanted segment. Find the position and velocity vectors of
the ball relativeto A.

Solution
Define convenient reference triads a (fixed inA) and b (fixed at the
slanted segment). No common fixed axisin these triads, so we need an

auxiliary one f, say. Let f3 = a3 and f; traces the shadow on the 'floor".

Then b, =f, and therest of b isinthefigure. Notethat b, istilted an
angle 9 = p/2- ¢, which istime independent.

>restart;
> read sophi a2l 3 V5;

Frames
>&ot[A F1, 3,q9l]:
> &ot[F1,B, 2, Pi/2-phi]:
> deloendsTl ma(?l, g2, ul, u2):
Angular velocity of frames
> WAB:= A & o (A &V B);
> WAB:.= B & o0 (A &V B);
WAB =[]0, 0, qlt], A]

WAB := [[- cos(f ) g1t, 0,qlt sin(f )], B]
Position
> r:=B &v [02,0,0] &t+ (A &ev [0,0,h]);
r:=

[[cos(gl) sin(f) g2,sin(gl) sin(f) g2, - cos(f ) g2 + h], A]
and velocity?
> v:=&sinp (A &dt r);
> v:=&sinp (WAB &xx r);
> v:=sinplify (WAB &xx r);
v:=[[-sin(gl) qltsin(f) g2 + cos(ql) sin(f) g2t,

cos(ql) gltsin(f) g2 + sin(ql) sin(f ) g2t, - cos(f ) g2t], A]
v:=[[-sin(gl) glt sin(f) g2, cos(ql) qltsin(f) g2,0], A]
v:=[[-sin(gl) glt sin(f) g2, cos(ql) gltsin(f) g2,0], A]
Under standing the velocity now?
> VA =(B &ev [q2t,0,0]) &t+ (WAB &xX r);
> VA = A & dt r;
VA = [[cos(ql) sm(f)q2t

- (cos(f ) glt + glt sin(f )2) sin(ql) sin(f) g2,
sin(gl) sin(f) g2t

+ (cos(f )2 qit + gt sin(f )2) cos(ql) sin(f ) 42,
- cos(f) gz2t], A]

15
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VA:=[[-sin(gl) gltsin(f) g2 + cos(qgl) sin(f ) g2t,
cos(gl) glt sin(f) g2 + sin(gl) sin(f ) g2t, - cos(f ) g2t], A]
>VA :=B & o VA
VA:=[[q2t,gltsin(f) g2, 0], B]

Moreon dyads

A dyad issimply apair of vectors, written in a definite order AB, A
being the antecent vector and B the consequent one. The dot-product
operation with another vector v can be performed in two ways and two
simultaneous scalar operations with v and w likewise:

w-[AB]-v=(w- A)B- V),
v-[AB]- w=(v-A)(B- w).

A dyadicisalinear combination of dyads. In fact, any dyad can be
expressed as adyadic in terms of basis vectors. Let

A=Ay +Azn; +Agng,
B= Blnl + anz + Bgng.
Then,
AB =AB;nin; + AB,onin, + ABaning
+ ABin,n +A,Bon,n, + ABaning
+ AzBingng + AzBongn, + AgBanans .
In any vector expansion the expansion coefficients are akind of scalar
products. So also for the dyadic expansions.

To make our formalism work we write A = n "A and B="B" n', so that

AB=n("AB")n" . (please check!)
The quantity inside the bracket is now a matrix.

Generalisation
For any matrix:

16
%Dll nDlz nD13(+)
'D=¢D,y "D, "Dy7 (2.8)
nD31 nD32 r1D'3’>3B
we define a dyad:
D =n"Dn"="D;n;n,+" Dy NN, +"Dysny N ...
+"Dgingny+ "D apngny+"Dagngng . (2.9)

We may here also define the transpose of a dyad according to:
D' =n"D'n". (2.10)

Examples:

a) If "D isaunit matrix, then D = U, the unit dyad.

b) If D =n,n,+ n,n,, itsaction on an arbitrary vector w is
D-w=w-D=wn+w,n,.

Thisisavector projection of the vector on to the n ,n,-plane. D isa

projection dyad.

Further results

An important thing to remember is that a physical vector or a physical
dyad are quantities which are independent of reference triads. But their
representations are not. What happens to the different representations of a

dyad?Let a and b betwo alternative base triads. Then
D=a%Da’ =b°Db".
Consequently,
“D=a'-b°Db'-a=Ry "DRy,, (2.11)
from the definitions (1.7-9) of the direction cosine matrices.

Note that a dyad can apply to a single vector, thereby producing a new
vector. It follows from equations (1.4') and (2.10) that

D-w=w-D' (2.12)
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L ecture 4.

Velocity calculations—
antisymmetric dyads

If the bodyfixed triad b is moving with time, the Newtonian velocity
calculation performes according to
5
N d BEr+(§\ld—bbT+-r.
dt dt dt @
We obtain a dyad operating on the original position vector.

The new fundamental dyad " QB =§\| db

T(j T
dtb P bb" (thelast member
of the definition is asimplified notation) is anti-symmetric. To see this, we
first note that

BN QBY (7)< b

2
Furthermore, the unit dyad expanded in the b -triad
U=hb",
is time independent and , hence, the relation
O=bb" +bb".
isawaystrue.
Thefirst termis ™ @B and the last term is our gN QB% and the
equation shows the antisymmetry
..T
gEN QB% - NgB

P2.3

Assumethat D isarea antisymmetric dyad, i.e. D' =-Dor
D- w=-w- D if w isavector. Show that the eigenvalues of D are
0, i for somerea quantity O .

17

Solution
Matrix formulation of the eigenvalue problem

Let w=n"w and D =n"Dn".

The dyad eigenvalue problem
n"Dn' -n"w= (n”w) 3
reducesto

n"D"w= (n”w)k :
Finally we eliminate the n basisto find
"D "w="wA,
which isamatrix formulation involving the matrix "D and the column

n

w.
The matrix representation of an arbitrary dyad in areferencetriad n is
given by

89 0 nDlZ nD132
"D=6¢"D, 0 "Dy.
'nD13 - nDzs 0
The eigenvalue equation is
-\ nDlz nch«x
'nD12 - nD23 =0,

3 nDlS 'nDzs -\
or in expanded form:
0= (' 7")(7"2+nD§3)' " D12 (7" nDlz"'nDzsnD 13)
+nD13 (nD12nD23 -\ nD13)
(' A )(}‘2"'n Dzs)' D 12}" nD12' " D137‘ D 13
(' A )(7"2"'n D§3+nD iz"'nDlzs) :

Hence the eigenvalues of D are:
0, it (= [DL+"DL+"D3).
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P2.4
Assumethat D isareal antisymmetric dyad with eigenvalues O, £i9 .

Show that an invariant expression for D is (9e;” U), where U isaunit
dyad and e, isthe unit eigen vector for the zero eigenvalue.

Solution
Let

® 0 nDlZ nDlag
"D=G¢"D, 0 "Dy.
'nD13 - nDza 0 B

We determine the normalised eigenvector “e, =(X Y 2)" corresponding
to the vanishing eigenvalue. The equations are:

o D, D13°§<9 20
g'nDlz 0 23_QY —90_

"D, -"D,, 0 4Zp &0p
The two first rows are written as;
"D,Y+"D,Z =0,

- "D, X+"D,,Z = 0.

Let arbitrarily Z = - "D,,, then the two equations result in Y="D,, and

X =-"D,,. Therea normalisation factor issimply 1/ & , according to the

previous problem, which then gives the normalised vector:

n _ 1 n n n T _ 1 n n n T
€ _5(' D23 D13 - DlZ) _6( D32 D13 DZl)

Construction of the full vector gives e, = n"e.

Theinvariant form
Thereisareal basis (g, e, e,) in which the antisymmetric matrix with
eigenvalues O, £i9 takesthe similar form:

18
@ -0 0

‘D=¢ 0 0.
& 0 0z

The corresponding dyad is:
D =eDe' =9 (e, - eg,)
= (9e3” V),
where
e3  U=e; (e +e0 + 383) = 08 - €€, +0.

In the end we can write the dyadic operation on a vector as a vector cross
product:

D-w=(9e;” U)- w=9p w

with 9p = Ue3, i.e. intheoriginal basis
9, = 9e,= 9n"e, =n("D,,

T

nD13 D 21) .

P2.5
Find an explicit formulafor the vector corresponding to the antisymmetric

dyad N QP
Solution
By definition
NoB _ppT
Its matrix representation in the b basisis:
bT N B b bT b—
o0 b,- b, b - b0
=Cb,- b, 0 b,- b,™,
b,- b, b;-b, 0 g
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where the diagonal elements are known to vanish for al orthonormal basis
vectors, and as it should by antisymmetry of the matrix.

The prescription to construct a vector N B , such that

NGB =N B~
then yields
NwB=blb,- b, b,-b, b, b,)

r r

.
In particular, the vector N B corresponding to the angular velocity dyad

isknown asthe angular velocity vector.

Example: Calculation of angular velocitieswith SOPHIA

Thisisthe'lllustration' problem in ML, page 46-48.
A pivoted rod is given. Seefigure. Find the angular velocity dyad, or
the corresponding vector in the B-frame.

>restart;
read sophi a2l_3;

19
sophia2l 3 - 28 October 1997

Warning: new definition for norm
Warning: new definition for trace

Analyse smplerotations between frames
>rotList:=[[A K 3,091],[K B 2,-92]];
chai nSi npRot (rot Li st):
rotList :=[[A K, 3,01],[K, B, 2,- 2]]

Which parametersdepend on time?
>dependsTi me(ql, q2):

Alter native ways to calculate angular velocity between frames:
> WAB: =angul ar Vel ocity(B, A);
UAB: = A &V B;

WAB :=[[sin(g2) g1t -g2t qgltcos(g2)],B]
UAB:=[[sin(g2) qlt -g2t qgltcos(g2)],B]

Express Evector in the B-frame:
>BuAB: = B & 0 UAB;
BuAB:=[[sin(g2) glt -2t oltcos(q2)],B]

Expressvector asadyad (matrix):
> WAB: =&Vt oD( WAB) ;

e 0 - 1t cos(q2) -g2t U U
WAB := &&q1t cos(q2) 0 - sin(q2) qltl, BL
& g2t sin(g2) qit 0 oot
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Solved Problems

P2.6
Find the angular velocity vector relating the fixed Cartesian and a moving
cylindrical coordinate bases.

Solution
Asin P1.2 we let the Cartesian coordinate system be spanned by the
referencetriad n and introduce an auxiliary referencetriad c rotated
relative to n an amount ¢ about the common direction n5. Then since
this amounts to a ssmple rotation, the result is obviously

N C - (p n,

P2.7
Find the angular velocity vector relating the Cartesian and spherical
coordinate bases.

Solution
Asin P1.3 we let the Cartesian coordinate system be spanned by the
referencetriad n and we introduce two auxiliary reference triads:

* b rotated relativeto n an amount ¢ about the common direction ns.
* s rotated relativeto b an amount 9 about the common direction b,.

Then, since both these rotations are simple rotations, their angular velocity
vectors are given by

N B = en,, ad BuS =9 b,.
The additivity of angular velocity vectors then yields:

N S—cpn +ﬁb

20
Velocitiesand frames
P2.8 Let P and Q be two points fixed on abody, which in turn moves

relative to a space fixed reference frame N . Find an expression for the
difference between the velocities of P and Q relative to the reference

frame N . Find also an expression for the difference between the
accelerations of P and Q relativeto thereference frame N .

Solution The position vectors corresponding to the points P and Q on
the body relative to the reference point (origin) of theframe N arerelated
by (seefigure): r® =r"+r"?,

where r? isfixed in the'body frame' B with triad b . The velocity
difference calculated in N isexpressed as.

ve -V :NErQ_NErP: NErPQ
dt dt dt
d ,
- B_rPQ+ N u)B PR
dt
- N wB © PR
Similarly,
d d d o]
Q- N VQ_N_VP_ N_?\ImB (PR
dt dt dt 12}
d 0, i 0
_(é N B r +N wB gN wB rPQ+,
dt 7 [}
. d
since N = =N (B
dt
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P2.9
Find an expression relating derivatives of dyads in different reference
frames.

Solution
The partial derivative of adyad D with repect to avariable q relativeto a

reference frame B is;

Blp- BL(ppp')= b—bT
aq aq aq
whereas the corresponding derivative in the A frameis:

AiDz Ai(bbDbT)

a9 aq
o
L b +b'D ?ab
PRY: 909
ae TO
BaD ?a—bb_ D+D. gt L2
a9 905

where we used the identity matrix b b =1

Identifying the angular rate dyads in the brackets, we finally get:

Ad BdID AB A

D= +29° . D-D
e aq

where the antisymmetry property of A

QB

q

B .
Q, isemployed.

21

P2.10
Find the angular velocity vector relating the Cartesian and a general frame
defined by Euler angles, as a sequence of simple rotations.

Solution

Thisisthe'lllustration' problem in ML, page 54-58.

>restart;

read sophi a2l_3;
sophia2l_3 - 28 October 1997

Warning: new definition for norm
Warning: new definition for trace

Analyse smplerotations between frames:
>rotList:=[[AH3,q9l1],[HF 1,92],[F B, 3,93]];
chai nSi npRot (rot List):

rotList :=[[A/H,3,q1],[H,F,1,92],[F, B, 3,93]]

Declar etime-dependent parameters:
> dependsTi nme(ql, g2, gq3):

Angular velocity vector in the A-frame:
> WABA: = A & o (A &V B);
WABA :=[[cos(ql) g2t + sin(gl) sin(g2) g3t
sin(gl) g2t - cos(qgl) sin(g2) g3t
glt + cos(g2) g3t], A

Angular acceleration vector calculated relative the A-frame and
expressed in the H-frame:
>aABA: = H & o (A & dt wABA);
aABA:=[[g2tt + g1t sin(g2) g3t
glt g2t - cos(g2) g2t g3t- sin(g2) g3tt
gltt- sin(g2) g2t g3t + cos(g2) g3tt], H]



