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“Reality is frequently inaccurate.”

Douglas Adams, The Restaurant at the End of the Universe
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Adaptive and model-based control in laminar boundary-
layer flows

Nicolò Fabbiane

Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Abstract

In boundary-layer flows it is possible to reduce the friction drag by breaking
the path from laminar to turbulent state. In low turbulence environments,
the laminar-to-turbulent transition is dominated by local flow instabilities –
Tollmien-Schlichting (TS) waves – that exponentially grows while being con-
vected by the flow and, eventually, lead to transition. Hence, by attenuating
these disturbances via localised forcing in the flow it is possible to delay farther
downstream the onset of turbulence and reduce the friction drag.

Reactive control techniques are widely investigated to this end. The aim of
this work is to compare model-based and adaptive control techniques and show
how the adaptivity is crucial to control TS-waves in real applications. The
control design consists in (i) choosing sensors and actuators and (ii) designing
the system responsible to process on-line the measurement signals in order to
compute an appropriate forcing by the actuators. This system, called compen-
sator, can be static or adaptive, depending on the possibility of self-adjusting its
response to unmodelled flow dynamics. A Linear Quadratic Gaussian (LQG)
regulator is chosen as representative of static controllers. Direct numerical
simulations of the flow are performed to provide a model for the compensator
design and test its performance. An adaptive Filtered-X Least-Mean-Squares
(FXLMS) compensator is also designed for the same flow case and its per-
formance is compared to the model-based compensator via simulations and
experiments. Although the LQG regulator behaves better at design conditions,
it lacks robustness to small flow variations. On the other hand, the FXLMS
compensator proved to be able to adapt its response to overcome the varied
conditions and perform an adequate control action.

It is thus found that an adaptive control technique is more suitable to delay
the laminar-to-turbulent transition in situations where an accurate model of the
flow is not available.

Descriptors: flow control, adaptive control, model-based control, optimal
control, flat-plate boundary layer, laminar-to-turbulent transition, plasma ac-
tuator.
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Adaptiv och modellbaserad styrning i laminära gränsskik-
tsflöden

Nicolò Fabbiane

Linné FLOW Centre, KTH Mekanik, Kungliga Tekniska Högskolan
SE-100 44 Stockholm, Sverige

Sammanfattning

I det tunna gränsskikt som uppst̊p̊a en yta, kan friktionen minskas genom att
förhindra omslag fr̊an ett laminärt till ett turbulent flöde. När turbulensniv̊an
är l̊ag i omgivningen, domineras till en början omslaget av lokala instabiliteter
(Tollmien-Schlichting (TS) v̊agor) som växer i en exponentiell takt samtidigt
som de propagerar nedströms. Därför, kan man förskjuta omslaget genom att
dämpa TS v̊agors tillväxt i ett gränsskikt och därmed minska friktionen.

Med detta mål i sikte, tillämpas och jämförs tv̊a reglertekniska metoder,
nämligen en adaptiv signalbaserad metod och en statiskt modellbaserad metod.
Vi visar att adaptivitet är av avgörande betydelse för att kunna dämpa TS v̊a-
gor i en verklig miljö. Den reglertekniska konstruktionen best̊ar av val av givare
och aktuatorer samt att bestämma det system som behandlar mätsignaler (on-
line) för beräkning av en lämplig signal till aktuatorer. Detta system, som
kallas för en kompensator, kan vara antigen statisk eller adaptiv, beroende p̊a
om det har möjlighet till att anpassa sig till omgivningen. En s̊a kallad linjär
regulator (LQG), som representerar den statiska kompensator, har tagits fram
med hjälp av numeriska simuleringar of strömningsfältet. Denna kompensator
jämförs med en adaptiv regulator som kallas för Filtered-X Least-Mean-Squares
(FXLMS) b̊ade experimentellt och numeriskt. Det visar sig att LQG regulatorn
har en bättre prestanda än FXLMS för de parametrar som den var framtagen
för, men brister i robusthet. FXLMS å andra sidan, anpassar sig till icke-
modellerade störningar och variationer, och kan därmed h̊alla en god och jämn
prestanda.

Man kan därmed dra slutsaten att adaptiva regulatorer är mer lämpliga
för att förhala omslaget fr̊an laminär till turbulent strömning i situationer d̊a
en exakt modell av fysiken saknas.

Descriptors: flödeskontroll, adaptiv styrning, modellbaserad styrning, op-
timal kontroll, platt-plattgränsskikt, laminärt till turbulent överg̊ang, plasma
ställdon.
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Preface

This thesis deals with adaptive and model-based control techniques aimed to
delay the TS-wave driven laminar-to-turbulent transition in boundary-layer
flows. A brief introduction on the basic concepts and methods is presented in
the first part. The second part contains three articles. The papers are adjusted
to comply with the present thesis format for consistency, but their contents
have not been altered as compared with their original counterparts.

Paper 1. N. Fabbiane, O. Semeraro, S. Bagheri & D. S. Henningson,
2014. Adaptive and Model-Based Control Theory Applied to Convectively Un-
stable Flows. Appl. Mech. Rev. 66 (6): 060801

Paper 2. N. Fabbiane, B. Simon, F. Fischer, S. Grundmann, S. Bagheri

& D. S. Henningson, 2014. On the role of adaptivity for robust laminar flow
control. To be submitted to J. Fluid Mech.

Paper 3. R. Dadfar, N. Fabbiane, S. Bagheri & D. S. Henningson,
2014. Centralised versus Decentralised Active Control of Boundary Layer In-
stabilities. Flow Turb. Comb. Published on-line.

October 2014, Stockholm

Nicolò Fabbiane
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CHAPTER 1

Introduction

The laminar boundary layer is characterised by lower friction than the turbu-
lent one. Hence,extending the laminar regime in a boundary-layer flow leads
to a friction drag reduction. This possibility is particularly attractive for the
transport industry: as most vehicles move through a fluid, a friction-drag reduc-
tion would permit a more energy-efficient design and lead to greener/cheaper
mobility.

In a low-turbulence environment, local instabilities of the boundary-layer
flow – Tollmien-Schlichting (TS) waves – have a lead role in the transition
scenario. These disturbances grow exponentially in the boundary-layer while
convected downstream by the flow (Schmid & Henningson 2001). Once a crit-
ical amplitude is reached, non-linear phenomena are triggered that lead to the
transition to turbulence (Saric et al. 2002). Hence the transition can be delayed
by attenuating the growth of TS-waves. The three major strategies to achieve
this goal are: (i) enhancing the stability of the flow via passive (Shahinfar et al.
2014) or active (Duchmann et al. 2013) manipulations of the mean-flow, (ii)
applying an aimed forcing of the flow in order to directly cancel the disturbance
(Bewley & Liu 1998; Lundell 2007; Goldin et al. 2013; Semeraro et al. 2013) or
(iii) a combination of them (Kurz et al. 2013).

1.1. The control problem

In this work the cancellation technique is pursued: sensors are placed in the flow
and used to detect the upcoming disturbances in order to design the cancellation
forcing in the flow. The choice and positioning of these devices is the zero-
step in the control design process, as it decides how the control algorithm will
interact with the system and deeply influence the design of the control itself
(Belson et al. 2013). In this work a reference sensor (y) is positioned upstream
the actuator u, in order to detect the upcoming disturbance, generated by a
disturbance source d. This information is then given to the compensator in
order to prescribe a proper forcing to the actuator u. Hence, the interaction
between the disturbance and the wave generated by the actuator lead to a
attenuation of the disturbance amplitude, detected by the error sensor z.

The compensator is the core of the control action, as it is the system respon-
sible to compute the control action based on the measurement signals. Two
antithetical compensator-design strategies emerged in literature. The first con-
sists in precomputing the compensator response based on an accurate model

3
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4 1. INTRODUCTION

d zuy

flow (plant)

compensator

Figure 1.1. Control scheme. A 2D zero-pressure-gradient
boundary layer flow is considered. The disturbance source d is
responsible to generate a train of TS-wave that is downtream
damped by the actuator u. The actuator action is based on
on-line measurements by the reference sensor y and, possibly,
the error sensor z.

of the flow: this procedure permits to use the traditional optimal control the-
ory with all its known stability and robustness results (Bagheri & Henning-
son 2011). Moreover, the affinity with the canonical stability theory enabled
these techniques to rapidly spread in the numerical community (e.g. Bewley &
Liu 1998; Barbagallo et al. 2009; Bagheri & Henningson 2011; Semeraro et al.
2013) until reaching the experimental level with Juillet et al. (2014). The sec-
ond strategy is based on an on-line identification of the compensator response
(Sturzebecher & Nitsche 2003): the measurement error sensor z is used to eval-
uate on-line the magnitude of the TS-wave after the control action and to adjust
the compensator response in order to reduce this amplitude measurement.

The aim of this work is to asses if the optimal performances guaranteed by
the model-based approach can hold against the on-line tailored response of the
adaptive techniques when it comes to real applications. In particular, we focus
on the robustness of the compensator to model inaccuracies that can typically
occur where the control problem is addressed in real flows.

This thesis is organised as follows. In §2 the equations that govern the time-
evolution of the flow – also called plant – are introduced and a design-model
for the compensator is derived. In §3 the compensator design is addressed via
model-based and adaptive control techniques. The closed-loop system – i.e the
interaction between plant and compensator – is investigated in §4: the perfor-
mances of the two investigated compensators are compared on and off their
design condition . Finally, the control of three-dimensional (3D) disturbances
is addressed in §5 via an extension of the adaptive algorithm presented in §3.
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CHAPTER 2

The plant

The plant is the system that we aim to control. In this work, we focus on
a two-dimensional (2D) zero-pressure-gradient boundary layer flow. In the
first instance, we will consider 2D disturbances only: this will allow us to
reduce the number of sensors in the flow and introduce in a simpler way the
control techniques that are discussed in this work. The three-dimensional (3D)
disturbance case will be later discussed in §5.

A model that describes the plant is needed: the Navier-Stokes equations
that govern this type of flow read

∂u

∂t
= − (u · ∇)u−∇p+

1

Re
∇2u+ λu, (2.1)

0 = ∇ · u, (2.2)

u(x, t)|∂Ω = ub(x), (2.3)

u(x, 0) = u0(x). (2.4)

The velocity and pressure at position x = (X,Y ) at time t are repre-
sented by u(x, t) and p(x, t) respectively. The Reynolds number is defined
as Re = U∞δ

∗
0/ν, where U∞ is the free-stream velocity, ν the viscosity and δ∗0

the displacement thickness in the beginning of the domain. On the boundaries
∂Ω of the computational domain Ω (see Figure 2.1), the conditions (2.3) are
imposed: no-slip condition at the wall and asymptotic velocity in the upper
boundary. A fringe technique is used to simulate inflow and outflow condi-
tion in the beginning and in the end of the domain (Nordström et al. 1999):
the flow is considered periodic along the stream-wise direction and a volume
forcing λ(x)u(x, t) in the last part of the domain enforces periodicity along the
stream-wise direction (grey region in Figure 2.1). More details on the numerical
procedure can be found in Chevalier et al. (2007), where the pseudo-spectral
DNS code used in this work is described.

2.1. A linear model of the flow

As we are interested in the dynamics of small disturbances, the following de-
composition is introduced:

u(x, t) = U(x) + ǫu′(x, t), (2.5)

p(x, t) = P (x) + ǫ p′(x, t). (2.6)

5
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Figure 2.1. Computational domain Ω.

{U(x), P (x)} is a steady solution of Navier-Stokes equation – i.e. the laminar
boundary-layer solution – and {u′(x), p′(x)} the perturbation. Applying this
decomposition into (2.1–2.4) and neglecting the terms of order ǫ2, the linear
set of equation is obtained:

∂u′

∂t
= − (U · ∇)u′ − (u′ · ∇)U−∇p′ +

1

Re
∇2u′ + λu′ + f , (2.7)

0 = ∇ · u′, (2.8)

u′|∂Ω = 0, (2.9)

u′(0) = 0. (2.10)

The term f(x, t) is used to model the forcing on the flow. Spatial and time
dependency are decoupled as follows:

f(x, t) = bd(x) d(t) + bu(x)u(t), (2.11)

where the disturbance and control signals d(t) and u(t) multiplies the respective
spatial support bd(x) and bu(x). The measures y(t) and z(t) are defined by
the integrals

y(t) =

∫

Ω

cy(x) · u
′(x, t) dΩ + n(t), (2.12)

z(t) =

∫

Ω

cz(x) · u
′(x, t) dΩ, (2.13)

where the kernels cy(x) and cz(x) define the sensors.

Let us introduce a general basis T(x) ∈ C1×N on which the perturbation
velocity u′(x, t) can be expanded as

u′(x, t) ≈ T(x)q(t), (2.14)

where q(t) ∈ C
N×1 is the vector of degrees of freedom. In this study, a Fourier-

Chebishev expansion overNX -NY terms is considered, resulting in N = NXNY

degrees of freedom. Via a Galerkin projection over T(x), it is possible to
transform the partial differential equation (PDE) (2.7) in a ordinary differential
equation (ODE) in time (Quarteroni 2009). The Linear Time-Invariant (LTI)
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2.1. A LINEAR MODEL OF THE FLOW 7

system that results reads

q̇(t) = A q(t) +Bd d(t) +Bu u(t), (2.15)

y(t) = Cy q(t) + n(t), (2.16)

z(t) = Cz q(t), (2.17)

where A ∈ CN×N is the linearised Navier-Stokes operator. The matrices
Bd,Bu ∈ C

N×1 allows the two inputs d(t) and u(t) to force the system and
the output matrices Cy,Cz ∈ C1×N filter the state q(t) in order to provide the
outputs signals y(t) and z(t). The stochastic signal n(t) represents the measure-
ment noise that affect the output and it is usually modelled by a white-noise
signal.

2.1.1. Reduced Order Model (ROM)

Some control techniques require the direct knowledge of the system matrices
A, B and C. An example is the linear quadratic Gaussian (LQG) regulator
that will be introduced in §3.1.1: this control technique requires the solution
of a Riccati equation, which computational cost is proportional N3. Because
of this, handling large system may lead to a very expensive design process and,
eventually, to the impossibility of computing the control gains. Hence, system-
reduction techniques applied to the Navier-Stokes linear operator are widely
used to obtain smaller – and more handleable – systems that can reproduce
the I/O behaviour of the flow(Rowley 2005; Ilak et al. 2010; Bagheri et al.
2009c).

In this study, the Eigensystem Realization Algorithm (ERA) is used to
provide a reduced-order model (ROM) (Juang & Pappa 1985). This algorithm
builds a realisation of an LTI system that mimics the original system defined by
{A,B,C} starting from its impulse responses from each input to each output.
The system obtained by the ERA reads

∂qr(t)

∂t
= Ar qr(t) +Br,d d(t) +Br,u u(t) (2.18)

y(t) = Cr,y qr(t) + n(t) (2.19)

z(t) = Cr,z qr(t) (2.20)

where Ar ∈ RNr×Nr is the ROM state matrix, qr(t) ∈ RNr×1 is the state
vector, Br,d,Br,u,C

T
r,y,C

T
r,z ∈ RNr×1 are the I/O matrices and Nr ≪ N . This

method is equivalent to a projection of the full system {A,B,C} on the set
of its Nr most energetic Balanced Proper-Orthogonal-Decomposition (BPOD)
modes (Moore 1981; Bagheri et al. 2009b).

The model-reduction procedure implies an information loss, that eventually
leads to an error: this algorithm allows to have a direct estimation of this error
as a function of the ROM size (Moore 1981). This estimation can be used to
chose the ROM size in order to bound the error to a given tolerance.
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8 2. THE PLANT

2.1.2. Finite Impulse Response (FIR) representation

In other control techniques the knowledge of the system is relaxed to its In-
put/Output (I/O) relations only. Consider the forced response of a LTI system
to a generic in put signal u(t) can be written as

z(t) = Cze
At q0 +

∫ t

0

Cze
AτBu u(t− τ)dτ. (2.21)

If the system is stable, for t large enough the first term goes to zero and the
system response is dependent only from the forcing u(t):

z(t) =

∫ t

0

Cze
AtBu u(t− τ)dτ =

∫ t

0

Pzu(τ)u(t− τ)dτ (2.22)

where Pzu is the convolution kernel. The kernel is able to describe completely
the Input/Output relation between the input u(t) and the output z(t) but
loosing all the information about the state q(t).

The time-discrete counterpart of (2.22) is of particular interest when it
comes to control techniques. The time-discrete output signal z(n) = z(n∆t)
is computed as a linear combination of the time-discrete history of the input
signal u(n) = u(n∆t):

z(n) =

n
∑

j=0

Pzu(i)u(n− i). (2.23)

Since the system is stable, the convolution kernel goes to zero as the shifting
index i grows: this permits us to truncate the sum at an appropriate time
Nzu∆t. Hence, the signal z(n) can be obtained by the finite sum

z(n) ≈
Nzu
∑

j=0

Pzu(i)u(n− i). (2.24)

The expression (2.24) is called Finite Impulse Response (FIR) filter.

Being so, the Input/Output relation u → z can be described by a finite
number of coefficients Pzu(i). These coefficients can be both computed form a
linear model of the flow as the one provided by (2.15–2.17) or identified from
experiments by dedicated algorithms, e.g. Least Mean Square (LMS). For more
information, we refer to Paper 1.
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CHAPTER 3

The compensator

The compensator is the system that interacts with the plant via its control
inputs and outputs in order to pilot it at the desired state. In this brief review,
we will focus on linear compensators, i.e. compensators that are ascribable
to a linear dynamical system (Figure 3.1). If the system that describe the
compensator is time-invariant, the compensator is called static: the control
law is pre-computed, usually based on a model of the system and then the
compensator is connected to the plant. If the response of the compensator,
instead, can be modified on-line, the compensator is called adaptive

In the following sections, we will introduce two types of compensator, ex-
amples of these two families. For a more detailed review we refer to Paper 1.

3.1. Model-based control

This family groups all those static compensators that are based on a model
of the plant that can be either numerical (Bewley & Liu 1998; Bagheri &
Henningson 2011; Semeraro et al. 2013, e.g.) or experimentally identified Juillet
et al. (2014). The model is then used to compute the response of the actuator:
typical examples are Model Predictive Control (MPC) and the linear Quadratic
Gaussian (LQG) regulator, discussed herein.

3.1.1. Linear Quadratic Gaussian (LQG) regulator

The LQG regulator design is bases on a complete model of the plant: it results
in a LTI system that mimics the plant in order to compute a proper control
signal u(t), given the measurement signal y(t) as an input. The compensator
reads

∂ q̂r(t)

∂t
= (Ar + LCr,y) q̂r(t) +Br,u u(t)− Ly(t) (3.1)

u(t) = Kq̂r(t) (3.2)

where q̂r(t) ∈ R
Nr×1 is the compensator state vector. The subscript r refers

to the Reduced Order Model (ROM) of the flow discussed in §2.1.1. The
compensator is composed by two parts: the observer (84) and the controller
(3.2). The former filters the measurement signal y(t) by the estimation gain
matrix L ∈ RNr×1 and reconstructs an estimation q̂r(t) of the state of the

9
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10 3. THE COMPENSATOR

d y u z

LQG

flow

(a) Static

d y u z

FXLMS

flow

(b) Adaptive

Figure 3.1. Compensator schemes for static (LQG) and
adaptive (FXLMS) strategies. An adaptive scheme may also
use the error signal z(t) to adapt to the current flow condi-
tions. The grey lines indicate the I/O relations required to be
modelled by each strategy.

controlled system qr(t). The latter computes the control signal filtering the
estimated state q̂r(t) and the control gain matrix K ∈ R1×Nr .

3.1.1.1. Observer: Kalman filter

The observer is designed to minimise the the covariance of the difference be-
tween the plant state qr and the estimated state q̂ when the system is excited
by an unknown white-noise signal d(t). To do this, the observer uses the mea-
surement y(t) affected by an error n(t), also modelled as white noise, and the
control signal u(t). The minimization procedure leads to

L = −YCH
r,yR

−1
n (3.3)

where Y ∈ RNr×Nr is the solution to the Riccati equation:

ArY +YAH
r −YCH

r,yR
−1
n Cr,y Y +Br,dRdB

H
r,d = 0 (3.4)

The parameters Rd and Rn are the expected variances of the disturbance signal
d(t) and measurement noise signal n(t).

3.1.1.2. Controller: Linear Quadratic Regulator (LQR)

LQR design relies on the knowledge of the state qr, or its estimation q̂r . The
procedure is based on the minimization of a quadratic cost-function based on
the error-sensor measurements z(t) and on the control signal u(t)

N =

∫ ∞

0

z(t)wz z(t) + u(t)wu u(t) dt. (3.5)

The ratio between the control-strength parameter wu and the performance
parameterwz allows to design a controller capable to attenuate the disturbances
in the system, while limiting the control effort. The minimisation procedure
leads to the control law in (3.2) where the control-gains matrix reads

K = −w−1
u BH

r,u X. (3.6)
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The matrix X ∈ R
Nr×Nr is the solution of the Riccati equation

AH
r X+XAr −XBr,uw

−1
u BH

r,u X+CH
r,zwzCr,z = 0 (3.7)

Note that the controller design is completely independent from the observer
design and vice-versa. This is commonly known as separation principle (Glad
& Ljung 2000).

3.2. Adaptive control

In an adaptive control method the compensator adjusts on-line its response in
order to optimise its performances: usually this is achieved by monitoring its
own performances and, based on those, compute the magnitude of the adjust-
ments. A typical example of this kind of compensator is the Filtered-X Least-
Mean-Square (FXLMS) algorithm, investigated by Sturzebecher & Nitsche
(2003) and Kurz et al. (2013) to attenuate 2D disturbances in a boundary-
layer flow.

3.2.1. Filtered-X Least-Mean-Square (FXLMS) algorithm

The FXLMS algorithm, like the LQG regulator, relies on a minimisation pro-
cedure that is however performed on-line. This allows the algorithm to use the
actual measurements from the flow, giving this method the adaptive qualities
that characterise it.

The compensator is again a linear system. As seen in §2.1.2 for the plant,
a linear system can be represented both in state-space form (like the LQG
regulator in the previous section) or by a Finite Impulse Response (FIR) filter.
This control technique uses the letter representation: hence, the control signal
is given by

u(n) =

NK
∑

i=1

K(i) y(n− i) (3.8)

where u(n) = u(n∆t) and y(n) = y(n∆t) are the time-discrete representations
of the time-continuous signals u(t) and y(t) and ∆t is the sampling time step.
The NK coefficients K(i) are the kernel of the filter and they are related to the
impulse response of the compensator. Those coefficients are updated at each
time step in order to satisfy the minimisation problem

min
K(i)

z2(n) (3.9)

via a steepest-descend algorithm is used. The updating law that results is

K(i|n+ 1) = K(i|n) + µ z(n)

Nzu
∑

j=1

Pzu(j) y(n− i− j). (3.10)

Note that the knowledge of the plant is limited to the time-discrete kernel
Pzu(i) that describes the I/O relation u→ z.
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CHAPTER 4

The closed-loop system

In the previous two chapters the plant and the compensator are introduced
separately. In this chapter the interaction between them is investigated: the
compensator is paired to the plant and its performance evaluated via DNS
simulations.

The simulated environment replicates the experimental conditions in Paper
2. The sensors y and z are modelled as surface mounted hot-wires – i.e. mea-
surements of the local friction fluctuations – and the actuator u is modelled as a
plasma actuator, using the experimental results by Kriegseis et al. (2013). The
computational domain Ω extends 700δ∗0 in the stream-wise direction and 30δ∗0
in the wall-normal direction. The fringe region extends for 150δ∗0 in the last
part of the domain. Fourier expansion over NX = 768 modes is used to approx-
imate the solution along the stream-wise direction, while Chebyshev expansion
is used in the wall-normal direction on NY = 101 Gauss-Lobatto collocation
points. The Reynods number Re at the inlet is set to 656. A second Reynods
number based on the X coordinate is also defined as

ReX =
U∞ (X −XLE)

ν
, (4.1)

where XLE is the leading-edge position.

The instantaneous stream-wise component of the velocity fluctuation is
reported in Figure 4.1. The disturbance source is excited by a white-noise signal
d(t) with variance Rd = 1/9, generating a train of random TS-wave is the flow
that is damped by the actuator u governed by the compensator. A white noise
signals with variance Rn = 1/9 · 10−2 is added to the measurement signals
y(t) and z(t) in order to model the experimental measurement noise. The color
maps show the controlled case when LQG (upper plot) and FXLMS (lower plot)
are used while the contours report the uncontrolled simulations data. Both the
compensator are able to reduce the amplitude of the disturbances in the flow:
however, the model-based control shows better performance than the adaptive
controller.

In order to better quantify the performance gap between the two control
strategies, a time-averaged measurement of the TS-wave amplitude based on
the perturbation energy at each stream-wise location is introduced

A2
e(X) =

1

LY T

∫ LY

0

∫ T

0

|u′(x, t)|
2
dt dY (4.2)

12
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Figure 4.1. Color maps report the instantaneous stream-wise
component of the velocity when LQG (upper) and FXLMS
(lower) compensators are employed. The contours report the
corresponding uncontrolled case.

Figure 4.2. TS amplitude Ae(X). The lines report the per-
formances of the two compensators at the design condition.
The shaded regions indicate the performance variation when
the asymtotic velocity is changed in a ±10% range with respect
to the design condition.
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14 4. THE CLOSED-LOOP SYSTEM

The solid lines in Figure 4.2 show Ae at the design condition for an averag-

ing time T = 7000
δ∗0
U∞

. The performance difference between the two control
strategies is clear: the model-based compensator cancels almost completely the
disturbance downstream the actuator. The adaptive algorithm, instead, is able
only to attenuate the upcoming TS-wave that starts growing again downstream
the error sensor.

4.1. The importance of being adaptive

The pure performance at the design condition is not the only parameter that
should be taken into account when evaluating a control technique: the reliabil-
ity of the controller is also crucial. Unfortunately, the outstanding performance
of the LQG compensator degrades as the flow departs from the design condi-
tion. This event is typical of real flow experiments where a perfect match
between model and reality can be easily a difficult issue, as shown in Paper 2.

In fact, the perfect match between real flow and design model is conditional
to the guaranteed optimal performance of the LQG regulator (Doyle 1978).
The shaded areas in Figure 4.2 represent the performance variation of the two
algorithms when the free stream velocity is varied in a 10% range respect to the
design condition: LQG performance drastically decreases until being overtaken
by the FXLMS compensator. The adaptive algorithm, in fact, is able to adjust
its response to overcome the modelling errors and ensure an effective wave
cancellation (Paper 1,2). This result suggests that an adaptive controller is to
be preferred in those application where an accurate model of the flow is not
available.
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CHAPTER 5

The third dimension

In the previous chapters the hypothesis of a purely 2D flow has been made to
facilitate the study. This permitted to easily highlight advantages and draw-
backs of the investigated control techniques. However, in real environments
this hypothesis is far from reasonable. Hence, it is necessary to address the
control problem allowing a disturbance to develop in three dimensions.

The numerical and experimental work by Li & Gaster (2006) falls into
this framework: the control of three-dimensional (3D) disturbances via the
superposition of counter-phase waves is addressed by using a simple algebraic
model of the flow. Also the LQG approach has been tested in 3D disturbance
environment: we recall the pioneering work by Semeraro et al. (2013), where the
control of single wave-packets is addressed by localised sensors and actuators.
All the sensors and actuators were connected by each other by the compensator:
this would lead to a prohibitive increasing of the compensator complexity if a
large spanwise portion of the flow is meant to be controlled. In the more recent
work in Paper 3, the possibility to limit the number of interconnections between
sensor and actuators is investigated by dividing them in equal sets along the
span-wise direction, each commanded by one compensator. This structure,
called control units, is thus replicated along the span-wise direction in order to
fill the entire domain.

The study presented in this chapter is a further development of this idea.
However, the modularity of the control action is not based on an a-priori divi-
sion in control units but rather on considerations about the control kernel. A
similar set-up to Paper 3 is considered: a distributed 3D disturbance field is
generated using a span-wise row of independent random forcings d (Figure 1),
generating a complex 3D random pattern of disturbances. The control action
is performed by a row of localised, equispaced actuators forcing the flow in the
proximity of the wall. Similarly to the 2D case, their action ul(t) is computed
based on the measurements ym(t) by a row of sensors upstream the actuators:
for this set-up, the number of sensors is equal to the number of actuators and
they are positioned aligned with the flow direction (Figure 5.2).

5.1. A “three-dimensional” compensator

A linear control law is assumed

ul(n) =
∑

m

∑

i

Kml(i) ym(n− i) ∀l (5.1)

15



✐

✐

“lic” — 2014/9/29 — 12:01 — page 16 — #26
✐

✐

✐

✐

✐

✐

16 5. THE THIRD DIMENSION

X

Y

Z y
u

z

d
U∞

Figure 5.1. 3D control set-up. Random 3D disturbances are
generated by a row of localised independent forcings d. The
measurements from the sensors y and z are used to compute
the actuation signal for the actuators u in order to reduce the
amplitude of the detected disturbances.

where Kml(i) ∈ RM×M is the convolution kernel of the compensator. As a
consequence, the number of transfer functions between the M sensors ym and
the M actuators ul is M2. This imposes a computational constraint when
M is large, which is the case when covering a large spanwise width with the
controller. However, since the flow is spanwise homogeneous, the same transfer
function Km from all the sensors ym+l to one arbitrary actuator ul is replicated
for each actuator um, as shown in Figure 5.2. This assumption reduces the
number of transfer functions to be designed from M2 to M . Hence, the Finite
Impulse Response (FIR) filter representation of the control law reads

ul(n) =
∑

m

∑

i

Km(i) ym+l(n− i) ∀l (5.2)

where one kernel dimension is suppressed and, as a consequence, Km(i) ∈
RM×1.

5.1.1. Multi-Input Multi-Output (MIMO) FXLMS

A Multi-Input Multi-Output (MIMO) version of the FXLMS algorithm intro-
duced in §3.2.1 is used to dynamically design the compensator. The algorithm
minimise the sum of the squared measurement signals zl(n):

min
Km

(

∑

l

z2l (n)

)

. (5.3)

Hence the kernel is updated via a steepest descend algorithm at each time step:

Km(i|n+ 1) = Km(i|n)− µλm(i|n). (5.4)
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ul

ym+l

Km
flow

X

Z

Figure 5.2. Compensator structure. The action of each actu-
ator ul is computed by filtering the signals from all the sensor
ym + l via a linear filter Km.

where the descend direction λm(j|n) is given by

λm(i|n) =
∂
(
∑

l z
2
l (n)

)

∂Km(i)
= 2

∑

l

zl(n)
∂zl(n)

∂Km(i)
. (5.5)

In order to compute the derivative in the previous equation, it is necessary to
explicit z(n) dependencies:

zl(n) =
∑

r

∑

j

Pzd,r(j) dr+l(n− j) +
∑

r

∑

j

Pzu,r(j) ur+l(n− j) =

= [· · · ] +
∑

r

∑

j

Pzu,r(j)
∑

m

∑

i

Km(i) ym+r+l(n− j − i) =

= [· · · ] +
∑

m

∑

i

Km(i)
∑

r

∑

j

Pzu,r(j) yr+m+l(n− j − i) =

= [· · · ] +
∑

m

∑

i

Km(i) fm+l(n− i), (5.6)

where the same span-wise homogeneity assumption has been made for the plant
kernels Pzd,r(j) and Pzu,r(j) that represent the transfer functions dr → zl and
ur → zl respectively. Hence the descend direction reads

λm(i|n) = 2
∑

l

zl(n)
∂zl(n)

∂Km(i)
= 2

∑

l

zl(n)fm+l(n− i). (5.7)

This expression – but the sum – is similar to the expression of λ(i|n) in the 2D
case in (3.10).

5.2. Preliminary results

In order to analyse the control algorithm, LES simulations are performed. The
flow is expanded over 1536 × 384 Fourier modes in the XZ plane and 101
Chebyshev’s polynomials in the wall-normal direction. The computational do-
main Ω extends for [0, 2000δ∗0)× [0, 30δ∗0 ]× [−125δ∗0, 125δ

∗
0) in the X , Y and Z

direction. The simulation Reynolds number is Re = U∞δ0
ν = 1000.
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Figure 5.3. Convolution kernel Km(i) computed by FXLMS
algorithm. The thicken line indicates the kernelK0(i) connect-
ing the actuator ul and the sensor yl at the same stream-wise
location.

Sensor and actuator shapes are modelled according to Semeraro et al.
(2013): 25 equispaced objects are considered for each row of sen-
sors/actuators/disturbances, resulting in a span-wise separation ∆Z = 10. The
disturbance inputs are fed by 25 independent white noise signals dm(t) with
variance 1/3 · 10−3 each.

The control kernel Km(i) computed by the FXLMS algorithm is shown in
Figure 5.3. Each line indicates the transfer function Km(i) between a generic
actuator ul and the sensor ym+l that is positioned at m∆Z with respect to
the actuator itself (Figure 5.2). The thick line in Figure 5.3 shows the transfer
function K0(i), i.e. the connection between the sensor and the actuator posi-
tioned at the same Z location. The time-delay that characterise this type of
flows can be detected also in the compensator response: if we consider K0(i) –
i.e. the connection between the sensor and the actuator positioned at the same
Z location – the maximum of the transfer function occurs at j∆t ≈ 250, which
corresponds to the time that takes a TS-wavepacket to travel from sensor to
actuator location (Schmid & Henningson 2001). Moreover, As the index m in-
creases the magnitude of the transfer functions decays and it becomes zero for
m = ±5: this means that the action of one actuator depends only on a limited
number of sensors, in this case the ones between Z = −50δ∗0 and Z = 50δ∗0
with respect to the actuator position. This will permit to reduce the number
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Figure 5.4. Transition delay. In (a) and (b) the skin fric-
tion fluctuations respect to the laminar solution are shown
at t = 4000 δ0

U . (c) reports the span-wise averaged fric-
tion along the stream-wise direction. The top axis reports

ReX = U∞ (X−XLE)
ν , where XLE is the leading-edge position.
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20 5. THE THIRD DIMENSION

of transfer functions that have to be calculated and, as a consequence, reduce
the compensator computational cost.

The transition delay performed by the compensator is shown in Figure 5.4.
The friction-traces of the TS-waves are visible in Figure 5.4(a-b), where the
instantaneous skin-friction fluctuations with respect to the laminar solution
are reported. The disturbances grow exponentially while travelling downstream
and lead to transition in the uncontrolled case. In Figure 5.4(b) it can be seen
that the compensator is able to attenuate the TS-waves and move the transition
point out of the computational domain. In the controlled case the disturbances
reach a minimum amplitude where the error sensors zl are positioned and again
without triggering the transition within the computational box. This can be
seen also in Figure 5.4(c) where the span-wise average of the stream-wise stress
is shown: the area between the controlled and uncontrolled friction curves gives
directly the drag-save per unit of span-wise length that is obtained by applying
the control.
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CHAPTER 6

Summary of the papers

Paper 1

Adaptive and Model-Based Control Theory Applied to Convectively Unstable
Flows

A review of the control methodologies aimed to delay the laminar-to-turbulent
transition in convectively unstable flows is presented. A simple one-dimensional
system – the Kuramoto-Sivashinsky (KS) equation – able to replicate the sta-
bility of this type of flows is introduced to illustrate the different techniques
via applied-control examples.

The compensator design is investigated as a coupling of a controller and an
estimator. The former is responsible to to compute the control signal assuming
a complete knowledge of the system state. Optimal control techniques are
reviewed: Linear Quadratic Regulator (LQR) and Model Predictive Control
(MPC) are examined, in particular when saturation constrains are applied to
the actuator. The estimator, instead, provides to the controller an estimation of
the system state based on limited measurements in the flow. The conventional
Kalman filter is introduced as system identification techniques borrowed from
signal-processing theory.

In the end, the complete compensator is analysed. The difference between
static (LQG) and adaptive (FXLMS) compensators is investigated, highlighting
a strong sensitivity of the static controller to inaccuracies of the model used in
the design process.

Scripts to generate all the presented data and figures are available in MAT-
LAB format at http://www.mech.kth.se/~nicolo/ks/.

Paper 2

On the role of adaptivity for robust laminar flow control

The control problem is addressed in an experimental set-up in order to inves-
tigate the necessity of adaptivity in real flow applications. A FXLMS adaptive
compensator is compared with a model-based LQG regulator in attenuating
2D TS-wave in a zero-pressure-gradient boundary layer flow.

21
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22 6. SUMMARY OF THE PAPERS

The experiments are conducted in the open-circuit wind tunnel at TU
Darmstadt, Germany. A 2D disturbance is generated TS-wave by a distur-
bance source and downstream detected by a surface-mounted hot-wire sensor.
Based on these measurements, the compensator prescribe a suitable forcing to
a dielectric-barrier-discharge (DBD) plasma actuator to cancel the upcoming
wave. A second hot-wire sensor is placed farther downstream to monitor the
compensator performance. DNS simulations of the experimental set-up are
designed and, based on these, the LQG regulator is designed.

The model-based regulator is found to be less effective than the FXLMS
compensator because of unavoidable modelling inaccuracies. Moreover, the
performance of the LQG regulator degrades as the flow response depart from
the design model. In particular, free-stream velocity variation are investigated:
the static compensator shows not to be able to prescribe the correct phase
information to the actuator. Otherwise, the adaptive compensator is able to
autonomously adjust to the modified flow conditions and effectively perform
the control action for a broader interval of velocity variations.

Paper 3

Centralised versus Decentralised Active Control of Boundary Layer Instabilities

The control of 3D disturbances in a zero-pressure-gradient boundary-layer flow
is addressed via model-based optimal control. In particular, this work focuses
on the possibility to divide and replicate the control law along the homogeneous
span-wise direction in order to reduce the complexity of the controller.

DNS simulations are performed to investigate the control performance.
Evenly localised objects are distributed in the spanwise direction in the wall
region (18 disturbances sources, 18 actuators, 18 estimation sensors and 18
objective sensors) and span-wise subsets of these objects are identified by signal-
energy based techniques. LQG compensators are designed on these subset
and replicated along the span-wise direction to fill the computational domain.
Hence, the performance loss due to the missing connections are evaluated in
order to identify a “minimal” control unit, i.e. a minimal subset of sensors and
actuators able to perform an effective control action.
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CHAPTER 7

Conclusions and outlook

Adaptive vs. model-based control

The model-based approach reveals very sensitive to model inaccuracies: even if
the LQG regulator is capable of optimal performance at the design condition,
its performance quickly degrades as the actual plant departs from the design
model. On the other hand, the adaptive FXLMS compensator shows to be
able to maintain its performances even if unexpected changes occur in the
flow conditions. In particular, it is found that in the tested conditions the
FXLMS compensator is capable of a larger disturbance attenuation than the
LQG regulator when the free-stream velocity varies by ±10% with respect to
the design condition.

We can claim that the model-based approach is not suitable for those ap-
plications where an accurate model of the plant is not available. This is sup-
ported also by the experimental results reported in Paper 2: it is shown that in
a practical test a model-based control is unlikely able to perform better than
an adaptive controller, because of modelling errors that may easily occur in the
design process.

Control of three-dimensional disturbances

The control of 3D disturbances is addressed via a MIMO extension of the
FXLMS presented for the 2D case: the preliminary results show a real capabil-
ity of the algorithm to effectively delay transition in a simulated environment.

Moreover, it is found that a reference sensor commands only a limited
number of actuators. This phenomenon – that is physically ascribable to the
limited span-wise spreading of the detected wave-packet – may lead to a re-
duction of the computational cost of the algorithm and will be the subject of
further investigations.

These results take us a step forward towards the final aim of this project,
i.e. performing the control of 3D disturbances in a wing boundary-layer in real-
flight experiments. However, the hypothesis of an equal number of sensors and
actuators is unlike in real applications, if plasma actuators are considered. This
is due to the experimental unfeasibility of driving a large number of independent
plasma actuators (Simon 2014). That being said so, the next step that has to be
taken is to investigate the control problem when an uneven number of sensors
and actuators is considered.

23



✐

✐

“lic” — 2014/9/29 — 12:01 — page 24 — #34
✐

✐

✐

✐

✐

✐

Acknowledgements

I would like to thank Prof. Dan S. Henningson for his guidance and for giving
me this opportunity and Dr. Shervin Bagheri for constructively discussing my
ideas and leading them to more rigorous (and elegant) formulations. I am also
grateful to Dr. Reza Dadfar for the fruitful collaboration during this second
year of my PhD. My deepest gratitude goes to Dr. Onofrio Semeraro for his
invaluable help and the endless discussions about life, research and everything.

I would also like to thank Dr.-Ing. Sven Grundmann and Bernhard Simon
for the productive month spent in Darmstadt and for showing me that a flow
is not only a simulation result.

Thanks to all the people that I had the opportunity to meet here in Sweden,
in particular to Cristina that I met by chance and became my sister-in-Sweden.
Thanks to Cecilia1, Nima, Armin, Taras, Ellinor, Jacopo and all the other
colleagues of mine for making the office not only a nice place to work but
also a nice place to be. Thanks to all my fencing team-mates for being nice
friends before and combative rivals after each “in guardia”. Thanks to Martà,
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Research on active control for the delay of laminar-turbulent transition in
boundary layers has made a significant progress in the last two decades, but
the employed strategies have been many and dispersed. Using one framework,
we review model-based techniques, such as linear-quadratic regulators, and
model-free adaptive methods, such as least-mean square filters. The former are
supported by a elegant and powerful theoretical basis, whereas the latter may
provide a more practical approach in the presence of complex disturbance envi-
ronments, that are difficult to model. We compare the methods with a particu-
lar focus on efficiency, practicability and robustness to uncertainties. Each step
is exemplified on the one-dimensional linearized Kuramoto-Sivashinsky equa-
tion, that shows many similarities with the initial linear stages of the transition
process of the flow over a flat plate. Also, the source code for the examples are
provided.

1. Introduction

The key motivation in research on drag reduction is to develop new technology
that will result in the design of vehicles with a significantly lower fuel consump-
tion. The field is broad, ranging from passive methods, such as coating surfaces
with materials that are super-hydrophobic or non-smooth (Bushnell & Moore
1991), to active methods, such as applying wall suction or using measurement-
based closed-loop control (Kim & Bewley 2007). This work positions itself in
the field of active control methods for skin-friction drag. In general, the mean
skin friction of a turbulent boundary layer on a flat plate is an order of mag-
nitude larger compared to a laminar boundary layer. One strategy to reduce
skin-friction drag is thus to push the laminar-turbulent transition on a flat plate
downstream (Schlichting & Gersten 2000). Different transition scenarios may
occur in a boundary layer flows, depending on the intensity of the external dist-
urbances acting on the flow, (Saric et al. 2002). Under low levels of free-stream
turbulence and sufficiently far downstream, the transition process is initiated by
the linear growth of small perturbations called Tollmien-Schlichting (TS) waves

31



✐

✐

“lic” — 2014/9/29 — 12:01 — page 32 — #42
✐

✐

✐

✐

✐

✐

32 N. Fabbiane, O. Semeraro, S. Bagheri & D. S. Henningson

(Schlichting & Gersten 2000). Eventually, these perturbations reach finite am-
plitudes and breakdown to smaller scales via nonlinear mechanisms (Schmid &
Henningson 2001). However, in presence of stronger free-stream disturbances,
the exponential growth of TS waves are bypassed and transition may be directly
triggered by the algebraic growth of stream-wise elongated structures, called
streaks (Saric et al. 2002). One may delay transition by damping the growth of
TS waves and/or streaks, and thus postpone their nonlinear breakdown. This
strategy enables the use of linear theory for control design.

Fluid dynamists noticed in the early 90’s, that many of the emerging con-
cepts in hydrodynamic stability theory already existed in linear systems theory
(Jovanovic & Bamieh 2005; Schmid 2007). For example, the analysis of a
system forced by harmonic excitations is referred to as signalling problem by
fluid dynamicists, while control theorists analyze the problem by constructing
a Bode diagram, (Glad & Ljung 2000); similarly, a large transient growth of a
fluid system corresponds to large norm of a transfer function and matrix with
stable eigenvalues can be called either globally stable or Hurtwitz, (Schmid &
Henningson 2001; Huerre & Monkewitz 1990).

However, the systems theoretical approach had taken one step further, by
“closing the loop”, i.e providing rigorous conditions and tools to modify the
linear system at hand. It was realized by fluid dynamists that the extension
of hydrodynamic stability theory to include tools and concepts from linear
control theory was natural (Joshi et al. 1997; Bewley & Liu 1998; Cortelezzi
et al. 1998). A long series of numerical investigations addressing the various
aspects of closed-loop control of transitional (Högberg et al. 2003a; Chevalier
et al. 2007a; Monokrousos et al. 2008) and turbulent flows (Lee et al. 2001;
Högberg et al. 2003; Chevalier et al. 2006) followed in the wake of these initial
contributions.

At the same time, research on active control for transition delay has been
advanced from a more practical approach using system identification methods
(Ljung 1999) and active wave-cancellation techniques (Elliott & Nelson 1993).
Most work (but not all) is experimental, which due to feasibility constraints, has
favoured an engineering and occasionally ad hoc methods. One of the first ex-
amples of this approach is the control of TS waves in the experiments by Milling
(1981) using a wave-cancellation control; the propagating waves are cancelled
by generating perturbations with opposite phase. This work was followed by
number of successful experimental investigations (Jacobson & Reynolds 1998;
Sturzebecher & Nitsche 2003; Rathnasingham & Breuer 2003; Lundell 2007) of
transition delay using more sophisticated system identification techniques.

On the other hand, both numerical and experimental approaches have
pushed forward flow control research, they have in a large extent evolved discon-
nected from each other; the systems control theoretical approach has provided
very important insights into physical mechanisms and constraints that has to
be addressed in order to design active control that is optimal and robust, but
most work has stayed at a proof-of-concept level and have not yet been fully
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implemented in practical applications. Although, there are exceptions (McK-
eon et al. 2013; Goldin et al. 2013), the majority of experimental active control
has essentially suffered from the opposite; most controllers are developed di-
rectly in the experimental setting on a trial-and-error basis, with many tuning
parameters, that have to be chosen for each particular set-up.

This review aims at presenting model-based and model-free techniques that
are appropriate for the control of TS waves in a flat-plate boundary layer. We
compare and link the two approaches using a linear model, that similar to
the linearized Navier-Stokes equations, exhibits a large transient amplification
behaviour and time delays. This presentation is unavoidably influenced by
the authors background and previous work; complementary reviews on flow
control can be found in Kim & Bewley (2007), Sipp et al. (2010) and Bagheri &
Henningson (2011), where the linear approach is analyzed, and in the reviews by
Bagheri et al. (2009c) and Sipp & Schmid (2013), focussed on the identification
of reduced-order models for the linear control design. Finally, we refer to el Hak
(1996), Bewley (2001) and Collis et al. (2004) for a broader prospective.

1.1. The control problem

Consider a steady uniform flow U∞ over a thin flat plate of length L and infinite
width. Inside the two-dimensional (2D) (Blasius) boundary layer that develops
over the plate, we place a small localized disturbance (denoted by d in Figure 1)
of simple Gaussian shape; the set-up is the same as in Bagheri et al. (2009b)
and the simulation is performed using a spectral code (Chevalier et al. 2007).
Figure 2 summarizes the spatio-temporal evolution of the disturbance. It shows
a contour plot of the stream-wise component of the perturbation velocity at a
wall normal position Y = δ∗(0), where δ∗(X) is the displacement thickness of
the boundary layer. The temporal growth of this disturbance is determined by
classical linear stability theory (i.e. eigenvalue analysis of the linearized Navier-
Stokes equations). Such an analysis reveals that asymptotically a compact
wave-packet emerges – a TS wave-packet – that grows in time at an exponential
rate while travelling downstream at group velocity of approximately U∞/3.
This disturbance behaviour is observed as long as the amplitude is below a
critical value (usually a few percent of U∞) (Schmid & Henningson 2001).
Above the critical value, nonlinear effects have to be taken into account; they
eventually result in a break down of the disturbance to smaller scales and finally
to transition from a laminar to a turbulent flow (Schmid & Henningson 2001).
However, the key point – that enables the use of linear theory for transition
control – is that the disturbance may grow several orders of magnitude before
it breaks down.

Using a spatially localized forcing (denoted by u in Figure 1) downstream
of the disturbance, one may modify the conditions in order to reduce the ampli-
tude of the wave-packet and thus delay the transition to turbulence. Physically
this forcing is provided by devices called actuators. An example of an actuator
is a loudspeaker that generates short pulses through a small orifice in the plate.
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d y u z

δ∗

X
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Figure 1. Scheme of a Blasius boundary-layer flow develop-
ing over a flat plate. A disturbance modelled by d grows ex-
ponentially while convected downstream. The actuator u is
used to attenuate the disturbance before it triggers transition
to turbulence; the actuation signal is computed based on the
measurements provided by the sensor y. The output z, lo-
cated downstream of the actuator, estimates the efficiency of
the control action.

The volume of the loudspeaker and the shape of the orifice determines the type
of actuation. Another example is plasma actuators, where a plasma arch is
used to induce a forcing on the flow (Grundmann & Tropea 2008).

In closed-loop control, a sensor (denoted by y in Figure 1) is used to mea-
sure the disturbance that is meant to be cancelled by the actuator (u): based
on these measurements one computes the actuator action in order to effectively
reduce the amplitude of the perturbation. Examples of sensors include pressure
measurements using a small microphone membrane mounted flush to the wall,
velocity measurements using hot-wire anemometry near the wall or shear-stress
measurements using thermal sensors (wall wires). Finally, we place a second
sensor (denoted by z in Figure 1) downstream of the actuator to measure the
amplitude of the perturbation after the actuator action. The minimization of
this output signal may serve as an objective of our control design, but the
measurements also provide a means to assess the performance of the controller.

Having introduced the inputs and outputs, the control problem can be for-
mulated as the following: given the measurement y(t), compute the modulation
signal u(t) in order to minimize a cost function based on z(t). The system that
when given the measurement y(t), provides the control signal u(t) is referred
to as the compensator. The design of the compensator has to take into account
competing aspects such as robustness, performance and practical feasibility.

The objective of this review is to guide the reader through the steps of
compensator design process. We will exemplify the theory and the associated
methods on a one-dimensional (1D) model based on the linearized Kuramoto-
Sivashinsky (KS) equation (presented in §2). The model reproduces the most
important stability properties of the flat-plate boundary layer, but it avoids
the problem of high-dimensionality and thus the high numerical costs. In §3
full-information control problem is addressed via optimal control theory; linear
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Figure 2. Response to a small, localized initial condition in
a Blasius boundary-layer flow. A Tollmien-Schlichting wave-
packet emerges and grows exponentially while propagating
downstream. Contours of the streamwise component of the
velocity are shown as a function of the streamwise direction
(x ) and time (t). The location along the normal-direction y is
chosen in the vicinity of the wall.

quadratic regulator (LQR) and model-predictive controller (MPC) strategies
are derived and compared. The disturbance estimation problem is addressed
in §4, where classical Kalman estimation theory and least-mean-square tech-
niques will be introduced and compared. The techniques of sections §3 and §4,
will be combined in order to design the compensator in §3. This section also
contains adaptive algorithms that enhance the robustness of the compensator.
The review finalizes with a discussion §6 about some important features char-
acterizing the control problem when applied to three-dimensional (3D) fluid
flows and conclusions §7.

2. Framework

We first introduce our choice of model KS equation, inputs (actua-
tors/disturbances) and sensors. This is followed by a presentation of concepts
pertinent to our work, namely the state-space formulation (§2.4), transfer func-
tions and finite-impulse response (§2.5), controllability and observability (§2.6),
closed-loop system (§2.7) and robustness (§5). This chapter contains the math-
ematical ingredients that will be used in the following sections.

2.1. Kuramoto-Sivashinsky model

In this paper, we focus our attention on flows dominated by convec-
tion/advection, where disturbances have negligible upstream influence and are
quickly swept downstream with the flow. We make use of a particular variant
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of the KS equation to model a linear and convection-dominated flow. Orig-
inally, the KS equation was developed to describe the flame front flutter in
laminar flames (Kuramoto & Tsuzuki 1976; Sivashinsky 1977). This model
exhibits in its space-periodic form a spatio-temporal chaotic behaviour, with
some similarities to turbulence (Manneville 1995). The standard KS equation
reads

∂ṽ

∂t̃
+ ṽ

∂ ṽ

∂x̃
= −η

∂2ṽ

∂x̃2
− µ

∂4ṽ

∂x̃4
, (1)

where t̃ is the time, x̃ ∈ [0, L̃) the spatial coordinate and ṽ = ṽ(x̃, t̃) the velocity.
The boundary conditions accompanying (1) are periodic in x̃. The second term
on the left side in (1) is the nonlinear convection term, while on the right side
two viscosity terms appear. The two latter terms may be associated to the
production and dissipation of energy at different spatial scales. In particular,
the second-order derivative term is related to the production of the energy
via the variable η, called anti-viscosity, while the dissipation of the energy is
connected to the fourth-order derivative term, multiplied by the hyper-viscosity
µ (Cvitanović et al. 2012).

Equation (1) can be rewritten such that it is parametrized by a Reynolds-

number-like coefficient. Introducing a reference length l̃ and a reference velocity
Ṽ , define the non-dimensional position x, velocity v and time t by

x =
x̃

l̃
, v =

ṽ

Ṽ
, t =

Ṽ

l̃
t̃. (2)

Applying the transformation to (1), the KS equation in dimensionless form
becomes

∂v

∂t
+ v

∂v

∂x
= −

1

R

(

P
∂2v

∂x2
+
∂4v

∂x4

)

, (3)

where x ∈ [0, L). The parameters R and P are defined as

R =
Ṽ l̃3

µ
, P =

η

µ
l̃2, (4)

where R takes the role of the Reynolds number Reδ∗ , and P regulates the
balance between energy production and dissipation.

We assume that the system is sufficiently close to a steady solution
V (x) = V . Then, it is possible to describe the dynamics of perturbations
using the linearized KS equation. For the chosen parameters, the steady solu-
tion is stable, but an external perturbation may be amplified by an order-of-
magnitude before it dies out (this requires non-periodic boundary conditions
in the streamwise direction as we impose below). Introduce the perturbation
v′(x, t)

v(x, t) = V + ǫ v′(x, t), (5)

where ǫ≪ 1. By inserting this decomposition into (3) and neglecting the terms
of order ǫ2 and higher, the linearized KS equation is obtained

∂v′

∂t
= −V

∂v′

∂x
−

1

R

(

P
∂2v′

∂x2
+
∂4v′

∂x4

)

. (6)
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Figure 3. The real frequency ωr and its imaginary part ωi

are shown as a function of the spatial frequency α, in (a) and
(b), respectively. The relation among the spatial and temporal
frequencies is given by the dispersion relation (8). Positive
values of ωi characterize unstable waves (grey region).

It is the convective and amplifying properties of this non-normal system that
makes it a good model of the 2D Blasius boundary layer flow. Following Charru
(2011), we analyze the stability properties of (6), by assuming travelling wave-
like solutions:

v′ = v̂ ei(αx−ωt), (7)

where α ∈ R and ω = ωr+iωi ∈ C. Substituting (7) in (6), a dispersion relation
between the spatial wave-number α and the temporal frequency ω is obtained

ω = V α+ i

(

P

R
α2 −

1

R
α4

)

. (8)

This relation is shown in Figure 3 for R = 0.25, P = 0.05 and V = 0.4. The
parameters are chosen to closely model the Blasius boundary layer at Reδ∗ =
1000. The imaginary part of the frequency ωi is the exponential temporal
growth rate of a wave with wave-number α. In (8) it can be observed that the
term in α2 (associated to the production parameter P), is providing a positive
contribution to ωi, while the α

4 term (related to the dissipation parameter R),
has a stabilizing effect. The competition between these two terms determines
stability of the considered wave. From Figure 3, it can be observed that for an
interval of wave-numbers α, ωi > 0, i.e. the wave is unstable. The real part ωr

determines the phase speed of the wave in the x direction,

c ,
ωr

α
= V. (9)
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Figure 4. Response to a small, localized initial condition in
a 1D KS flow (6) with R = 0.25, P = 0.05 and V = 0.4. The
contours are shown as a function of the streamwise direction
(x) and the time (t). The initial condition triggers a growing
and travelling wave-packet, similar to the 2D boundary-layer
flow shown in Figure 2. [script00.m].

Note that the phase speed c is independent of α, in contrast to the boundary-
layer flow, which is dispersive (Schmid & Henningson 2001).

2.2. Outflow boundary condition

So far in our analysis we have assumed periodic boundary conditions for the KS
equation. As we are interested in modelling the amplification of a propagating
wave-packet near a stable steady solution (as observed in the case of boundary-
layer flow), it is appropriate to change the boundary conditions to an outflow
condition on the right side of the domain

∂3v′

∂x3

∣

∣

∣

∣

x=L

= 0,
∂v′

∂x

∣

∣

∣

∣

x=L

= 0, (10)

while on the left side of the domain, at the inlet, an unperturbed boundary
condition is considered

v′|x=0 = 0,
∂v′

∂x

∣

∣

∣

∣

x=0

= 0. (11)

With an outflow boundary condition, a localized initial perturbation in the up-
stream region of the domain travels in the downstream direction while growing
exponentially in amplitude until it leaves the domain. This is the signature
of a convectively unstable flow. Note the this choice of boundary conditions
is the main variant with respect of the original KS equation, characterized by
periodic boundaries. Figure 4 shows the spatio-temporal response to a local-
ized initial condition of KS equation with outflow boundary condition. The set
of parameters R, P and V has been chosen to mimic the response of the 2D
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Figure 5. Spatial support of the inputs and outputs along
the streamwise direction. All the elements are modelled as a
Gaussian function in (14), with σd = σu = σy = σz = 4.

boundary-layer flow, shown in Figure 2. However, note that in the KS model
the wave crests travel parallel to each other with the same speed of the wave-
packet, whereas in the boundary layer, they travel faster than the wave-packet
which they form. Indeed the system is not dispersive, i.e. the phase speed c
equals the group speed cg as shown by (9); conversely, as already noticed, the
2D BL is dispersive.

2.3. Introducing inputs and outputs

Having presented the dynamics of the linear system, we now proceed with
a more systematic analysis of the inputs (actuators/disturbances) and sensor
outputs described in §1.1. Consider the linearized KS equation in (6)

∂v′

∂t
= −V

∂v′

∂x
−

1

R

(

P
∂2v′

∂x2
+
∂4v′

∂x4

)

+ f ′(x, t), (12)

where the forcing term f ′(x, t) now appears on the right-hand side. This term
is decomposed into two parts,

f ′(x, t) = bd(x) d(t) + bu(x)u(t). (13)

The temporal signal of the incoming external disturbance and of the actuator
are denoted by d(t) and u(t), respectively, while the corresponding spatial dis-
tribution is described by bd and bu. In this work, the time-independent spatial
distribution of the inputs is described by the Gaussian function,

g(x; x̂, σ) =
1

σ
exp

[

−

(

x− x̂

σ

)2
]

. (14)

The scalar parameter σ determines the width of the Gaussian distribution,
whereas x̂ determines the centre of the Gaussian. The two forcing distributions
in (13) are

bd(x) = g(x; x̂d, σd), bu(x) = g(x; x̂u, σu). (15)

The disturbance d is positioned in the beginning of the domain at x̂d = 35,
while the actuator u in the middle of the domain at x̂u = 400 (see Figure 5).
In the presentation above, the particular shape bd(x) of the disturbance d is part
of the modelling process. However, note that the introduction of the upstream
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disturbance using a localized and well defined shape bd(x) is a model. In
practice, due to the receptivity processes, the distribution and the appearance
of the incoming disturbance is not known a-priori, and thus difficult to predict
using – for instance – a low-order model.

A similar issue may arise for the model of the actuator bu(x), where the
forcing distribution can even be time varying. For example the spatial force
that a plasma actuator induces in the flow depends on the supplied voltage,
e.g. modulated by the amplitude u(t) (Grundmann & Tropea 2008). As we will
discuss in the following sections, one may design a controller without knowing
bd(x) and bu(x), but for the sake of presentation we may assume in this section,
that such models exist.

By using (14) as integration weights, we define two outputs of the system
as

y(t) =

∫ L

0

cy(x) v
′(x, t) dx+ n(t), (16)

z(t) =

∫ L

0

cz(x) v
′(x, t) dx, (17)

where L is the length of the domain defined earlier and

cy(x) = g(x; x̂y, σy), cz(x) = g(x; x̂z, σz).

The output y provides a measurement of an observable physical quantity – for
example shear-stress, a velocity component or pressure near the wall – aver-
aged with the Gaussian weight. In realistic conditions, this measured quantity
is subject to some form of noise, that may arise from calibration drifting, trun-
cation errors and/or incomplete cable shielding, etc. This is taken into account
by the forcing term n(t). It is often modelled as random noise with Gaussian
distribution of zero-mean and variance α, and can be regarded as an input of
the system. The second output z(t), located far downstream, represents the
objective of the controller: assuming that the flow has been already modified
due to the action of the controller, this controlled output is the quantity that
we aim to keep as small as possible.

In Figure 6, we show the response of our system to a Gaussian white noise
in d(t) with a unit variance, where all temporal frequencies are excited. Via
the dispersion relation (8), each temporal frequency ωr is related to a spatial
frequency α = V ωr. The input signal d(t) is thus filtered by the system, where
after a short transient, only the unstable spatial wavelengths are present in the
state v(t), Figure 6(a), and the two output signals y(t) and z(t), Figure 6(c-d).
The variance of the output z(t) is higher than the variance of y(t) by a factor
10, independently by the realization; this is because the wave-packets generated
by d is growing in amplitude while convected downstream. We note that each
realization will generate a different time evolution of the system but with the
same statistical properties (black and grey lines in Figure 6(b-d)).
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Figure 6. Top frame (a) shows the spatio-temporal response
to white noise d(t), (b). The velocity contours are shown as
a function of the streamwise direction (x) and time (t). The
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(black and grey lines) in (c) and (d), respectively. Red dashed
lines indicate the standard deviation of the signals.
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2.4. State-space formulation

We discretize the spatial part of (12) by a finite-difference scheme. As further
detailed in §7, the solution is approximated by

v′i(t) = v′(xi, t) i = 1, 2, ..., nv
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defined on the equispaced nodes xi = iL/nv, where nv = 400. The spatial
derivatives are approximated by a finite difference scheme based on five-points
stencils. Boundary conditions in (11–10) are imposed using four ghost nodes
i = −1, 0 and i = nv + 1, nv + 2. The resulting finite-dimensional state-space
system (called plant) is

v̇(t) = A v(t) +Bd d(t) +Bu u(t), (18)

y(t) = Cy v(t) + n(t), (19)

z(t) = Cz v(t), (20)

where v ∈ Rnv represents the nodal values v′i. The output matrices Cy and Cz

approximate the integrals in (16–17) via the trapezoidal rule, while the input
matrices Bd and Bu are given by the evaluation of (15) at the nodes.

Some of the control algorithms that we will describe are preferably formu-
lated in a time-discrete setting. The time-discrete variable corresponding to
a(t) is

a(k) = a(k∆t), k = 1, 2, ... (21)

where ∆t is the sampling time. Accordingly, the time-discrete state-space sys-
tem is defined as:

v(k + 1) = Ã v(k) + B̃d d(k) + B̃u u(k), (22)

y(k) = C̃y v(k) + n(k), (23)

z(k) = C̃z v(k), (24)

where Ã = exp (A∆t) , B̃ = ∆tB and C̃ = C. For more details, the interested
reader can refer to any control book, see e.g. (Glad & Ljung 2000).

2.5. Transfer functions and Finite-impulse responses

Given a measurement signal y(t), our aim is to design an actuator signal u(t).
The relation between input and output signals is of primary importance. Since
we are interested in the effect of the control signal u(t) on the system, we
assume the disturbance signal d(t) to be zero. Thus, given an input signal u(t)
and a zero initial condition of the state, the output z(t) of (18–20) may formally
be written as

z(t) =

∫ t

0

Pzu(t) u(t− τ) dτ, (25)

where the kernel is defined by

Pzu(t) , Cz e
At Bu, t ≥ 0. (26)

Note that the description of the input-output (I/O) behaviour between u(t) and
z(t) does not require the knowledge of the full dynamics of the state but only
a representation of the impulse response between the input u and the output
z, here represented by (26). A Laplace transform results in a transfer function

ẑ(s) = P̂zu(s)û(s) = (Cz(sI −A)−1Bu)û(s)
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Figure 7. Time discrete impulse response (◦) between the
input u to the output z; due to the presence of strong time-
delays in the system, a lag of t ≈ 550 is observed. The relevant
part of the kernel is reconstructed via a FIR filter (�).
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with s ∈ C. Henceforth the hat on the transformed quantities is omitted since
related by a linear transformation to the corresponding quantities in time-
domain. One may formulate a similar expression for the other input-output
relations, which for our case with three inputs and two outputs, induces 6
transfer functions, i.e.

[

z(s)
y(s)

]

=

[

Pzd(s) Pzu(s) Pzn(s)
Pyd(s) Pyu(s) Pyn(s)

]





d(s)
u(s)
n(s)



 . (27)

I/O relations similar to (25) can be found for the time-discrete system.
The response z(k) of the system (with v0 = 0) to an input u(k) is

z(k) =

k
∑

i=1

P̃zu(i) u(k − i), (28)

where
P̃zu(k) , C̃z Ã

k−1 B̃u, k = 1, 2, ... (29)

This procedure is usually referred to as z-transform; for more details, we refer
to Glad & Ljung (2000) and Skogestad & Postlethwaite (2005). In the limit
of k → ∞, it is possible to truncate (28), since the propagating wave-packet
that is generated by an impulse in u will be detected by the output z after
a time-delay (this can be observed in Figure 7, where the impulse response is

depicted). Thus, P̃zu(i) is non-zero only in a short time interval and one may
truncate the sum to a finite number of time steps, Nzu, f . Due to the strong
time-delay, the initial part of the sum is also zero and the lower limit of the
sum can start from Nzu, i. This results in a sum

z(k) ≈

Nzu, f
∑

i=Nzu, i

P̃zu(i) u(k − i), (30)
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which is called the Finite Impulse Response (FIR), Aström & Wittenmark
(1995). Note that the presence of time delays in the system is a limiting factor
of the control performance. In general, a disturbance with a time scale smaller
than the time delay that affects the system is difficult to control (Glad & Ljung
2000). In particular, while the compensator could still be able to damp those
disturbances, it may lack robustness, §5.

2.6. Controllability and observability

The choice of sensors and actuators is particular relevant for the control design;
indeed, the measurement of the sensor y enables to compute the control signal
u(t), that feeds the actuator. Thus, it is important to know: (i) if the system
can be affected by the actuator u; (ii) if the system can be detected by the
sensor y. In other words, we aim at identify the states of the system that are
controllable and/or observable. These two properties of the I/O system are
referred to as observability and controllability (Glad & Ljung 2000; Bagheri
et al. 2009c) and can be analyzed introducing the corresponding Gramians Go

and Gc

Go ,

∫ ∞

0

eA
Ht CHC eAt dt, (31)

Gc ,

∫ ∞

0

eAt BBH eA
Ht dt. (32)

By construction, the Gramians (Go,Gc) are positive semi-definite matrices in
Rnv×nv and can be computed for each or all the outputs/inputs. It can be
proved that the two Gramians are solutions of the Lyapunov equations (Glad
& Ljung 2000)

AH Go +Go A+CH C = 0, (33)

AGc +Gc A
H +BBH = 0. (34)

The spatial information related to the Gramians can be analyzed by diagonal-
izing them; the corresponding decompositions allow to identify and rank the
most controllable/observable structures (Bagheri et al. 2009c). On the other
hand, for systems characterized by a small number of degrees of freedom, it
is possible to directly identify the regions where the flow is observable and/or
controllable. Figure 8 shows the controllability Gramian related to the actuator
u (Gc, u) and the observability Gramian related to the sensor y (Go, y) for our
system. The region downstream of the actuator is influenced by its action, due
to the strong convection of the flow. The observability Gramian Go, y indicates
the region where a propagating perturbation can be observed by the sensor
y. Note that the two regions do not overlap, thus wave-packets generated at
the location u are not detected by a sensor y, when is placed upstream of the
actuator. This feature has important consequences on the closed-loop analysis,
as introduced in the next section.
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2.7. Closed-loop system

The aim of the control design is to identify a second linear system Kuy, called
compensator, that provides a mapping between the measurements y(t) and the
control-input u(t), i.e.

u(t) =

∫ ∞

0

Kuy(τ) y(t − τ) dτ

The chosen compensator is also called output feedback controller (Doyle et al.
1989; Zhou et al. 2002). This definition underlines the dependency of the
control input u(t) from the measurements y(t). By considering the relation in
frequency domain and inserting it into the plant (27), the closed-loop system
between d(s) and z(s) is obtained in the form,

z(s) =

[

Pzd(s) +
Pzu(s)Kuy(s)Pyd(s)

1− Pyu(s)Kuy(s)

]

d(s). (35)

By choosing an appropriate Kuy(s), we may modify the system dynamics. The
graphical representation of the closed-loop system is shown in Figure 9. The
transfer function Pyu(s) describes the signal dynamics from the actuator u
to the sensor y. By definition, a feedback configuration is obtained when
Pyu(s) 6= 0, i.e. when the sensor can measure the effect of the actuation.
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Figure 9. Schematic figure showing the 5 transfer functions
defining the closed-loop system (35). The transfer functions
Pyd, Pzd describe the input/output behaviour between the dis-
turbance d and the outputs y and z, respectively; Pyu and Pzu

relate the actuator u to the two outputs y and z, respectively,
while Kuy is the compensator transfer-function. Because of
the convectively unstable nature of the flow, Pyu is negligible
for the chosen sensor/actuator locations; thus it does not allow
any feedback.

On the other hand, if Pyu(s) is zero (or very small), the closed-loop system re-
duces to a disturbance feedforward configuration (Doyle et al. 1989; Zhou et al.
2002). In this special case, from the dynamical point of view such a system
behaves as an open-loop system despite the closed-loop design (Skogestad &
Postlethwaite 2005). Due to this inherent ambivalence within the framework
of the output feedback control, sometimes the definition of reactive control is
used for indicating all the cases where the control signal is computed based on
measurements of the system; thus, the definition of closed-loop system more
properly applies to a system where the reactive controller is characterized by
feedback (el Hak 2007).

In a convection-dominated system, the sensor should be placed upstream
of the actuator, in order to detect the upcoming wave-packet before it reaches
the actuator (see also Figure 8); if it is placed downstream, the actuator has
no possibility to influence the propagating disturbance once it has reached the
sensor. Figure 10 shows the state and signal responses of the KS system to
impulse in u, where it is clear that the actuator’s action is not detected by
the sensor y, in practice Pyu(s) ≈ 0. Note that no assumptions about the
compensator has been made; the feedback or feedforward setting is determined
by the choice of sensor and actuator placement.

2.8. Robustness

In practice, model uncertainties are unavoidable and it is important to estimate
how much the error arising from the mismatch between the physical system and
the model affects the stability and performance of the closed-loop system. In
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Figure 10. The disturbance generated by the impulse re-
sponse of the system at the actuator location u in (a) is shown
as a function of the streamwise direction (x) and time (t). The
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convective nature of the flow, the sensor placed upstream of
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general, one wishes to have a controller that does not amplify un-modelled er-
rors over a range of off-design conditions: a robustness analysis aims at identify
this range. A useful quantity in this context, is the sensitivity transfer function,
which is defined as the denominator in the second term on the right-hand side
of (35), i.e.

S(s) =
1

1− Pyu(s)Kuy(s)
. (36)

Robustness can be quantified as the infinity norm of S(s). Good stability
margins are guaranteed when this norm is bounded, typically ‖S‖∞ < 2.0, see
Skogestad & Postlethwaite (2005). A second measure is the phase margin, that
represents the maximum amount of allowable phase error before the instability
of the closed-loop occurs. Indeed, the gain margin and the phase margin are
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the upper limit of amplification and phase error, respectively, that guarantee
marginal stability of the closed-loop system.

Note that the internal stability functions are characterized by a proper dy-
namics. In the loop-shaping approach, the controller is designed by shaping the
behaviour of the internal transfer function (Skogestad & Postlethwaite 2005).
Unfortunately, this methodology is difficult to be applied in complex system. A
systematic approach for the robust design is represented by the optimal, robust
H∞ (see (Zhou et al. 2002)), where the sensitivity margins can be optimized. A
more computationally demanding alternative is represented by the controllers
based on numerical optimization running on-line, such as the model-predictive
control (MPC) (§3.2) or adaptive controllers (§5.4).

Thus, feedback controllers may be designed to have small sensitivity. In
that regard robustness is a non-issue in a pure feedforward configuration; in-
deed, Pyu(s) ≈ 0 and ‖S‖∞ ≈ 1. However, a feedforward controller is highly
affected by unknown disturbances and model uncertainty, that drastically re-
duce the overall performance of the device. Moreover, a feedforward controller
is not capable in modifying the dynamics of an unstable plant; thus, feedback
controllers are required for globally unstable flows (Sipp & Schmid 2013).

The studies performed by Julliet et al. (2013) and Belson et al. (2013) show
that in convectively unstable flows a feedback configuration allows the possi-
bility of robust-control design but it does not guarantee optimal performances
in terms of amplitude reduction. In this review, we adopt a feedforward con-
figuration in order to achieve optimal performances. As we will show in §5.4,
robustness may be addressed to some extent using adaptive control techniques.

3. Model-based control

In this section, we assume the full knowledge of the state v(t) for the computa-
tion of the control signal u(t). This signal is fed back into the system in order
to minimize the energy of the output z(t). For linear systems, it is possible to
identify a feedback gain K(t), relating the control signal to the state, i.e.

u(t) = K(t)v(t). (37)

The aim of the section is to compare and link the classical LQR problem (Lewis
& Syrmos 1995) to the more general MPC approach (Bewley et al. 2001; Kim
& Bewley 2007). In the former approach, one assumes an infinite time horizon
(t → ∞), allowing the computation of the feedback gain by solving a Riccati
equation (see §3.1.1). In the latter approach, the optimization is performed
with a final time T that is receding, i.e. it slides forward in time as the system
evolves. In §3.2.1, we introduce this technique for the control of a linear system
with constraints on the actuator signal, while in §3.2.3 the close connection
between the unconstrained MPC and the LQR is shown. Finally, note that the
framework introduced in this section makes use of a system’s model. Model-free
methods based on adaptive strategies are introduced in §3.
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3.1. Optimal control

The aim of the controller is to compute a control signal u(t) in order to minimize
the norm of the fictitious output

z′(t) =

[

z(t)
u(t)

]

=

[

Cz

0

]

v(t) +

[

0
1

]

u(t), (38)

where now the control signal is also included. We define a cost function of the
system

L (v(u), u) =
1

2

∫ T

0

[

z
u

]H [
wz 0
0 wu

] [

z
u

]

dt. (39)

This cost function is quadratic and includes the constant matrices wz ≥ 0 and
wu > 0. The matrix wz is used to normalize the cost output, specially when
multiple z(t) are used, while the weight wu determines the amount of penalty
on control effort (Lewis & Syrmos 1995). Using (38), (39) is rewritten as

L (v(u), u) =
1

2

∫ T

0

(

vH
(

CH
z wzCz

)

v + uH wu u
)

dt =

=
1

2

∫ T

0

(

vH Wv v + uH wu u
)

dt (40)

where Wv = CH
z wzCz. We recall from §2.3 that the sensor Cz is placed far

downstream in the domain, so we are minimizing the energy in localized region.
We seek a control signal u(t) that minimizes the cost function L (v(u), u) in
some time interval t ∈ [0, T ] subject to the dynamic constraint

v̇(t) = A v(t) +Bu u(t). (41)

Note that we do not consider the disturbance d(t) for the solution of the optimal
control problem. In a variational approach, one defines a Lagrangian

L̃ (v(u), u) =
1

2

∫ T

0

(

vH Wv v + uH wu u
)

dt+

+

∫ T

0

pH (v̇ −A v −Buu)dt, (42)

where the term p(t) acts as a Lagrangian multiplier (Gunzburger 2003), also
called the adjoint state. The expression in the last term is obtained via in-
tegration by parts. Instead of minimizing L with a constraint (41) one may

minimize L̃ without any constraints.

The dynamics of the adjoint state p(t) is obtained by requiring ∂L̃/∂v = 0,
which leads to

−ṗ(t) = AH p(t) +Wv v(t),

0 = p(T ). (43)
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Figure 11. Control gain K computed using the LQR tech-
nique for wz = 1 and wu = 1, (see §3.1.1). [script04.m]

The adjoint field p(t) is computed by marching backwards in time this equation,
from t = T to t = 0. The optimality condition is obtained by the gradient

∂ L̃

∂u
= BH

u p+ wu u. (44)

The resulting equations’ system can be solved iteratively as follows:

1. The state v(t) is computed by marching forward in time (41) in t ∈
[0, T ]. At the first iteration step, k = 1, an initial guess is taken for the
control signal u(t).

2. The adjoint state p(t) is evaluated marching (43) backward in time,
from t = T to t = 0. The initial condition p(T ) is taken to be zero.

3. Once the adjoint state p(t) is available, it is possible to compute the
gradient via (44) and apply it for the update of the control signal using a
gradient-based method; one may for example apply directly the negative

gradient ∆uk = −
∂L̃k

∂u
, such that the update of the control signal at

each iteration is given by

uk+1 = uk + µk∆uk.

The scalar-valued parameter µk is the step-length for the optimization,
properly chosen by applying backtracking or exact line search (Boyd
& Vandenberghe 2004). An alternative choice to the steepest descent
algorithm is a conjugate gradient method (Press et al. 2007).

The iteration stops when the difference of the cost function L estimated at
two successive iteration steps is below a certain tolerance or the gradient value
∂L̃/∂u→ 0. We refer to Gunzburger (2003) for more details and to Corbett &
Bottaro (2001) for an application in flow optimization.

3.1.1. Linear-quadratic regulator (LQR)

The framework outlined in the previous section is rather general and it can
be applied for the computation of the control signal u(t) also when nonlinear
systems or receding finite-time horizons are considered. However, a drawback
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of the procedure is the necessity of running an optimization on-line, next to
the main flow simulation/experiment. When a linear time-invariant system is
considered, a classic way to proceed is to directly use the optimal condition
(44) in order to identify the optimal control signal u(t)

u(t) = −w−1
u BH

u p(t). (45)

The computed control signal u(t) is optimal as it minimizes the cost function
L (v(u), u) previously defined. Assuming a linear relation between the adjoint
state and the direct state, p(t) = X(t)v(t), the feedback gain is given by

K(t) = −w−1
u BH

u X(t). (46)

It can be shown that the matrix X(t) is the solution of a differential Riccati
equation (Lewis & Syrmos 1995). When A is stable, X(t) reaches a steady
state as T → ∞, which is a solution of the algebraic Riccati equation

0 = AHX+XA−XBuw
−1
u BH

u X+Wv. (47)

The advantage of this procedure is that K is a constant and needs to be com-
puted only once. The spatial distribution of the control gain K is shown in
Figure 11 for the KS system analysed in §2, where the actuator is located at
x = 400 and the objective output at x = 700. From Figure 11 one can see that
the gain is a compact structure between the elements Bu and Cz. The control
gain is independent on the shape of external disturbance Bd.

For low-dimensional systems (nv < 103), solvers for the Riccati equations
(47) are available in standard software packages (Arnold & Laub 1984). For
larger systems nv > 103, as the ones investigated in flow control, direct methods
are not computationally feasible. Indeed, the solution of (47) is a full matrix,
whose storage requirement is at least of order O(n2

v). The computational com-
plexity is of order O(n3

v) regardless the structure of the system matrix A (Ben-
ner et al. 2008). Alternative techniques include the Chandrasekhar method
(Banks & Ito 1991), Krylov subspace methods (Benner 2004), decentralized
techniques based on Fourier transforms for spatially invariant system (Bamieh
et al. 2002; Högberg & Bewley 2000; Högberg et al. 2003a) and finally iterative
algorithms (Akhtar et al. 2010; Martensson & Rantzer 2011; Pralits & Luchini
2010; Semeraro et al. 2013). Yet, a different approach consists of reducing nv

before the control techniques are applied. In practice, we seek a low-order sur-
rogate system, typically of O(nv, r) ≈ 10 − 102, whose dynamics reproduces
the main features of the original, full-order system. Once the low-order model
is identified, the controller is designed and fed into the full-order system; such
an approach enables the application of a controller next to real experiments,
using small (and fast) real-time computations. The model-reduction problem
is an important aspect of control design for flow control; we refer to §6 for a
brief overview.
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Figure 12. MPC strategy: the controller is computed over a
finite time-horizon Tc, based on the a predicted time-horizon
Tp. Once the solution is available, the control signal is applied
on a shorter time windows Ta. In the successive step, the
time-window slides forward in time and the optimization is
performed again, starting from a new initial condition at t =
Ta. The procedures is iterated while proceeding forward in
time.

3.2. Model-predictive control (MPC)

MPC controllers make use of an identified model to predict the behaviour of
the system over a finite-time horizon (see Garcia et al. (1989), Qin & Badgwell
(2003) and Noack et al. (2011) for an overview on the technique). In contrast
with the optimal controllers presented in the previous section, the iterative
procedure is characterized by a receding finite horizon of optimization. This
strategy is illustrated in Figure 12; at time t0, a control signal is computed
for a short window in time [t0, t0 + Tc] by minimising a cost function (not
necessarily quadratic); Tc is the final time of optimization for the control prob-
lem. The minimization is performed on-line, based on the prediction of the
future trajectories emanating from the current state at t0 over a window of
time [t0, t0 + Tp], such that Tp ≥ Tc. In other words, the control signal is com-
puted over an horizon Tc in order to minimize the predicted deviations from
the reference trajectory evaluated on a (generally) longer time of prediction
Tp. Once the calculation is performed, only the first step Ta is actually used
for controlling the system. After this step, the plant is sampled again and the
procedure is repeated at time t = t0 + Ta, starting from the new initial state.
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The MPC approach is applicable to nonlinear models as well as all non-
linear constraints (for example an upper maximum amplitude for the actuator
signals). We present an example of the latter case in the following section.

3.2.1. MPC for linear systems with constraints

Although it is possible to define MPC in continuous-time formulation (see for
instance (Garcia et al. 1989), (Bewley et al. 2001)), we make use of the more
convenient discrete-time formulation. Let M = Tp/∆t and N = Tc/∆t, where
the parameter ∆t is the sampling time. Since Tp ≥ Tc, we have M ≥ N .
Augmenting the expression (28) with a term representing an initial state v(k)
at time k, we get

z(k + j|k) = C̃zÃ
j v(k) +

min(j,N)
∑

i=1

C̃zÃ
i−1B̃u u(k + j − i) =

= P̃zv(j) v(k) +

min(j,N)
∑

i=1

P̃zu(i) u(k + j − i), (48)

where j = 1, 2, . . . ,M . The state equation can be written in matrix form by
recursive iteration, resulting in the matrix-relation

zp(k) = Pzvv(k) +Pzuup(k). (49)

The matrix Pzv appearing in (49) is the observability matrix of the discrete-
time system

Pzv =











P̃zv(1)

P̃zv(2)
...

P̃zv(M)











=











C̃zÃ

C̃zÃ
2

...

C̃zÃ
M











, (50)

while the matrix Pzu, related to the convolution operator, reads

Pzu =





















P̃zu(1)

P̃zu(2) P̃zu(1)
...

...
. . .

P̃zu(N) P̃zu(N − 1) · · · P̃zu(1)
...

...
...

P̃zu(M) P̃zu(M − 1) · · · P̃zu(M −N + 1)





















=





















C̃zB̃u

C̃zÃB̃u C̃zB̃u

...
...

. . .

C̃zÃ
N−1B̃u C̃zÃ

N−2B̃u · · · C̃zB̃u

...
...

...

C̃zÃ
M−1B̃u C̃zÃ

M−2B̃u · · · C̃zÃ
M−N B̃u





















. (51)
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In literature, the matrix Pzu is also referred to as dynamic matrix, because it
takes into account the current and future input changes of the system. Note
that the entries of the observability matrix (50) are directly obtained from the
model realization, while the entries of the dynamic matrix (51) are represented
by the time-discrete impulse response between the actuator u and the sensor
z. The input vector zp(k) and output vector up(k) are defined collecting the
corresponding time-signals at each discrete step

zp(k) =











z(k + 1|k)
z(k + 2|k)

...
z(k +M |k)











, up(k) =











u(k|k)
u(k + 1|k)

...
u(k +N − 1|k)











. (52)

Thus, the matrix relation (49) provides a linear relation between the state v(k)
and the output zp(k) when the system is forced by the control input up(k).
The evaluation of the future output vector zp(k) represents the prediction step
of the procedure; indeed, assuming that the control signal contained in the
vector up(k) is known, we aim at computing the future output zp(k), related
to the trajectory emanating from the initial condition v(k).

By following the same rationale already adopted in the optimal control
problem, a cost function L(k) that minimizes the output z(t) while limiting
the control expense is defined,

L(k) =
M
∑

i=1

zH(k + i|k)wz z(k + i|k)

+
N−1
∑

i=0

uH(k + i|k)wu u(k + i|k) =

= zp(k)
H Wz zp(k) + up(k)

H Wu up(k). (53)

The parameters Wz and Wu are represented by block diagonal matrices con-
taining the weights wz and wu. One may also have non-quadratic costs func-
tions in MPC; examples are given by Bewley et al. (2001) for the control of a
turbulent channel. In our case, we choose a quadratic cost function in order to
compare performance with the LQR controller. By combining the cost function
(53) and the state equation (49), we get

L(k) = zp(k)
H Wz zp(k) + up(k)

H Wu up(k) =

= [Pzvv(k) +Pzuup(k)]
H

Wz [Pzvv(k) +Pzuup(k)] +

+ up(k)
H Wu up(k). (54)

Note that this manipulation is analogous to the definition of Lagrangian already
shown for the LQR problem (42). The minimization of L(k) with respect of
up(k) reads

min
up(k)

{

1

2
uH
p (k)Hup(k) + c(k)up(k) : Cup(k) 6 D

}

(55)
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Figure 13. Control design in presence of constraints: the
grey regions indicate the limits imposed to the amplitude of the
control signal u(t). The control u(t) is designed following two
different strategies: LQR with a saturation function (−) and
constrained MPC (−), see §3.2.2. The LQR solution (− −) is
introduced as reference. The performances of the controllers
are shown in terms of rms-velocity reduction in Figure 14.

where

H = 2
(

PH
zuWzPzu +Wu

)

c(k) = 2vH(k)PH
zvWzPzu (56)

and Cup(k) 6 D is a constraint (Bryd et al. 1999), which we have not specified
yet. Once this minimization problem is solved, the control signal is applied for
one time step, corresponding to ∆T = Ta, followed by a new iteration at step
k + 1.

3.2.2. Actuator saturation as constraint

The need of introducing constraints in the optimization process usually arises
when we consider real actuators characterized by nonlinear behaviour, due for
instance to saturation effects. For example, the body force generated by plasma
actuators (Grundmann & Tropea 2008; Corke et al. 2010) – usually approxi-
mated by considering the macroscopic effects on a flow – is often modelled as
a nonlinear function of the voltage (Suzen et al. 2005; Kriegseis 2011).

Consider now a control signal, whose amplitude is required to be bounded
in the interval −umax 6 u 6 umax. We thus minimize

min
up(k)

{

1

2
uH
p (k)Hup(k) + c(k)up(k) : ūmin 6 up(k) 6 ūmax

}

, (57)

where H and c are given by (56). One may solve this constrained MPC us-
ing nonlinear programming (Boyd & Vandenberghe 2004). Since the function
to be minimized is a quadratic function, we have used a reflective Newton
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Figure 14. Control of the KS equation. The rms velocity as
a function of the x direction is analyzed; the uncontrolled con-
figuration (−) is compared to three diffrent control strategies
already considered in Figure 13 (same legend).

method suggested by Coleman & Li (1996); this method is implemented in the
MATLAB R© routine quadprog.m.

We proceed by comparing the performance of the MPC controller with the
LQR solution discussed in §3.1.1. For a direct comparison, we apply an ad hoc
saturation function to the LQR control signal, i.e.

uLQR =







uLQR if ūmin < uLQR < ūmax

ūmin if ūmin > uLQR

ūmax if ūmax 6 uLQR

. (58)

As shown in Figure 13, the control signal computed by the MPC (blue solid
line) closely follows the LQR solution (dashed black line), except in the in-
tervals where the value is larger or smaller than the imposed constraint. By
simply applying the saturation function in (58) to the LQR signal, the con-
troller becomes suboptimal; the resulting solution deviates from the optimal
one and settles back on it after t ≈ 300 time units. Simply cutting off the
actuator signal of LQR results in a significant reduction of performance, which
in terms of root-mean-square (rms) is almost one order of magnitude (shown
in Figure 14). The main drawback of the constrained MPC is the computa-
tional time required by the on-line optimization, that can be prohibitive in
experimental settings.

3.2.3. MPC for linear systems without constraints

For a linear system with the quadratic cost function (40) but without con-
straints, a prediction/actuation time sufficiently long allows to approximate
the solution of the LQR. This is not obvious from the mere comparison of the
continuous-time LQR-objective function, (40) and (42), and the discrete-time
MPC-objective function, (53) and (54). For a detailed discussion, we refer to
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Figure 15. In (a) the LQR solution (§3.1.1) is compared to
the MPC gains computed for two different times of optimiza-
tion Tp without constraints, see §3.2.3. The optimization times
are compared to the impulse response Pzu(t) (b). Note that
for longer time Tp, covering the main dynamics of the impulse
response Pzu(t), the MPC and LQR solutions are equivalent.

Anderson & Moore (1990), where the equivalence is demonstrated analytically.
In the following, the equivalence is exemplified using the KS equation.

When there are not imposed constraints, the optimization problem in (55)
corresponds to a Quadratic Program (Boyd & Vandenberghe 2004); by taking
the derivative of L(k) with respect of up(k), we may obtain up(k) as solution
of the following least-square problem

up(k) = −H†cH =

= −
(

PH
zuWzPzu +Wu

)†
PH

zuWzPzvv(k) =

=











K0

K1

...
KN−1











v(k), (59)
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where (·)† indicates the Moore-Penrose generalized inverse matrix, (Penrose
1955). Note that this is a least square problem (in general, M ≥ N). If we
assume an actuation time-horizon Ta = ∆t, at each time step the control signal
u(k) reads

u(k) = K0 v(k). (60)

In Figure 15(a), the solid dashed line corresponds to the LQR gain obtained by
solving a Riccati equation, while the coloured lines correspond to the uncon-
strained MPC solution for different final time of prediction Tp. For a shorter
time of optimization (Tp = 750, red solid line) only a portion of the dynamics

of P̃zu(i) (see Figure 15(b)) is contained in the MPC gain. For longer times
(Tp = 1250, blue solid line) the MPC converges to the infinite-time horizon
LQR solution.

4. Estimation

In this section, we assume that the only information we can extract from the
system is the measurement y(t). This signal is used to provide an estimation
v̂(t) of the state such that the error given by

e(t) = v(t) − v̂(t), (61)

is kept as small as possible. We first derive the classical Kalman Filter, where
in addition to y(t), one requires a state-space model of the physical system.
Then we discuss the least-mean square (LMS) technique, which only relies on
the measurement y(t).

4.1. Luenberger observer and Kalman filter

The observer is a system in the following form

˙̂v(t) = A v̂(t) +Bu u(t)− L (y(t)− ŷ(t)) , (62)

ŷ(t) = Cy v̂(t), (63)

ẑ(t) = Cz v̂(t). (64)

This formulation was proposed for the first time by Luenberger in Luenberger
(1979), from whom it takes the name. Comparing this system with (18), it can
be noticed that it takes into account the actuator signal u(t) but it ignores the
unmeasurable inputs – the disturbance d(t) and the measurement error n(t).
In order to compensate this lack of information, a correction term based on
the estimation ŷ(t) of the measurement y(t) is introduced, filtered by the gain
matrix L.

The aim is to design L in order to minimize the magnitude of the error
between the real and the estimated state, i.e. expression defined in (61). Taking
the difference term by term between (18) and (62), an evolution equation for
the e(t) is obtained,

ė(t) = (A+ LC) e(t) +Bd d(t)− Ln(t). (65)



✐

✐

“lic” — 2014/9/29 — 12:01 — page 59 — #69
✐

✐

✐

✐

✐

✐

Adaptive and Model-Based Control Th. Applied to Conv. Unst. Flows 59

It can be seen that the error is forced by the disturbance d(t) and the measure-
ment error n(t), i.e. precisely the unknown inputs of the system.

4.1.1. Kalman filter

In the Kalman filter approach both the disturbance d(t) and the measurement
error n(t) are modelled by white noise, requiring a statistical description of the
signals. The auto-correlation of the disturbance signal is given by

Rd(τ) ,

∫ +∞

−∞

d(t) dH(t− τ) dt. (66)

This function tells us how much a signal is correlated to itself after a shift τ
in time. For a white noise signal this function is non-zero only when a zero
shifting (τ = 0) in time is considered and its value is the variance of the signal.
Hence, the correlation functions for the considered inputs signal d(t) and n(t)
are

Rd(τ) = Rd δ(τ) and Rn(τ) = Rn δ(τ), (67)

where Rd and Rn are the variances of the two signals and δ(τ) is the continuous
Dirac delta function. When a system is forced by random signals, also the
state becomes a random process and it has to be described via its statistical
properties. Generally the calculation of these statistics requires a long time
history of the response of the system to the random inputs. But for the linear
system (65), it is possible to calculate the variance of the state Re ∈ Rnv×nv

by solving the following Lyapunov equation (Bagheri et al. 2009c)

(A+ LCy)
H
Re +Re (A+ LCy) +BdRdB

H
d + LRn L

H = 0. (68)

The trace of Re is a measure of how much the mean value of the error e(t)
differs from zero during its time evolution. One may thus define the following
cost function for the design of L

N = Tr (Re) = lim
T→∞

1

2T

∫ T

−T

eH(t) e(t) dt, (69)

where Tr (·) indicates the trace operator.

With a similar approach as in §3.1, we define a Lagrangian:

Ñ = Tr
{

Re +λλλ
[

(A+ LCy)
H
Re +Re (A+ LCy)+

+BdRd B
H
d + LRn LH

]}

(70)

where the Lagrangian multiplier λλλ enforce the constraint given by (68). The
solution of the minimization is obtained by the imposing the solution to be sta-
tionary respect the three parameters L, Re and λλλ. The zero-gradient condition
for L gives us the expression for the estimation gain,

L = −R−1
n Cy Re. (71)

The zero-gradient condition for the Lagrangian multiplier λλλ returns the Lya-
punov equation in (68): combining this equation with (71), a Riccati equation
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Figure 16. Kalman estimation gain L computed for Rd = 1
and Rn = 0.1, (see §4.1.1). [script06.m]

is obtained for Re:

AHRe +ReA−ReC
H
y R

−1
n Cy +BdRdB

H
d = 0. (72)

In Figure 16 the estimation gain L is shown, where it can be observed that the
spatial support is localized in the region immediately upstream of the sensor y.
In this region the amplitude of the forcing term in the estimator is the largest
to suppress estimation error. In Figure 17 we compare the full state (a) to the
estimated state (b) when the system is forced by a noise signal d(t). As a result
of strong convection, we observe that an estimation is possible only after the
disturbance has reached the sensor at x = 300, since upstream of this point
there are no measurements. For control design it is important that v(t) is well
estimated in the region where the actuators are placed; hence, the actuators
have to be placed downstream of the sensors (Belson et al. 2013; Julliet et al.
2013).

4.2. Estimation based on linear filters

A significant drawback of the Kalman filter, is that it requires a model of the
disturbance Bd for the solution of the Riccati equation (72). One may circum-
vent this issue by using FIR to formulate the estimation problem. In analogue
to the formulations based LQR (model based) and on MPC (FIR based), we
will compare and link the Kalman filter to a system identification technique
called the Least-Square-Mean filter (LMS). Many other system identification
technique exists, the most common being the AutoRegressive-Moving-Average
with eXogenous inputs (ARMAX) employed in the work of Hervé et al. (2012).

From (62–64), we observe that the estimator-input is the measurement
y(k), while the output is given by the estimated values of z(k). The associated
FIR of this system is

ẑ(k) =

Nf, zy
∑

i=Ni, zy

(

−Cz
ˆ̃
Ai−1 ∆tL

)

y(k − i) =

Nf, zy
∑

i=Ni, zy

Ẽzy(i) y(k − i) (73)
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Figure 17. Spatio-temporal evolution of the response of the
system to a disturbance d(t) (a), compared to the estimated
full-order state, using a Kalman filter (b); the contours are
shown as a function of the streamwise direction (x) and time
(t). The error-norm between the original state and the esti-
mated state is shown in (c). The vertical blue, dashed line
indicates when the estimator is turned on. [script06.m]

where ˆ̃
A = e(A+LCy)∆t and Ẽzy(i) denotes the impulse response from the mea-

surement y(k) to the output z(k). Note that, since we are considering a con-
vectively unstable system, the sum in (73) is truncated using appropriate limits
Ni, zy and Nf, zy (Aström & Wittenmark 1995). Next, we present a method

where Ẽzy(i) is approximated directly from measurements, instead of its con-
struction using the state-space model.
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Figure 18. Impulse responses (y → z) of the estimator as a
function of the discrete-time. Red circles (◦) correspond to the

FIR time-discrete Kalman-filter-based kernel Ẽzy(i) and the
blue squares (�) to the one identified by the LMS algorithm.
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4.2.1. Least-mean-square (LMS) filter

The main idea is to identify an estimated output ẑ(k) for the system, by min-
imizing the error

e(k) = ẑ(k)− z(k) =





Nf, zy
∑

i=Ni, zy

Ẽzy(i) y(k − i)



− z(k), (74)

where z(k) is the reference measurement. The unknown of the problem is the

time-discrete kernel Ẽzy(i). Thus, we aim at adapt the kernel Ẽzy(i) such that
at each time step the error e(k) is minimized, i.e.

min
Ẽzy

e2(k). (75)

The minimization can be performed using a steepest descent algorithm (Haykin

1986); thus, starting from an initial guess at k = 0 for ẑ(k), Ẽzy is updated at
each iteration as

Ẽzy(i|k + 1) = Ẽzy(i|k) + µ(k)λ(i|k), (76)

where λ(i|k) is the direction of the update and µ(k) is the step-length. Note
that each iteration corresponds to one time step. The direction can be obtained
from the local gradient, which is given by,

λ(i|k) = −
∂e2(k)

∂Ẽzy(i)
= −2 e(k) y(k − i). (77)

This expression was obtained by forming the gradient of the error e(k) with

respect to Ẽzy(i) and making use of the estimated output ẑ(k) (73).
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adaptive LMS filter and shown as a function of the discrete-
time (i∆t). The estimation starts at t = 4000, as indicated
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error-norm constantly reduces (c).[script07.m]

The second variable that needs to be computed in (76) is the step-length
µ(k). Consider the error at time-step k computed with the updated kernel

Ẽzy(i|k + 1)

ẽ(k) =





Nf, zy
∑

i=Ni, zy

Ẽzy(i|k + 1) y(k − i)



− z(k) =

= e(k) + µ(k)





Nf, zy
∑

i=Ni, zy

λ(i|k) y(k − i)



 , (78)

where (75) and (76) have been used. The step-length µ(k) is calculated at each
time step in order to fulfil

min
µ(k)

ẽ(k)2 (79)

by imposing a zero-derivative condition with respect to µ(k),
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∂ẽ(k)2

∂µ(k)
= 2 ẽ(k)





Nf, zy
∑

i=Ni, zy

λ(i|k) y(k − i)



 = 0. (80)

Assuming that
Nf, zy
∑

i=Ni, zy

λ(i|k) y(k − i) 6= 0 (81)

and considering (78), the optimal step length becomes

µ(k) = −
e(k)

∑

i λ(i|k)y(k − i)
. (82)

In Figure 19(a), the LMS-identified kernel Ẽzy(i) is shown as a function
of time t = k∆t. When the LMS filter is turned on at t = 4000, the filter
starts to compute the kernel, which progressively adapts. While the iteration
proceeds, the error decreases as shown in Figure 19(b). In the limit of T → ∞,
when a steady solution can be assumed, the kernel computed by the LMS filter
converges to the kernel Ẽzy obtained by the Kalman filter (see Figure 18).

The main drawback of the LMS approach is that the method is susceptible
to a numerical stability (Haykin 1986). A usual way for improving the stability
is to bound the the step-length µ(k) by introducing an upper limit. In particu-
lar, it can be proven that in order to ensure the convergence of the algorithm,
the following condition has to be satisfied

0 < µ(k) < µ̄ =
2

Ry
, (83)

where the upper-bound µ̄ is defined by the variance Ry of the measurement y,
i.e. the input signal to LMS filter.

5. Compensator

Using the theory developed in §3 and §4, we are now ready to tackle the full
control problem (Figure 20): given the measurement y(t), compute the mod-
ulation signal u(t) in order to minimize a cost function based on z(t). In the
first part of this section we will focus on the LQG regulator, that couples a
Kalman filter to a LQR controller. Then we present a compensator based on
adaptive algorithms using LMS techniques.

5.1. Linear-quadratic Gaussian (LQG) regulator

By solving the control and estimation Riccati equations and the associated
gains (L and K), we build a system that has as an input the measurement y(t)
and as an output the control signal u(t):

˙̂v(t) = (A+BuK+ LCy) v̂(t)− L y(t) (84)

u(t) = K v̂(t). (85)
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Figure 20. Block-diagram of the closed-loop system. The
compensator, consisting of a controller coupled to an estima-
tor, computes the control signal u(t) given the measurement
y(t). The minimization of the measurement z(t) is the tar-
get parameter of the controller. Note that in a feedforward
controller, the output z can be used to add robustness to the
compensator (for instance, in adaptive filters, §5.4).

This linear system is referred to as the LQG compensator. The estimation
and control problem, discussed in the previous sections, are both optimal and
guarantee stability as long as the system is observable and controllable (Glad
& Ljung 2000). In particular, the disturbance d and the output z have to be
placed respectively in the y-observable and u-controllable region (Figure 8).
Under these conditions, a powerful theorem, known as the separation principle
(Glad & Ljung 2000), states that optimality and stability transfer to the LQG
compensator.

The closed-loop system obtained by connecting the compensator to the
plant becomes
[

v̇(t)
˙̂v(t)

]

=

[

A BuK

−LCy A+BuK+ LCy

] [

v(t)
v̂(t)

]

+

[

Bd

0

]

d(t). (86)

Figure 21 shows the response of (86) when a white random noise is considered
as an input in d(t). The horizontal solid black line in the top frame depicts the
location of y sensor: this signal is used to force the compensator at the location
depicted in the lower frame with a black dashed line. The compensator then
provides a signal to the actuator (dashed black line in the upper frame) to
cancel the propagating wave-packet. We let the two systems start to interact
at t = 4000, as depicted by the dashed blue line. As soon as the first wave-
packet, that is reconstructed by the compensator, reaches the actuation area,
the compensator starts to provide a non-zero actuation signal back to the plant.
Recall that the state v̂(t) of the LQG compensator is an estimation of the
state of the real plant v(t). This can be seen by comparing Figure 21(a) and
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Figure 21. Spatio-temporal response in presence of a white
noise input d(t) for the closed-loop system (a) and the com-
pensator (b); the disturbance is shown as a function of the
streamwise direction (x) and time (t). The measurement y(t),
feeding the compensator, is shown in (c). At t = 4000 (− −),
the compensator starts its action and after a short lag the
actuator is fed with the computed control signal u(t). The
perturbation is cancelled, as shown in the contours reported
in (a) and the output z(t) minimized (t > 5000). [script08.m]
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(−), the LQR (− −) and the opposition controller P − τ (−).
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Figure 21(b); downstream of the sensor y the state of the compensator matches
the controlled plant.

Optimal controllers were applied to a large variety of flows, including os-
cillator flows, such as cavity and cylinder-wake flow, where the dynamic is
characterized by self-sustained oscillations at well-defined frequencies, see Sipp
et al. (2010). Note that v(t) and v̂(t) have the same size: if complex systems
are considered, a full-order compensator can be computationally demanding
(Semeraro et al. 2013); model reduction and compensator reduction enable to
tackle these limitations and design low-order compensators, see §6.

5.2. Proportional controller with a time delay

One may ask how a simple proportional controller compares to the LQG for
our configuration. In a proportional compensator, the control signal u(t) is
simply obtained by multiplying the measurement signal y(t) by a constant P .
Because of the strong time delays in our system, one needs to introduce also a
time-delay τ between the measurement y(t) and the control signal u(t). The
simplest control law for our system is

u(t) = P y(t− τ), (87)

where the “best”gain P and the time-delay τ can be found via a trial-and-error
basis (in our case, τ = 250 and P = −0.5432). This technique is also similar
to opposition control (Choi et al. 1994), where blowing and suction is applied
at the wall in opposition to the wall-normal fluid velocity, measured a small
distance from the wall.

In Figure 22, we compare the velocity rms obtained with LQG compen-
sator (red) and P -τ compensator (green). It can be observed that although
both techniques reduce the perturbation amplitude downstream of the actuator
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position (x = 400), the performance of the LQG regulator is nearly an order of
magnitude better than the proportional controller. This can be mainly attrib-
uted to the additional degrees of freedom given by the nv × nv LQG feedback
gains, as opposed to the two-degree freedom P −τ controller. Indeed, the LQG
gains are computed assuming an accurate knowledge of the state-space model.
Also shown (dashed-solid line) is the full-information LQR control whose per-
formance is comparable the partial-information LQG controller: the difference
between the two is due to the difference between the estimated state v̂(t) and
the real state v(t), i.e. the estimation error e.

5.3. Model uncertainties

The LQG compensator is based on coupling an LQR controller and a Luen-
berger observer. Both of them are based on a model of the system and, as a
consequence, their effectiveness is highly dependent on the quality of the model
itself. Any difference between the model and the real plant can cause an abrupt
reduction of the performances of the compensator (Doyle 1978; Belson et al.
2013). Model error can be attributed to, for example, nonlinearities due to the
violation of the small perturbation hypothesis, nonlinearities of the actuator or
sensors/actuators shape and positioning.

The robustness problem can be illustrated using a simple example. Suppose
that one wants to cancel a travelling wave with a localized actuator; what one
should do is to generate a wave that is exactly counter-phase with respect to
the original one. Suppose that exact location of the actuation action is difficult
to model. Shifting the actuator position slightly is equivalent to adding an
error in the estimation of the phase of the original signal. This will in turn
cause a mismatch between the wave that is meant to be cancelled and the wave
created by the actuator, thus resulting in an ineffective wave cancellation – in
the worst case, it may result in an amplification of the original wave.

As shown in Figure 23, when we displace the actuator further downstream
by 5 spatial units and apply the compensator designed for the nominal condition
to this modified system, the performance of the LQG regulator deteriorates.
Since, the compensator provides a control signal that is meant to be applied in
the nominal position of the actuator the control signal is not able to cancel the
upcoming disturbance. Essentially, we are suffering from the lack of robustness
of the feedforward configuration, since the sensor cannot measure the conse-
quence of the defective actuator signal. There are different means to address
this issue.

One can combine the feedforward configuration with a feedback action, in
order to increase robustness. This can be accomplished using the second sensor
z – downstream of the actuator – in combination with the estimation sensor y
– placed upstream of the actuator. The combination of feedback and feedfor-
ward is the underlying idea of the MPC controller applied to our configuration
(Goldin et al. 2013). However, there are some drawbacks due to the compu-
tational costs of the algorithm; indeed, the entries of the dynamic matrix (51)
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Figure 23. Robustness to uncertainties of the system: the
actuator is dispaced of 5 length units from its nominal posi-
tion. The performance of the adaptive filter FXLMS (− − and
· −) are compared to the LQR (− −), LQG (−) and P -τ (−)
compensators; as a reference, the uncontrolled case is shown
(−). The rms-velocity is shown as a function of the stream-
wise direction (x). The adaptive filter performs reasonably
well in presence of un-modelled dynamics; the performances
are enhanced by the use of a on-line identified P̃zu (− −). The
performances of the LQG (−) and P -τ (−) compensators are
significantly reduced (compare with Figure 22).[script10.m]

are computed during the prediction-step using time integration, whose domain
increases with the time-delays of the system. Thus, the integration and the
dimensions of the resulting matrices can represent a bottleneck for the on-line
optimization. An alternative is the use of an adaptive algorithm, which adapts
the compensator response according to the information given by z(t), as shown
in the next section.

5.4. Filtered-X least-mean square (FXLMS)

The objective of FXLMS algorithm is to adapt the response of the compensator
based on the information given by the downstream output z. The first step
of the design is to describe the compensator in a suitable way in order to
modify its response. The FXLMS algorithm is based on a FIR description of
the compensator. Recall again that the compensator is a linear system (input
is the measurement y(t) and output is the control signal u(t)), which in time-
discrete form can be represented by,

u(k) =

∞
∑

j=1

K̃uy(j) y(k − j) ≈

Nuy
∑

j=1

K̃uy(j) y(k − j), (88)
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where K̃uy(j) is a time-discrete kernel. Due to the stability of the system, we

have K̃uy(j) → 0 as t→ ∞, so that the sum can be truncated after Nuy steps.

In the case of LQG compensator K̃uy has the form

K̃uy(j) , K exp [(A+ LCy +BuK) ∆t (j − 1)] L

for i = 1, 2, . . . The kernel K̃uy(j) of the LQG controller is shown with red

circles in Figure 24. In this case Nuy = 533, which gives
∣

∣

∣
K̃uy(j)

∣

∣

∣
< 10−2 for

j > Nuy.

The FXLMS technique modifies on-line the kernel K̃uy(j) in order to mini-
mize the square of measurement z(t) at each time step (Sturzebecher & Nitsche
2003), i.e

min
K̃uy(j)

z2(k). (89)

The procedure is closely connected to the LMS filter discussed in §4.2.1 for
the estimation problem. The kernel K̃uy(j) is updated at each time step by a
steepest-descend method:

K̃uy(j|k + 1) = K̃uy(j|k) + µ(k)λ(j|k) (90)

where µ(k) is calculated from (82) and λ(j|k) is the gradient of the cost function
z(k) with respect of the control gains K̃uy(j). In order to obtain the update
direction, consider the time-discrete convolution for z(k),

z(k) =

∞
∑

i=0

P̃zd(i) d(k − i) +

∞
∑

i=0

P̃zu(i) u(k − i) =

=
∞
∑

i=0

P̃zd(i) d(k − i) +
∞
∑

i=0

P̃zu(i)

Nuy
∑

j=0

K̃uy(j) y(k − i− j) =

=

∞
∑

i=0

P̃zd(i) d(k − i) +

Nuy
∑

j=0

K̃uy(j)

∞
∑

i=0

P̃zu(i) y(k − j − i).

From this expression it is possible to obtain the gradient

λ(j|k) = −
∂z(k)2

∂K̃uy(j)
= −2 z(k)

∞
∑

i=0

P̃zu(i) y(k − j − i), (91)

which can be simplified by introducing the filtered signal yf (k),

yf (k) =

∞
∑

i=0

P̃zu(i) y(k − j − i) ≈

Nf, zu
∑

i=Ni, zu

P̃zu(i) y(k − i) (92)

Note that a FIR approximation of P̃zu(i) has been used. Hence, the expression
in (91) becomes,

λ(j|k) = −2z(k) yf (k − j). (93)

In order to get the descend direction, the measurement y(t) is filtered by the

plant transfer function P̃zu(i).
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Figure 24. Robustness to uncertainties of the system:
FXLMS control gain K̃uy(i) (�) is shifted along the time-
discrete coordinate if compared to the static LQG gain (◦)
to compensate for the un-modelled shift in actuator position.
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Starting the on-line optimization from the compensator kernel K̃uy(j) given
by the LQG solution, the algorithm is tested on our problem. In Figure 23 we
observe that the algorithm is able to recover some of the lost performance
of LQG (due to shift in actuator position) and it is comparable to the full-
information control performed by the LQR controller with the nominal gain
K. This is possible because of the adaptation of the kernel K̃uy(j), to the
new actuator location. Figure 24 shows how the convolution kernel has been
modified by the algorithm; the kernel is shifted in time in order to restore the
correct phase shift between the control signal u(t) and the measurement signal
y(t) in the modified system. The shift in time between the two peaks (visible
in the inset figure) is exactly the time that it takes for the wave-packet to cover
the additional distance between the sensor and the actuator. Recalling from
§2, that the wave-packet travels with a speed V = 0.4, it will take ∆xu/V =
5/0.4 = 12.5 time units to cover the extra space between u and y.

From (91), it can be noted that the FXLMS is not completely independent

from a model of the system; in fact the convolution kernel P̃zu(i) is needed to
compute the gradient λ(j|k) used by the algorithm. In the previous example,
the nominal transfer function has been used, given by the model of the plant

P̃zu(i) = Cz e
A ∆t(i−1) Bu, i = 1, 2, ... (94)

One may obtained a kernel P̃zu(i) that is totally independent by the model –
thus without any assumption on placement/shape of both actuator and sensors
– by using the LMS identification algorithm derived in §4.2.1. In Figure 23, we
compare P̃zu(i) obtained from (94) using inaccurate state-space model – since

actuator position has shifted (solid blue) – with P̃zu(i) obtained by model-free
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Figure 25. Two strategies are possible to compute a reduced-
order compensator, reduce-then-design an design-then-reduce.
In general, the two paths do not lead at the same results.

identification using LMS technique (dashed blue). We observe that when com-

bining adaptiveness with a more accurate model-free identification of P̃zu(i),
the performance is improved significantly.

Note that this algorithm when applied to flows dominated by convection,
and thus characterized by strong time-delays, results in a feedforward controller
where the feedback information is recovered by the processing of the measure-
ments in z. This method is known to as active noise cancellation (Sturzebecher
& Nitsche 2003; Erdmann et al. 2012). We can identify two time scales: a fast
time-scale related to the estimation process and a slow time-scale related to
the adaptive procedure (el Hak 2007). For this reason, this method is suitable
for static or slowly varying model discrepancies.

6. Discussion

In this section, we discuss a few aspects that have not been addressed so far,
but are important to apply the presented techniques to an actual flowing fluid.
Many other important subjects such as choice of actuator and sensors, nonlin-
earities and receptivity are not covered by this discussion.

Low-order control design. The discretization of the Navier-Stokes system
leads to high-dimensional systems that easily exceed 105 degrees of freedom.
For instance, the full-order solution of Riccati equations for optimal control and
Kalman filter problems cannot be obtained using standard algorithms (Benner
2004). One common strategy is to replace the high-dimensional system with a
low-order system able to reproduce the essential input-output dynamics of the
original plant. This approach is referred to as reduce-then-design (Anderson
& Liu 1989), left part of Figure 25. First, a reduced-order model is identified
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using an appropriate model reduction or system identification technique; then
the validated reduced-order model is used to design a low-order compensator.
The dual approach is called design-then-reduce or compensator reduction, right
part of Figure 25. In this case, a high-order compensator is designed as first
step (if possible). The second step is the reduction of the compensator to a
low-order approximation.

Both the approaches lead to a low-order compensator that can be used to
control the full-order plant, but they are not necessarily equivalent (Anderson
& Liu 1989). I the reduce-then-design approach, we neglect a number of states
during the model-order reduction of the open loop, that might become impor-
tant for the dynamics of the closed-loop system. Despite these limitations, the
reduce-then-design approach is the most common in flow control due to its com-
putational advantages; indeed, the challenge of designing a high-dimensional
compensator to be reduced strongly limits this alternative.

Model reduction. Following the reduce-then-design approach, the first step
consists of identifying a reduced-order model, typically reproducing the I/O be-
haviour of the system. We can distinguish two classes of algorithms. The first
category is based on a Petrov-Galerkin projection of the full-order system. In
this case, the I/O behaviour of the system is reconstructed starting from a low-
order approximation of the state-vector vr, characterized by a number of degree
of freedom r ≪ n; the projection can be performed on global modes (Akervik
et al. 2007), proper orthogonal modes (POD), obtained from the diagonaliza-
tion of the controllability Gramian (see §2.6), or balanced modes, for which the
controllability and observability Gramians are equal and diagonal (Moore 1981;
Rowley 2005; Bagheri et al. 2009c). This strategy has been widely used in the
flow-control community in the past years for the identification of linear (Akervik
et al. 2007; Ilak & Rowley 2008; Bagheri et al. 2009b; Barbagallo et al. 2009;
Semeraro et al. 2011) and nonlinear models (Noack et al. 2003; Siegel et al.
2008; Ilak et al. 2010). In particular, when nonlinear effects are considered, it
is necessary to take into account the effect that a finite disturbance in the flow
has on the base-flow, as shown by Noack et al. (2003) for a cylinder wake flow.
At low Reynolds numbers, a small number of modes are sufficient to reproduce
the behaviour of oscillators such as the cylinder wake, while a larger number of
modes is required to reproduce the I/O behaviour of convective unstable flows.
This is mainly due to the presence of strong time-delays (Glad & Ljung 2000)
that characterize this type of systems, §2.5.

The second approach stems from the I/O analysis of the formal solution
carried out in §2.5; we note that a low-order representation of the transfer
function is enough to reconstruct the I/O behaviour of the system. The com-
putation of this representation can be performed applying system identification
algorithms (Ljung 1999). Once the transfer functions are identified, one con-
structs a reduced-order model in canonical form. These techniques were widely
used for experimental investigations (see e.g. Lundell (2007) and Rathnasing-
ham & Breuer (2003)) and have been recently applied also in numerical studies
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Figure 26. Control configuration for a three dimensional
(3D) flow developing over a flat plate. A possible configu-
ration consists of localized sensors and actuators placed along
the spanwise direction.

(Huang & Kim 2008; Hervé et al. 2012). Indeed, for linear systems, it can be
shown that projection-based techniques and system identification techniques
can provide equivalent reduced-order models (Ma et al. 2011). We refer the
reader to the reviews by (Bagheri & Henningson 2011) and (Sipp & Schmid
2013) for a broader overview.

Control of three-dimensional disturbances. A sketch of the three-
dimensional control setup of the flow over a flat-plate is shown Figure 26.
Compared to the 2D boundary-layer flow a single actuator u, sensor y and
output z are now replaced by arrays of elements localized along the span-wise
direction, resulting in a multi-input multi-output (MIMO) system. The local-
ization (size and distance between elements) of sensors and actuators may sig-
nificantly influence efficiency of the compensator (Semeraro et al. 2011, 2013).
An important question one must address for MIMO systems is how to connect
inputs to outputs. A first approach consists of coupling one actuator with only
one sensor (for instance, the one upstream); in this case, the number of single-
input single-output (SISO) control units equals the number of sensor/actuator
pairs. This approach is called decentralized control-design; despite its simplic-
ity in practical implementations, the stability in closed loop is not guaranteed
(Glad & Ljung 2000). The dual approach where only one control-unit is de-
signed and all the sensors are coupled to all the available actuators is called
centralized control. In Semeraro et al. (2011), the centralized-controller strat-
egy was found necessary for the design of a stable TS-wave controller. The
main drawback of a fully centralized-control approach is that the number of
connections for a flat plate of large span quickly becomes impractical due to
all the wiring. One may then introduce a semi-decentralized controller, where
small MIMO control-units are designed and connected to each other; in Dadfar
et al. (2014), it is shown that a number of control-units can efficiently replace
a full centralized control with a limited lost of performance.

Another important aspect that has be accounted for in a MIMO setting,
is the choice of the objective function z. The minimization of a set of signals
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obtained from localized outputs with compact support does not necessarily
correspond to a reduction of the actual perturbation amplitude in a global sense.
For 1D and 2D flow systems any measurement taken locally, close to the solid
wall and downstream in the computational domain, is sufficient for obtaining
consistency between the perturbation and signal minimization (Bagheri et al.
2009b); this is not the case for 3D systems. An optimal way for choosing
the output Cz is the output projection suggested by Rowley (2005), where a
projection on a POD basis is performed. The resulting signal z(t) corresponds
to the amplitude coefficients of the POD modes, i.e. the temporal behaviour of
the most energetic coherent structure of the flow. This method can also provide
useful guidelines for the location of output sensors.

7. Summary and conclusions

This work provides a comprehensive review on standard model-based tech-
niques (LQR, Kalman filter, LQG, MPC) and model-free techniques (LMS,
X-filtered LMS) for the delay of the transition from laminar to turbulence. We
have focussed on the control of perturbation evolving in convective flows, using
the linearized Kuramoto-Sivashinsky equation as a model of the flow over the
flat-plate to characterize and compare these techniques. Indeed, this model pro-
vides the two important traits of convectively unstable fluid systems, namely,
the amplifying behaviour of a stable system and a very large time delay.

Much research have been performed on flow control using the very elegant
techniques based on LQR and LQG (Bagheri et al. 2009c; Semeraro et al. 2013;
Julliet et al. 2013). Although, these techniques may lead to the best possible
performance and they have stability guarantees (under certain restrictions),
their implementation in experimental flow control settings raises a number ob-
stacles: (1) The choice of actuator and sensor placement that yields a good
performance of convectively unstable systems results in a feedforward system.
We have highlighted the robustness issues arising from this configuration when
using standard LQG-based techniques. (2) Disturbances, such as free-stream
turbulence, and actuators, such as plasma actuators, can be difficult to model
under realistic conditions. (3) The requirement of solving two Riccati equations
is a major computational hassle, although it has successfully been addressed by
the community using model-order reduction techniques (Bagheri et al. 2009b)
or iterative methods (Semeraro et al. 2013).

Model-free techniques based on classical system-identification methods or
adaptive-noise-cancellation techniques can cope with the limitations of model-
based methods (Sturzebecher & Nitsche 2003). For example, we have presented
algorithms that improve robustness by adapting to varying and un-modelled
conditions. However, model-free techniques have their own limitations; (i) one
may often encounter instabilities, which in contrast to LQR/LQG, cannot al-
ways be addressed in a straight-forward manner by using concepts such as
controllability and observability. (ii) The number of free parameters (such as
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the limits of the sums appearing in FIR filters) that need to be modelled are
many and chosen in a somewhat ad-hoc manner.

The conclusion is that there does not exist one single method that is able to
deal with all issues, and the final choice depends on the particular conditions
that must be addressed. While a model-based technique may provide opti-
mality and physical insight, it may lack the robustness to uncertainties that
adaptive methods are able to provide. We believe that future research will head
towards hybrid methods, where controllers are partially designed using numer-
ical simulations and partially using adaptive experiment-based techniques.
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Appendix A. Numerical method

Finite-difference (FD) schemes are used to approximate the spatial derivatives
in (12). In particular, a centered scheme based on stencils of five-nodes are used
for the second-order and fourth-order derivatives while a one-node-backward
scheme is used for the first-order derivative. The latter is required due to the
convective nature of the system: a de-centered scheme reduces the spurious,
numerical oscillation of the approximated solution (Quarteroni 2009).

The grid is equispaced xi = i L
nv

, with i = 1, 2, ..., nv. Once the FD scheme
is introduced, the time evolution at each of the internal node is solution of the
ODE equation

dv′(t)

dt
= −V

1
∑

j=−3

db1,j v
′
i+j(t)−

P

R

2
∑

l=−2

dc2,l v
′
i+l(t) +

−
1

R

2
∑

l=−2

dc4,l v
′
i+l(t) + bd(xi) d(t) + bu(xi) u(t), (95)

where v′i(t) = v′(xi, t) for i = 1, 2, ..., nv. The outflow boundary conditions in
(10) on the right boundary of the domain lead to the linear system of equations,

∂v′

∂x

∣

∣

∣

∣

x=L

= 0 ⇒
1
∑

j=−3

db1,j v
′
nv+j(t) = 0 (96)

∂3v′

∂x3

∣

∣

∣

∣

x=L

= 0 ⇒
2
∑

j=−2

dc3,j v
′
nv+j(t) = 0 (97)

The solution of this system allows us to express the boundary nodes i = nv +
1, nv+2 as a linear combination of the inner nodes. Similarly, the left boundary
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condition in (11) leads to an expression for the nodes i = 0,−1:

v′|x=0 = 0 ⇒ v′0(t) = 0 (98)

∂v′

∂x

∣

∣

∣

∣

x=0

= 0 ⇒
3
∑

j=−1

df1,j v
′
0+j(t) = 0 (99)

where a forward FD scheme is used for the first-order derivative approxima-
tion. Equation (95) together with the boundary conditions can be rewritten in
compact form as

v̇(t) = Av(t) +Bd d(t) +Bu u(t)

where Bd = {bd(xi)}, Bu = {bu(xi)} and the matrix A ∈ Rnv×nv is a banded
matrix (see also (18)).

The Crank-Nicolson method is used to march the system forward in time
(18). Given a time step ∆t, the value of the state v(t + ∆t) is given by the
expression:

v(t +∆t) = CN−1
I [CNE v(t) + ∆t (Bd d(t) +Bu u(t))] (100)

where CNI = I − ∆t
2 A and CNE = I + ∆t

2 A. This is an implicit method,

i.e. requires the solution of the linear system CN−1
I , and this operation can be

numerically expensive.

Appendix B. Numerical code

A downloadable package of the MATLAB routines used to produce the re-
sults presented in this paper can be found at http://www.mech.kth.se/ ni-

colo/ks/. The 11 scripts listed below cover all the methods that are presented
in this work.

script00.m: Time evolution of a spatially localized initial condition. The
time response of the plant to a Gaussian-shaped initial condition is calculated:
the generated wave-packet travels downstream while growing and is detected
by the outputs y and z. The spatio-temporal time evolution of v(x, t) is plotted
together with the output signals.

script01.m: Response to a white Gaussian disturbance d(t). A white noise
signal is considered as input d(t) and the time-response of the plant is calcu-
lated. The statistics of the velocity are computed and visualized for comparison
with the controlled cases.

script02.m: External description. An alternative description of the sys-
tem, based on the Input/Output behaviour of the system is calculated. In
particular, the response of the system is calculated via a FIR filter and com-
pared with the LTI system description, i.e. internal description.

script03.m: Controllability and observability Gramians. The controllabil-
ity and observability Gramians are computed solving the Lyapunov equations
in (33–34).



✐

✐

“lic” — 2014/9/29 — 12:01 — page 78 — #88
✐

✐

✐

✐

✐

✐

78 N. Fabbiane, O. Semeraro, S. Bagheri & D. S. Henningson

script04.m: Linear-Quadratic Regulator. A LQR controller is applied to
the plant and tested when the system is excited by a white Gaussian noise
d(t). The statistics of the velocity are computed and visualized in order to be
compared to the other controlled cases.

script05.m: Model Predictive Control. Constrained MPC is used in pres-
ence of saturation of the actuator. The system is excited by a white Gaussian
noise d(t). The statistics of the velocity are computed and visualized in order
to be compared with the other controlled cases.

script06.m: Kalman filter. A Kalman filter is designed for the plant and
used to estimate the system state when excited by a white Gaussian noise d(t).

script07.m: Least-Mean Square filter. A LMS filter is used to identify
the FIR-kernel Ezy. The resulting kernel is compared with the Kalman filter
solution.

script08.m: Linear-Quadratic Gaussian compensator. A LQG compen-
sator is designed coupling a LQR controller and a Kalman filter. The compen-
sator is tested when the system is excited by a white Gaussian noise d(t).

script09.m: P − τ compensator. A simple opposition control is designed
using explicitly the time-delay. The system is excited by a white Gaussian noise
d(t). The control gain has been obtained by a trial and error procedure.

script10.m: Filtered-X Least-Mean Square algorithm. FXLMS algorithm
is implemented. The initial condition is provided by the impulse response of
the corresponding LQG compensator; a robustness test is carried by displacing
the actuator location.

Following functions are required by the above scripts:

[A,x,I] = KS_init(nq). Given the number of degree of freedom nv, it
provides the state matrix A obtained by a FD discretization of the spatial
derivatives. Five grid-point stencil FD schemes are used: in particular, a one
grid point de-centered scheme is used to enhance the stability of the numerical
solution.

d = fd_coeff(n,dx). It provides the FD coefficients used by KS_init.
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Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G. & Vattay, G. 2012
Turbulence? In Chaos: Classical and Quantum, chap. 4. Niels Bohr Institute,
Copenhagen, http://ChaosBook.org/version14.

Dadfar, R., Fabbiane, N., Bagheri, S. & Henningson, D. S. 2014 Centralised
versus Decentralised Active Control of Boundary Layer Instabilities. Flow, Turb.
and Comb. .

Doyle, J. C. 1978 Guaranteed Margins for LQG Regulators. IEEE Trans. Autom.

Control AC-23 (4), 756–757.

Doyle, J. C., Glover, K., Khargonekar, P. P. & Francis, B. A. 1989 State-
Space Solutions to StandardH2 andH∞ Control Problems. IEEE Trans. Autom.

Control 34, 831–847.

Elliott, S. & Nelson, P. 1993 Active noise control. Signal Processing Magazine,

IEEE 10 (4), 12–35.



✐

✐

“lic” — 2014/9/29 — 12:01 — page 81 — #91
✐

✐

✐

✐

✐

✐

Adaptive and Model-Based Control Th. Applied to Conv. Unst. Flows 81

Erdmann, R., Pätzold, A., Engert, M., Peltzer, I. & Nitsche, W. 2012 On
active control of laminar-turbulent transition on two-dimensional wings. Philos.
Trans. R. Soc. 369, 1382–1395.

Garcia, C. E., Prett, D. M. & Morari, M. 1989 Model Predictive Control:
Theory and Practice – A Survey. Automatica 25 (3), 335–348.

Glad, T. & Ljung, L. 2000 Control Theory . London: Taylor & Francis.

Goldin, N., King, R., Pätzold, A., Nitsche, W., Haller, D. & Woias, P. 2013
Laminar Flow Control With Distributed Surface Actuation: Damping Tollmien-
Schlichting Waves with Active Surface Displacement. Exp. Fluids 54 (3), 1–11.

Grundmann, S. & Tropea, C. 2008 Active Cancellation of Artificially Introduced
Tollmien–Schlichting Waves using Plasma Actuators. Exp. Fluids 44 (5), 795–
806.

Gunzburger, M. 2003 Perspectives in Flow Control and Optimization. SIAM.

el Hak, M. G. 1996 Modern Developments in Flow Control. Appl. Mech. Rev. 49,
365–379.

el Hak, M. G. 2007 Flow control: passive, active, and reactive flow management .
Cambridge University Press.

Haykin, S. 1986 Adaptive Filter Theory . Prentice-Hall.
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In boundary-layer flows, it is possible to reduce the friction drag by attenuat-
ing the amplitude of local flow instabilities – Tollmien-Schlichting waves – that
growing may onset the laminar-to-turbulent transition. In this work, adaptive
and model-based techniques are compared in controlling the growth of these
disturbances in a zero-pressure-gradient two-dimensional boundary-layer flow.
In particular, it is shown how the adaptivity (i.e. the capacity to adapt to the
real flow conditions) is necessary to effectively control the laminar flow in real
applications or, in general, in those situations where a perfect repeatability of
the flow condition is not possible. A dielectric-barrier-discharge plasma actua-
tor is used to perform the control action, based on the measurement by surface
hot-wires. A linear model of the flow is build based on direct numerical sim-
ulations simulations of the experiment in order to design a Linear Quadratic
Gaussian (LQG) regulator. The resulting model-based compensator is com-
pared with an adaptive Filtered-X Least Mean Square (FXLMS) algorithm.
The sensitivity of the compensator performance to disturbances amplitude and
changes in the free-stream conditions are investigated. In particular, the LQG
regulator is found to be very sensitive to model inaccuracies, showing incapable
to prescribe the correct phase information to the actuator when strong varia-
tions of the free-stream velocity occur. Moreover, by a performance comparison
at design condition, FXLMS control action is shown to be close to the optimal
solution guaranteed by LQG approach.

1. Introduction

Avoiding the transition from a laminar to a turbulent regime in the boundary-
layer region is one technique to reduce the friction drag in wall-bounded flows.
In a low-turbulence environment the transition is dominated by the exponential
growth of flow instabilities - Tollmien Schlichting (TS) waves - that eventually
break down to turbulence (Saric et al. 2002). However, it has been shown that is
possible to attenuate the growth of these instabilities by manipulating the flow
and eventually delay the onset of the turbulent regime. In this framework, two
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possible strategies can be adopted to pursue this aim. (i) The mean-flow can be
conveniently modified by passive (Shahinfar et al. 2014) or active (Duchmann
et al. 2013) devices in order to elude or control the onset of the instability itself.
(ii) The upcoming wave can be detected by suitable sensors and cancelled by an
targeted forcing on the flow: this technique requires a smaller amount of power,
since the control action is limited to counteract the upcoming wave (Bewley &
Liu 1998; Bagheri et al. 2009b; Goldin et al. 2013). The core of this control
framework is to design a compensator, i.e. the system that, given the on-line
measurements of the flow, computes a suitable forcing to reduce the amplitude
of the upcoming wave.

One of the first attempts to design a compensator in order to delay the
laminar-to-turbulent transition was presented by Bewley & Liu (1998). Opti-
mal and robust control theory were used to precompute the compensator based
on a Linear-Time-Invariant (LTI) system that describes the time evolution of
the disturbances in the flow. This and the guaranteed optimality of the control
action lead this control technique to fast spread in the numerical community
(Barbagallo et al. 2009; Bagheri et al. 2009b; Semeraro et al. 2013) and reached
the experimental level (Juillet et al. 2014, via identified models of the flow).
Because in this class of methods the compensator is precomputed off-line based
on a model of the flow and then applied to the experimental/numerical set-up,
the compensator that results is static, i.e. its control law is constant in time.

Parallel to these numerical studies, the experimental community started to
use adaptive control techniques (e.g. Sturzebecher & Nitsche 2003; Kurz et al.
2013). Unlike the previous approach, the control law is not precomputed but
it is identified on-line by the compensator itself: in fact, it is able to learn how
to properly control the flow by monitoring a measurement of its performances.
Less modelling of the flow response is needed to perform the control action,
but no optimality of the control action is guaranteed.

The aim of this work is to compare these two different design approaches
and assess their advantages and limitations: a Linear Quadratic Gaussian
(LQG) regulator (Bagheri et al. 2009b) and a Filtered X Least Mean Square
(FXLMS) filter (Sturzebecher & Nitsche 2003) are chosen as representative re-
spectively of static and adaptive compensators class. To our knowledge, this is
the first time that an LQG compensator based on DNS simulations of the flow
is applied to an experimental setup.

2. Experimental set-up

A 2D TS wave is generated by a disturbance source (d) in a flat-plate boundary-
layer flow and is detected farther downstream by a surface hot-wire (y), see
Figure 1. This sensor provides the reference signal to the compensator to
compute the control action and a dielectric barrier discharge (DBD) plasma
actuator (u) provides the prescribed forcing on the flow. A second surface
hot-wire sensor (z) is positioned downstream of the actuator to evaluate the
compensator performance.
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Figure 1. Experimental set-up. The computational domain
used in the DNS simulations (dashed line) starts at (x, y) =
(0, 0) and it extends 750 δ∗0 in streamwise direction and 30 δ∗0
in the wall-normal direction, where δ∗0 = 0.748mm is the dis-
placement thickness at the beginning of the domain. In the
last part of the domain (grey area) a fringe region enforces the
periodicity along the streamwise direction (Nordström et al.
1999).

The experiments are conducted in an open-circuit wind tunnel at TU Darm-
stadt, which provides a 450mm× 450mm test section and an averaged turbu-
lence intensity of Tu = 0.1%, measured at the end of the 1:24 contraction
nozzle. A 1, 600mm long flat plate with an 1:6 elliptical leading edge and ad-
justable trailing edge is mounted horizontally in the middle of the test section.
Figure 1 shows a sketch of the flat plate containing surface mounted sensors,
the disturbance source and the plasma actuator. The zero position is chosen to
be 70mm upstream of the disturbance source as the DNS computational box
starts at this point.

A dSPACE system consisting of a DS1006 processor board, a DS2004 A/D
board as well as a DS2102 high resolution D/A Board provides the computa-
tional power for the flow control algorithm. An additional 16bit NI PCI 6254
A/D board is used for data acquisition of hot wire sensors signals as well as
the disturbance source signals.

Disturbances are created by pressure fluctuations at the wall, caused by
conventional loudspeakers. This method is a widely used method for exciting
TS waves (Borodulin et al. 2002; Würz et al. 2012). The disturbance source
consists of 16 Visaton BF 45 speakers, amplified by 16 Kemo M031N, which
can be controlled individually by the 16 channels analog output module NI9264.
The set of loudspeakers is placed outside of the testsection and 1.2m long tubes
are led into the testsection from below the flat plate. The tubes are arranged
along a line in spanwise direction beneath a 0.2mm wide slot in the flat plate
surface. An outer tube diameter of 3mm gives a total width of the disturbance
source of 240mm. Two spanwise rows of 30 Sennheiser KE 4-211-2 microphones
enable the on-line monitoring of the phase and amplitude of the artificially
excited TS waves in order to assure an even 2D wave front. The first row is
positioned upstream of the plasma actuator at x = 164mm while the second
row downstream of the plasma actuator at x = 224mm. All microphones are
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mounted below the surface and are connected to the surface through a 0.2mm
circular orifice with a spacing of only 9mm in spanwise direction. All channels
are sampled by two NI 9205 A/D converter modules with 4 kHz.

In addition, a boundary-layer hot wire probe Dantec 55P15 is mounted on
a 2D traverse for phase-averaged boundary layer measurements. The DC signal
is filtered with an 1 kHz low pass filter to avoid aliasing.

2.1. Actuator and sensors for flow-control

The flow control device for this experiment, the plasma actuator, consists of a
10mmwide grounded lower electrode of 35µm thickness and a 5mm wide upper
electrode, which are divided in the vertical direction by five layers of Kapton
tape with a total thickness of 0.3mm. A GBS Minipuls 2.1 high voltage supply
is driving the 230mm long plasma actuator, which is installed flush mounted
to a spanwise groove in order to minimize roughness of the surface.

The plasma actuator driving frequency fPA is chosen to be 10 kHz, which is
more than one order of magnitude higher than the unstable TS wave frequency
band for this experiment. In order to assure a stable discharge in time and
space, an operation range from V = 5kVpp to 13 kVpp has to be maintained
for this actuator design (Barckmann 2014): therefore a mean voltage supply
V = 7kVpp is chosen for all experiments. The compensator can modulate
the amplitude of the high voltage supply via the control signal u(t) and, as
consequence, vary the plasma actuator force on the time scale of the TS waves.
The control signal u(t), fed into the high voltage generator, is a linearized
function with respect to the plasma actuator force at that working point.

Two surface hot-wires sensors are used to provide the compensator the
required information to compute a suitable control signal u(t). Introduced by
Sturzebecher & Nitsche (2003) the surface hot-wire has proven to be an ex-
cellent sensor type for reactive flow control (Lundell 2007; Goldin et al. 2013).
Due to the high electromagnetic interference of the plasma actuator, a classic
hot-wire design with prongs is preferred and modified to serve as a surface
hot-wire. Two conventional needles are moulded in a plastic case, which can
be flush mounted on the flat plate. A small groove between the needle tips
avoids heat loss to the structure and improves the signal to noise ratio. The
5µm thin and 1.25mm long gilded-tungsten wire is heated with an overheat
ratio of 1.7. Due to shielded signal lines, this sensor is less sensitive for electro-
magnetic interferences than the conventional surface hot-wire design based on
photo-etched printed circuit boards. A 4 channels Dantec Streamline constant
temperature anemometer (CTA) provides the band pass filtered AC signal of
the sensors (10Hz − 1 kHz). All hot wire sensor signals are acquired with an
sample rate of 10 kHz. The surface hot-wires are calibrated for quantifying
the TS wave amplitude according to the definition in (2). The calibration was
conducted by exciting 2D TS waves whose maximum amplitude was measured
above the surface hot-wire using the traversable boundary-layer hot-wire probe
as a reference.
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Figure 2. Compensator schemes for static (LQG) and adap-
tive (FXLMS) strategies. The measurements by the error sen-
sor z are used by the FXLMS algorithm to adapt to the current
flow conditions. The grey lines indicate the I/O relations re-
quired to be modelled by each strategy.

3. Static and adaptive compensator

The compensators is the dynamical systems that takes the measurements as
inputs and gives the control action as output (Figure 2). In this work a linear
compensator is considered, i.e. the compensator is described by a system of
linear ordinary differential equations (ODE) in time. It can be either repre-
sented by its state-space formulation or by its Input/Output (I/O) relations
(Glad & Ljung 2000). The latter representation is chosen: hence, the compen-
sator response is described by a Finite Impulse Response (FIR) filter that reads
(Haykin 1986)

u(n) =

Nk
∑

i=1

K(i) y(n− i) (1)

where u(n) = u(n∆t) and y(n) = y(n∆t) are the time-discrete representation
of the time-continuous signals u(t) and y(t) and ∆t = 1ms is the sampling
time. The NK coefficients K(i) are the kernel of the filter and they describe
how the compensator filters the measurements y(n) in order to provide the
control action u(n).

In this framework, two compensator classes can be identified by whether
their kernel is static or adaptive. The former strategy consists in precomputing
the control law usually relying on a model of the controlled system (plant): the
model can be either identified from experimental measurements (Juillet et al.
2014) or based on DNS simulations of the flow (e.g. Bewley & Liu 1998; Bagheri
et al. 2009b). In an adaptive compensator, instead, control action and kernel
design are simultaneous: the kernel coefficients K(i) are updated on-line by the
compensator itself relying on a on-line measurements of its performances.

In this work, these two control strategies are compared. A Linear Quadratic
Gaussian (LQG) regulator is chosen as representative of the static compensator
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class (Figure 1.2(a)). The compensator design is based on two separated opti-
misation procedures based on a full model of the plant (Glad & Ljung 2000).
The first optimally estimates the actual conditions in the flow from the mea-
surements y(t). The second, computes the optimal control action u(t) from
the estimated state. The time-discrete response of the resulting Linear Time
Invariant (LTI) system to an impulse y(t) gives the convolution kernel K(i)
in (1). A Filtered-X Least-Mean-Squares (FXLMS) algorithm, instead, repre-
sents the class of adaptive compensators (Sturzebecher & Nitsche 2003; Engert
et al. 2008). As reported in Figure 1.2(b), it uses the measurement signal of
the error sensor z(t) to dynamically adapt itself to the actual condition of the
flow, given a model of the I/O relation u→ z between the plasma actuator and
the error sensor. If the flow conditions are constant, the compensator kernel
asymptotically converge to stable sub-optimal solution. For both the control
techniques, refer to Fabbiane et al. (2014) for more detailed information.

Figure 3 reports the performances of the two compensators when the dis-
turbance source is fed with a white-noise signal d(t) for a wind tunnel speed
UWT = 12m/s. The solid line depicts the time-averaged spectrum of z(t) for the
uncontrolled case: as the signal z(t) is a measure of the wall-stress fluctuations,
it is related to the amplitude of the TS wave-packets that are generated by the
disturbance d(t). This results in a TS-wave band that ranges from 100Hz to
250Hz, as predicted by local stability theory (Schmid & Henningson 2001).
The dashed and dot-dashed lines depict the z-signal spectra when the LQG
and FXLMS compensators are applied: the FXLMS algorithm appears to be
more effective than the LQG regulator. As mentioned in §2.1, the plasma ac-
tuator is operated at a mean high voltage V = 7kVpp, corresponding to an
average specific-power consumption of P = 16W/m. The resulting constant
forcing is small enough to have only a marginal stabilizing effect on the flow,
as it is shown by the dotted line in Figure 3.
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4. A DNS model of the flow

In order to provide a model for the LQG design, numerical simulations are
designed to simulate the flow in the test section. The experimental set-up de-
scribed in §2, produces a 2D perturbation in a 2D boundary layer that are small
enough not to trigger non-linear phenomena. The linearised Navier-Stokes (NS)
equations around a laminar zero-pressure-gradient boundary-layer flow are con-
sidered to describe the temporal evolution of the disturbances. The free-stream
velocity U∞ = 14m/s and the displacement thickness in the beginning of the
domain δ∗0 = 0.748mm are identified by a parameter fitting procedure of the
laminar solution over 10 measured mean-velocity profiles between x = 0mm

and x = 330mm. The resulting Reynolds number is Re =
U∞ δ∗0

ν = 656. A
pseudo-spectral DNS code is used to perform the simulations (Chevalier et al.
2007). Fourier expansion over Nx = 768 modes is used to approximate the
solution along the streamwise direction, while Chebyshev expansion is used in
the wall-normal direction on Ny = 101 Gauss-Lobatto collocation points. The
computational domain is shown in Figure 1.

The disturbance source and the plasma actuator are modelled by volume
forcings. Each forcing term is decomposed in a constant spatial shape and in
a time dependent part, i.e. the input signals. The forcing shape for the distur-
bance source is a synthetic vortex localized at the disturbance source position
(Bagheri et al. 2009b). The plasma actuator shape, instead, is modelled by
a distributed streamwise forcing, according to the results by Kriegseis et al.
(2013). As the forcing shape is dependent by the high-voltage supply to the
actuator, a linearisation around V = 7kVpp is considered. The surface hot-
wires sensors y(t) and z(t) are modelled as point-wise measurements of the
skin-friction fluctuations.

Simulated and measured performance of the LQG compensator are re-
ported in Figure 4. The flow is excited by a single-frequency constant-amplitude
signal d(t) with frequency fd = 200Hz. The amplitude of the velocity fluctua-
tion in the flow is measured by an hot-wire probe mounted on a traverse system.
A non-dimensional measure for the TS-wave amplitude is introduced:

ATS,int(x) =
1

δ∗0

∫ ∞

0

|U(x, y, fd)|

U∞
dy =

1

δ∗0

∫ ∞

0

ATS(x, y) dy (2)

where U(x, y, f) is the Fourier transform of the streamwise component of the
velocity. In Figure 1.4(a) ATS,int(x) is reported for the LQG-controlled (blue
dashed line) and uncontrolled case (black solid line). The simulated uncon-
trolled case matches very well the experimental data (black circles). The blue
dashed line depicts the simulated perturbation amplitude when the LQG con-
trol is applied: the attenuation is overestimated respect the experimental data
(blue squares). The performance prediction is improved if the average constant
forcing by the plasma actuator is considered when computing the baseflow
used for testing the compensator (green dotted line). This indicates a small
difference between the modelling and the experiments. In Figure 4(b-c) the
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Figure 4. TS-wave amplitude for fd = 200Hz. Lines and
circles depict simulated and experimental data respectively.
(a) shows the integral TS-wave amplitude (ATS,int) as a func-
tion of the streamwise position. The top ı̈¿1

4axis reports

Rex = (x−xLE) U∞

ν , where xLE is the leading-edge position.
(b) and (c) show the TS-wave shape at two different x posi-
tions upstream and downstream the actuator. The triangles
indicate where the reference sensor, plasma actuator, and error
sensor are positioned, cfr. Figure 1.

controlled and uncontrolled cases are compared where the reference sensor y
and the error sensor z are positioned. From Figure 1.4(c), the disturbance
appears to be damped all along the wall-normal direction, both in simulation
(green dotted line) and experiment (blue squares). A double-peak shape is
visible near the wall that can be explained by the proximity to the plasma
actuator. In fact, the lower peak of the TS amplitude is located at the wall-
normal position where Kriegseis et al. (2013) measured the maximum forcing of
a similar plasma actuator. However, as the controlled TS-wave evolves further
downstream it shows a less pronounced double peak structure.

5. Robustness

In this section, the robustness of the two control techniques is analysed. Here,
robustness means the capacity of the compensator to overcome the unavoidable
differences between design and working condition. In particular, effects by
amplitude of the disturbances and changes in the free-stream conditions are
investigated. The ratio between the root-mean-square (rms) of z(t) signal of
the controlled and uncontrolled case

Z =
rms (zctr(t))

rms (zunctr(t))
(3)

is used as performance index of the control strategy.
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Figure 5. Effect of the TS-wave amplitude on the perfor-
mance indicator Z. The flow is excited by the disturbance
source operated with a 200Hz single-frequency signal.

5.1. TS-wave amplitude

A 200Hz single-frequency disturbance is used to investigate the robustness of
the LQG controller against higher TS-wave amplitude with forcing frequency
fd = 200Hz. The amplitude is gradually increased and the rms of the reference
sensor signal y(t) is used as an indicator of disturbance amplitude. In Figure 5,
it can be seen how controller performance is gradually degraded while the
amplitude rises and it reaches a saturation beyond rms(y) = 0.6. The FXLMS
compensator, instead, is able to maintain good performance until an abrupt
breakdown of the performances around rms(y) = 0.6, when the compensator
adaptivity can not compensate any more the non-linearities in the flow.

5.2. Free-stream velocity (Reynolds number)

Unexpected changes of the free stream conditions may also degrade the control
performance: they modify the baseflow on which NS equations are linearised,
introducing a modelling error that may lead to a performance loss for the
compensator. To investigate this condition, the compensator performance is
monitored while the wind-tunnel speed is varied around the design condition
UWT = 12m/s2, changing the Reynolds number and, as a consequence, the
stability properties of the flow (Schmid & Henningson 2001). A white-noise
disturbance d(t) is considered and the disturbance is monitored in order to
ensure a 2D wave-front. The ratio between rms(y) and the wind-tunnel speed
UWT is kept constant and equal to 6.5 ·10−3 in order to avoid non-linear effects.

Figure 1.6(a) reports the performance index Z as a function of the wind-
tunnel speed variation ∆UWT . LQG performance varies as the speed is
changed, showing a strong dependence to Reynolds number variations (blue
dashed line). In particular, the best performance is obtained for a velocity
lower than the design speed. This shift is due to repeatability issues of the
experiments: even if speed and length are fixed, unavoidable daily fluctuations
of the viscosity cause a shift of the actual Reynolds number of the flow. The

2Note that the asymptotic velocity U∞ differs from UWT because of blockage effects due to
the presence of the flat-plate and experimental equipment.
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Figure 6. Effect of wind-tunnel speed variation ∆UWT on
the performance indicator Z. The solid line in (b) depicts the
DNS data shifted to fit the experimental curve. The flow is
excited by the disturbance source operated with a white noise
signal d(t).

FXLMS compensator, instead, is able to adapt to the changed condition. Even
if the required I/O relation u→ z is changed by the speed variation, the adap-
tive nature of the compensator is able neutralise this error and ensure almost
unaltered performances for all the investigated wind-tunnel speeds. These ro-
bustness results are also confirmed by the DNS data in Figure 1.6(b): as in the
experiment, the free-stream velocity is varied respect to the design condition
and the performance of the control action is monitored.

The simulations data give also a better insight about the optimality of
the control action by the FXLMS compensator. At the design condition
∆UWT = 0, simulation and design model of the flow coincide: the attenua-
tion achieved by th FXLMS algorithm is very close to the optimal solution
guaranteed by the LQG regulator in this condition. The same observation can
be also done starting from the experimental data. If the simulated LQG per-
formances are reported in Figure 1.6(a) and a proper shift is applied (solid
black line), they asymptotically approach the experimental data (blue dashed
line): it can be thus claimed that the minimum showed by the LQG experi-
mental data represents an experimental-optimal solution. Once again, the the
FXLMS performance is close to the optimal one. These numerical and exper-
imental observations show that the control action performed by the FXLMS
compensator is not far from the optimal solution.

Having observed that the performance of LQG regulator is significantly
reduced compared to FXLMS compensator in off-design conditions, an expla-
nation of this observation is provided. The signal z(t) can be seen as the
superposition of the two counter-phase TS-waves one generated by the distur-
bance source and one by the plasma actuator. Consider the single harmonic
case for simplicity:

z(t) = zd(t) + zu(t) = a sin(ω(t+∆τ)) − a sin(ωt). (4)
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Figure 7. FXLMS kernels K(i) for different wind-tunnel
speeds. The solid line represents the design condition. When
UWT decreases (dashed line) or increases (dotted line), the
compensator adapts to the new conditions by stretching or
shrinking the compensator kernel.

If a velocity variation occurs, zd(t) experiences a phase-shift ∆τ due to a change
in the phase-speed of the TS-wave. The expression in (4) can be manipulated
in order to highlight the role of ∆τ :

z(t) = 2a sin

(

ω
∆τ

2

)

cos

(

ω

(

t−
∆τ

2

))

≈ aω∆τ cos

(

ω

(

t−
∆τ

2

))

. (5)

For small values of ω∆τ , the amplitude of z(t) is linear with the phase shift ∆τ .
Moreover, considering for small velocity variation the phase-shift linear with
∆UWT , (5) explains the linear dependence between the performance index Z
and the speed variation.

Figure 7 compares the experimental FXLMS kernels for a positive and
a negative ∆UWT to the design condition (solid line). A lower wind-tunnel
speed (dashed line) has two effects on the flow: (i) the amplification of the TS
wave is reduced and (ii) the time scales in the flow increase, i.e. the TS wave
moves slower than under design conditions. The compensator reacts to these
new conditions by stretching the convolution kernel in time and reducing the
magnitude of the K(i) coefficients. On the other hand, if the speed increases
(dotted line), the effect on the flow is opposite: the TS wave moves faster and it
is more amplified by the flow. Hence, the FXLMS algorithm reacts by shrinking
the kernel and increasing the magnitude of the K(i) coefficients.

The time τ where the minimum occurs in the convolution kernel is an
indicator of the phase-shift prescribed by the compensator. Figure 8 shows a
strong correlation between the phase-shift |∆τ | = |τLQG − τFXLMS | between
the two compensator kernels and the performance loss ∆Z, i.e the gap between
the two curves in Figure 6. This correlation further supports the idea that the
compensator performances are mainly depending on a correct prediction of the
phase-shift of the TS wave between the reference-sensor and plasma-actuator
position. In the LQG approach, this information is given by the design-model:
any inaccuracy in this model may lead to an incorrect computation of the
phase-shift and, eventually, to a performance loss.
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Figure 8. Correlation between phase error |∆τ | (squares)
and performance loss ∆Z (dashed line) when the wind-tunnel
speed is changed. An error ±∆t equal to the sampling-time is
considered for ∆τ .

6. Conclusions

Adaptivity emerges to be crucial for laminar-flow control in real applications.

The optimal performances guaranteed by the model-based approach is
shown not able hold against the on-line tailored response of the adaptive tech-
niques when it comes to modelling errors. As shown in §5, the performances
of the LQG compensator are strongly dependent on free-stream velocity vari-
ations. An adaptive controller, instead, adjusts its response to the new condi-
tion and prescribe the correct forcing to the actuator. In fact, the investigated
FXLMS compensator is able to adapt to the new free-stream velocity and en-
sures almost constant performances for a wide range of speed variations.

Moreover, DNS and experimental data show that the control action per-
formed by the FXLMS algorithm is close to the optimal solution guaranteed
by the LQG regulator when no modelling error occurs.

Concluding, a static compensator is confined to those applications where
a very accurate model of the flow is available and adaptive control is recom-
mended for laminar-flow control in real environments.

The authors acknowledge support the Swedish Research Council (VR-2012-
4246, VR-2010-3910) and the Linnè Flow Centre.
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We use linear control theory to construct an output feedback controller for the
attenuation of small-amplitude three-dimensional Tollmien-Schlichting (TS)
wavepackets in a flat-plate boundary layer. A three-dimensional viscous, in-
compressible flow developing on a zero-pressure gradient boundary layer in a
low Reynolds number environment is analyzed using direct numerical simula-
tions. In this configuration, we distribute evenly in the spanwise direction up
to 72 localized objects near the wall (18 disturbances sources, 18 actuators,
18 estimation sensors and 18 objective sensors). In a fully three-dimensional
configuration, the interconnection between inputs and outputs becomes quickly
infeasible when the number of actuators and sensors increases in the spanwise
direction. The objective of this work is to understand how an efficient controller
may be designed by connecting only a subset of the actuators to sensors, thereby
reducing the complexity of the controller, without comprising the efficiency. If
n and m are the number of sensor-actuator pairs for the whole system and for
a single control unit, respectively, then in a decentralised strategy, the num-
ber of interconnections deceases mn compared to a centralized strategy, which
has n2 interconnections. We find that using a semi-decentralized approach –
where small control units consisting of 3 estimation sensors connected to 3 ac-
tuators are replicated 6 times along the spanwise direction – results only in a
11% reduction of control performance. We explain how “wide” in the spanwise
direction a control unit should be for a satisfactory control performance. More-
over, the control unit should be designed to account for the perturbations that
are coming from the lateral sides (crosstalk) of the estimation sensors. We have
also found that the influence of crosstalk is not as essential as the spreading
effect.

1. Introduction

Drag reduction methodologies in vehicles and aircrafts have received consid-
erable attention during the past decades (Thomas 1984). These techniques

103
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provide the possibility to significantly reduce the operational cost in trans-
portation sector and also improve the environmental consequences. In bound-
ary layer flows, drag reduction can be achieved by extending the laminar region
on the aerodynamics parts of vehicles by delaying the transition from laminar
to turbulence. Although, different techniques are used to delay the transition,
currently significant efforts are devoted to active control strategies e.g. opposi-
tion control (Hammond et al. 1998), wave cancellation (Sturzebecher & Nitsche
2003), optimal controller (Dadfar et al. 2013) and etc. This approach adds ex-
ternal energy to the system in terms of predetermined actuation (open loop)
or on-line computation of the actuation law using feedback information from
the measurement sensors (reactive control). One particular reactive control
strategy employed in this study is output feedback control (Doyle et al. 1989),
where the actuation is determined by measuring external disturbances.

In an environment characterised by low turbulence levels, two-dimensional
perturbations – Tollmien-Schlichting (TS) – wavepackets are triggered inside
the boundary layer. The TS waves grow exponentially in amplitude as they
move downstream until a point where nonlinear effects are significant and tran-
sition to turbulence is triggered. An important trait of this transition scenario,
which also enables the use of linear control theory, is that the initial stage of
the perturbation growth inside the boundary layer is well described by a linear
system. Moreover, due to the large sensitivity of such flows to an external
excitation, one can influence the TS waves by introducing small local pertur-
bation in small region of the flow via proper localised devices requiring minute
energy. There is now substantial literature where linear control theory is com-
bined with numerical simulations to control transition in wall-bounded flows.
Pioneering work include the control of Orr-Sommerfeld equations (Joshi et al.
1997), distributed control using convolution kernels (Cortelezzi et al. 1998; Hög-
berg et al. 2003) and a localised control approach (Dadfar et al. 2013; Bagheri
et al. 2009b). The term localized in the latter approach refers to the use of a
limited number of small compact actuation and estimation devices positioned
in specific manner to allow efficient control. The fact that the number of in-
puts/outputs (O(10)) is order of magnitudes smaller than the dimensions of
flow system (O(107)) provides amenable conditions for reducing the order of
the system by constructing a low-dimensional model (ROM). Here, we report
on our most advanced configuration (placing up to 72 inputs/outputs) so far.
In order to have a physically realizable configuration, our numerical system
is chosen as to resemble the experimental study performed by Li & Gaster
(2006). This investigation extends or complements our previous work on two-
dimensional disturbances using blowing/suction and shear stress measurements
(Bagheri et al. 2009a), three-dimensional linear (Semeraro et al. 2011) and non-
linear (Semeraro et al. 2013) investigations. Relevant reviews on this subject
are provided in Bewley (2001),Kim& Bewley (2007) and Bagheri & Henningson
(2011).
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We will report on the efficiency of a centralised and a decentralised control
strategy (Glad & Ljung 2000; Lewis & Syrmos 1995). In the former approach
all the sensors are connected to all the actuators. Since the complexity of a
controller is related to the number of interconnections, this approach becomes
infeasible when reaching O(102) inputs and outputs. This is certainly a restric-
tive issue, since in a localized control approach the number of required sensors
and actuators increase with the span of the plate. A solution to this restriction
is a decentralised controller where one disregards some of the interconnections
which are not essential to the dynamics of the system. Then one replicates
the same controller (called control unit) along the span of the system to cover
a larger spanwise distance. In this study, several different control units are
designed and their performances are compared.

2. Flow and Control Configuration

2.1. Governing equations

The dynamics and control of small-amplitude perturbations in a viscous, in-
compressible flow developing over an unswept flat plate are investigated us-
ing direct numerical simulation (DNS). The disturbance dynamics is governed
by the Navier-Stokes equation linearised around a spatially developing zero-
pressure-gradient boundary layer flow as

∂u

∂t
= −(U · ∇)u − (u · ∇)U −∇p+

1

Re
∇2u+ λf (x)u, (1a)

∇ · u = 0, (1b)

u = u0 at t = t0, (1c)

where the disturbance velocity and pressure fields are denoted by u(x, y, z, t)
and p(x, y, z, t); x, y and z denote the streamwise, wall normal and spanwise di-
rection, respectively. Furthermore, U(x, y) and P (x, y) represent the baseflow
velocity and pressure; they are a solution to the steady, nonlinear Navier-Stokes
equation. In this study, all the spatial coordinates are normalised with the dis-
placement thickness δ∗ at the inlet of the computational box. The Reynolds
number is defined based on the displacement thickness as Re = U∞δ

∗/ν where
the U∞ denotes the uniform free stream velocity and ν is the kinematic vis-
cosity; all the simulations are performed at Re = 915 which correspond to a
distance of 312δ∗ from the origin of the plate to the inlet of the computational
box. The no-slip boundary condition is considered at the wall (y = 0), while
Dirichlet boundary condition with vanishing velocity is employed at the upper
boundary (y = Ly); this boundary condition is applied far enough from the
boundary layer to ensure negligible influence on the dynamics of the perturba-
tions. Periodicity is assumed in the spanwise and streamwise directions. In the
latter, the term λ(x) is implemented to enforce this periodicity so that a spec-
tral Fourier expansion technique can be employed. The function λ(x) is zero
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inside the physically relevant part of the domain where the dynamics are inves-
tigated and has nonzero value at the end of the domain where a fringe region is
applied (Nordström et al. 1999). The simulation is performed using a pseudo-
spectral DNS code (Chevalier et al. 2007) where Fourier series are employed in
the wall-parallel directions and the wall-normal direction is expanded in Cheby-
shev polynomials. The computational domain Ω = (0, 500)× (0, 30)× (0, 162)
is discretized with 384× 101× 128 grid points in x,y and z directions, respec-
tively. The time integration is performed using a Crank-Nicolson scheme for
the linear terms and a third order Runge-Kutta method for the advective terms
(Chevalier et al. 2007). The time step is 0.4δ∗/U∞ for the current simulations.

2.2. Input-Output System

A schematic representation of the input-output configuration is depicted in
Figure 1. The linearised Navier-Stokes equation with inputs and outputs can
be written is state space form as

u̇(t) = Au(t) +B1w(t) +B2φ(t), (2a)

v(t) = C2u(t) + αg(t), (2b)

z(t) =

(

C1

0

)

u(t) +

(

0

R1/2

)

φ(t). (2c)

Henceforth, u(t) ∈ Rn denotes the state vector, whereas w(t) ∈ Rd, φ(t) ∈
Rm, v(t) ∈ Rp, g(t) ∈ R and z(t) ∈ Rk denote time signals. The matrix A ∈
Rn×n represents the linearised and spatially discretised Navier-Stokes equation.
The above form has been reported in numerous works (see e.g. Semeraro et al.
(2010)) and only a short description is provided here:

• The first input (B1w(t)) is composed of B1 ∈ Rn×d representing the
spatial distribution of d localised disturbances located at the upstream
end of the domain and white noise signals w(t) ∈ Rd. These inputs
represent a model of perturbations introduced inside the boundary layer
by e.g roughness and free-stream perturbations.

• In the second input (B2φ(t)), B2 ∈ R
n×m represents the spatial support

of m actuators located inside the boundary layer near the wall. They
are fed by the control signal φ(t) ∈ Rm, which is to be determined by
an appropriate controller.

• The p output measurement provided by v(t) ∈ Rp detect information
about the travelling structures by the localised sensors C2 ∈ Rp×n.
These measurements are corrupted by αg(t). More precisely, g(t) ∈ Rp

is a white noise signal and α the level of noise.
• The output z(t) ∈ R

k extracts information from the flow in order to
evaluate the performance of the controller. This is done by localised
outputs C1 ∈ Rk×n with a spatial distribution located far downstream
in the computational box. It also contains the weighted control input.
In fact, the minimisation of the output signal detected by C1 is the
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Figure 1. Input-output configuration of the system. The in-
put B1 is a row of localised disturbances located at x = 60,
convected downstream and converted to a TS wavepacket. The
control action is provided by the input B2, consists of a row
of actuators located at x = 167. A set of localised estima-
tion sensors, at x = 150 upstream of the actuator is employed.
A row of output sensors at x = 375 is implemented as the
objective function of the controller. Two control strategies,
centralised and decentralised are used. In the former all the
sensors and actuators are wired together while in the latter,
a control unit with a limited interconnections is designed and
replicated along the span. There are in total 18 disturban-
ces B1, 18 sensors C2, 18 actuators B2 and 18 outputs C1.
Only 8 of those are depicted in the figure. For a centralised
controller with n sensor-actuator pairs, the connections are n2

while in a decentralised controller, each control unit contains
m sensor-actuator pairs, the connections are mn.

objective of our LQG controller; the aim is to find a control signal
φ(t) able to attenuate the amplitude of the disturbance detected by C1.
Hence, the objective function reads

‖z‖2L2
[0,∞]

= E
{

uTCT
1 C1u+ φTRφ

}

, (3)

where E(·) is the expectation operator. The matrix R ∈ Rm×m contains
the control penalty l2 in each diagonal entry and represents the expense
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Element Symbol Number Location Parameters
− − (x0, y0) (σx, σy, σz)

Disturbances B1 18 (60, 0) (6, 1.5, 8)
Sensors C2 18 (150, 0) (2, 1.5, 2)

Actuators B2 18 (167, 0) (6, 1.5, 8)
Outputs C1 18 (375, 0) (5, 1.5, 6)

Table 1. The main parameters characterising the spatial dis-
tribution of the sensors and the actuators. All the elements
are located at z0 = −76.5 and distributed along the span with
the spanwise spacing ∆z = 9.

of the control. This parameter is introduced as a regularisation term ac-
counting for physical restrictions. Large values of control penalty results
in weak actuation and creates low amplitude control signal whereas low
values of control penalty leads to strong actuation.

Following Semeraro et al. (2011), we define the spatial distribution of the
sensors and actuators with a Gaussian divergence-free function as

h(x, y, z) = a





σxγy
−σyγx

0



 e−γ2
x−γ2

y−γ2
z , (4)

where

γx =
x− x0
σx

, γy =
y − y0
σy

, γz =
z − z0
σz

, (5)

and (x0, y0, z0) is the centre of the Gaussian distribution. The scalar quantities
(σx, σy, σz) represent the corresponding size (values given in Table 1). The
scalar a represents an amplitude which is equal to 2 × 10−3 for the actuators
and one for the sensors. Most of our simulation is performed for the setup
reported in Table 1. We denote the ith element of the disturbance vector B1

by B1,i corresponding to the signal wi(t).

2.3. Model Reduction

We construct a reduced-order model of the system by projecting the
n−dimensional state onto a low-dimensional subspace of dimension r. Ex-
panding the state in a linear combination of columns of the expansion basis
Φ = (φ1, φ2, · · ·φr) ∈ Rn×r as

u = Φû (6a)

û = ΨTu, (6b)

where Ψ = (ψ1, ψ2, · · ·ψr) ∈ Rn×r are the adjoint modes, bi-orthogonal to the
expansion basis Φ, i.e. ΨTΦ = I. Substituting Eq. (6a) into the system Eq.
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Figure 2. Impulse response of the system (a) from the input
B2,8 to the output C1,8, (b) from the input B1,8 to the output
C2,8 and (c) from the input B1,8 to the output C1,8. The red
line shows the DNS results, while the dotted lines indicates the
impulse response of the reduced model (Case N Table 2)

(2) and using the bi-orthogonality of the basis, the reduced system of order r
is obtained as

Ar = ΨTAΦ, (7a)

B1r = ΨTB1, B2r = ΨTB2, (7b)

C1r = C1Φ, C2r = C2Φ. (7c)

The choice of the basis function is crucial for the performance of the reduced
order system (Bagheri et al. 2009c; Barbagallo et al. 2009). We use a balanced-
mode-basis (Moore 1981; Willcox & Peraire 2002; Rowley 2005) that preserves
the dynamics between the inputs and outputs of the system. The states that
are equally observable and controllable form a hierarchy of so-called balanced
modes. The method is based on the concepts of observability and control-
lability (Zhou et al. 2002), which provide a means to characterize the states
in terms of how easily triggered they are by the inputs and observed by the
outputs, respectively. The states which are neither controllable nor observable
or the ones that are weakly controllable or observable are redundant for the
input-output behaviour of the system. A limitation pertaining to this method
is the necessity of computing the adjoint balanced modes. The Eigensystem
Realisation Algorithm (ERA) (Juang & Pappa 1985; Ma et al. 2011) is a sys-
tem identification technique that allows to circumvent this limitation. It is
only based on sampling measurements extracted directly from the flow, see a
detailed description of the method in Ma et al. (2011).
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As an example of the performance of the reduced-order model with r = 435,
in Figure 2 we show the impulse responses:

φ8 → z8, w8 → v8, w8 → z8.

In the figure, the solid lines are the impulse response of the full system obtained
from solving Navier-Stokes equation while the dotted lines presents the results
of the reduced-order model. We observe an equally good agreement for all the
inputs and output, when comparing the full system and the ROM. Now that
an efficient ROM is constructed, may design a linear controller.

2.4. Control Design

We use a classical LQG-approach to determine a controller that minimises the
energy of disturbances captured by output C1 (Lewis & Syrmos 1995; Zhou
et al. 2002). The control signal φ(t) is designed for the actuator B2 such that
the mean of the output energy, z(t), is minimised (see Eq. 3). The LQG design
procedure involves a two-step process: first the full state - represented in this
case by the velocity field - is reconstructed from the noisy measurement v(t)
via an estimator. Once the estimated state û is computed the control signal
can be computed by the following linear relationship

φ(t) = Kû(t), (8)

where K ∈ Rm×r is referred to as the control gain. When the disturbances
are modelled as white Gaussian noise, the separation principle allows the two
steps (estimation and full-information control) to be performed independently.
Furthermore, both problems are optimal and stable and the resulting closed
loop is also optimal and stable (Zhou et al. 2002). The final form of the reduced
order controller (also called compensator) of size r is

˙̂u(t) = (Ar +B2rK + LC2r)û(t)− Lv(t), (9a)

φ(t) = Kû(t), (9b)

where the term L ∈ Rr×p is the estimator gain and can be computed by solving
a Riccati equation (Glad & Ljung 2000), such that the error ǫ = ‖û − u‖2 is
minimised. The controller is thus a state-space system with the measurements
v(t) as input and the control signal φ(t) as output. The evolution of the per-
turbations is simulated by marching in time the full DNS, while the controller
runs on-line, simultaneously. Eq. 9a is based on the reduced-order model and
is solved by using a standard Crank-Nicholson scheme.

2.5. Centralised and Decentralised Controllers

A multivariable control approach is necessary since our system has more than
one actuator and sensor. The degree of control complexity in a multivariable
approach depends on the degree of coupling between inputs and outputs. For
example consider the transfer function between the input wj to the output vk.
Then the effect on vk due to a small change in wj may depend on one, a few
or all other inputs wh for h 6= j, if the system is uncoupled, weakly coupled or
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fully coupled, respectively. The degree of coupling depends usually not only on
the actuator/sensor placement but also on the dynamics of the TS wavepackets.
As we shall see, we have a situation of a weakly coupled system, due to the fact
that a TS wavepacket generated from a point source spreads only in a limited
spanwise region.

The most straight-forward approach is the so called centralised controller
where all the inputs and outputs are connected together. The main disad-
vantage is that the number of interconnections – thus the complexity of the
controller – increase significantly as we aim to control perturbations over a
larger span of the domain. In contrast, a fully decentralised controller con-
nects only one sensor to one actuator, and thus requires by definition the same
number of actuators and sensors. This approach disregards any influence of an
input which is not placed directly upstream the output; this is a risky model
assumption, as the influence that may exist in reality will induce an over- or
underestimation of the signals, causing instabilities. A compromise between the
centralised and fully decentralised approach is a semi-decentralised approach
(henceforth only referred to as decentralised), where the system is divided into
a collection of independent sub-systems. For each sub-system a controller is
designed – called a control unit – for a few number of sensors and actuators.
Then, the same controller is replicated along the span to cover a broader re-
gion. As we will see the division into control units provides an efficient means
for control of TS waves, since the disturbance source upstream is only observ-
able at a subset of sensors; thus some of the interconnections which are not
relevant to the dynamics of the system are neglected (see Figure 1).

The number of interconnections in a control system determines the com-
plexity of a controller. Reducing the complexity has a number of advantages
including, easier implementation (less hardware) low-dimensionality of the sys-
tem (faster system). In a system with a centralised controller using n sensors
and n actuators, n2 interconnections are required. However if we split this
system into ∼ n/m control units with m sensors and m actuators each, the
total number of interconnections becomes n/m × m2 = nm. This is a linear
function of n instead of a quadratic function. The net gain of a decentralised
controller is more evident when the number of sensors and actuators increases
in the system e.g. when the objective is to control a larger span of the boundary
layer.

3. Results

In the following sections, we first design and analyse a centralised controller for
the attenuation of small–amplitude TS wavepackets. After a parametric study
of the control penalty, we identify a reference controller, as the centralised con-
troller that for the chosen flow parameters (Re, domain, etc) provides the best
performance. Second, we design a set of decentralised controllers by assem-
bling several control units of different sizes. Their control efficiency in terms
of performance (robustness is left for future studies) will be compared to the
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Case Description Control Order Norm Energy
Penalty Reduction Reduction

k − l r 1−
‖Gk‖

2
2

‖Gn‖2
2

Ēk

N 18/18− 18− 18− 18/1 − − 0% 0.00
A 18/18− 18− 18− 18/1 100 435 45% 0.27
B 18/18− 18− 18− 18/1 10 435 98% 0.80
C 18/18− 18− 18− 18/1 1 435 98% 0.80

Table 2. The performance of a LQG controller designed with
different control penalties. The noise autocovariance on the
estimation sensors and for all cases are assumed constant
α2 = 10−6. The norms are computed in the time interval
t ∈ [2000, 8000]. The description identifier is defined as the fol-
lowing; number of disturbances B1 / the design configuration
of the system consists of d−p−m−k disturbances-estimation
sensors-actuators-outputs/ number of control units.

reference controller. In order to determine the performance of the controller,
we use the 2-norm of a system G. When the inputs of the system are white
noises with variance σ2

w , ‖G‖
2
2 can be computed as:

‖G‖22 =
1

dσ2
w

∑

i

1

T

∫ t1

t0

(C1iu)
2dt (10)

where T = t1 − t0 is the period over which the performance is evaluated. In

Table 2-4, we compare the norm of the uncontrolled system ‖Gn‖
2
2 to the ones

with control ‖Gk‖
2
2 .

3.1. Centralised Controller

In Table 2 the effect of different control penalties (parameter l in Eq. 3) on
the performance of the closed-loop system is investigated for a centralized LQG
controller and the setup in Table 1. The optimal value of the control penalty is
usually not known before applying the controller to the full DNS and involves an
iterative procedure. In general, small values of the control penalty correspond
to a reduction of the perturbation amplitude; however, too low values of control
penalties may result in unfavourable behaviour such as unphysical control signal
(Semeraro et al. 2011). Case C in Table 2 is selected as the baseline reference
controller, for which all decentralized controller will be compared to, while case
N represents the system without implementing the control (uncontrolled case)
and is used to compute the performance of the controller.

First, we characterize the performance of controller C using a number of
different observables. Figure 3 represents the input-output behaviour of the
closed-loop system for case C. In this setup, there are totally 18 inputs B1;
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Figure 3. Noise response of the closed-loop system: Stochas-
tic excitation of the input B1,8 is shown in (a), estimation
signals C2,8 (dashed blue line) and C2,18 (solid green line) in
(b), control signal feeding the actuator B2,8 (dashed blue lines)
and B2,18 (solid green line) in (c) and measurement extracted
by sensor C1,8 for uncontrolled (solid line) and controlled and
dashed (dashed line) system (cases N and C in Table 2) in (d).

each of them are exited by an independent white noise of variance 1
3 . In the

first frame (Figure 3a), the disturbance input w8 is shown. It is a white noise
signal that provides a continuous forcing at B1,8. Figure 3b shows the mea-
surement detected by upstream sensors C2,8 and C2,18. The sensors are located
close to the wall, inside of the boundary layer and can register the evolution
of the disturbance. One clearly observes that certain frequencies are ampli-
fied by the system, whereas others are damped. Figure 3c reports the control
signals related to actuators B2,8 and B2,18. Since the disturbances are uncor-
related, we can observe independent behaviour for different actuators. Finally,
in Figure 3d, the signal extracted from output C1,8 for the uncontrolled and
controlled cases is shown. The root mean square (r.m.s) of the signal is reduced
up to 89%.

The input-output behaviour of the closed-loop system in frequency do-
main is shown in Figure 4. The power spectrum density of the input signal w8

together with the output signal C1,8u in the controlled and uncontrolled config-
uration are plotted (cases N and C). In this configuration the most amplified
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Figure 4. Power spectrum density (PSD) of the input signal
w8 (dashed-dots blue – cases N −C), uncontrolled output sig-
nal C1,8u (solid red – case N) and the controlled output signal
C1,8u (dashed black – case C) are shown.

frequency in the system is 0.00171, where its energy is damped up to one order
of magnitude.

In a three-dimensional configuration, the minimisation of the sensor mea-
surements near the wall, does not guarantee the reduction of the perturbation
energy in the full domain. This has to be evaluated a posteriori. Figure 5 shows
the energy, E(t) = uTu/2, of the perturbation as a function of time. The mean
value of the energy reduction Ēk is defined as

Ēk =

∫ t1
t0
ENdt−

∫ t1
t0
Ekdt

∫ t1
t0
ENdt

, (11)

where [t0, t1] is the time interval in which the statistics are computed. In
Figure 5, the uncontrolled energy EN is shown by a solid red line while the
controlled energy, Ek is shown with a blue line. We observed that the energy
is reduced by approximately 80%.

Finally, in order to gain an insight into where in the physical domain, the
controller has a strong effect, we show in Figure 6 the distribution of the r.m.s
value of the streamwise velocity of disturbances in horizontal plane (streamwise-
spanwise) averaged along wall normal direction. The disturbances B1 are lo-
cated at x = 60 from the beginning of the computational box. We expect the
amplitude of the perturbations to grow as we move toward the end of the do-
main in uncontrolled case N (Figure 6a). Figure 6b shows the resulting r.m.s
value of the perturbations when the controller is active. The suppression of the
perturbations begin from x = 167 where the actuators are located. Figure 6c
reports the percentage of the reduction in r.m.s of the perturbation. Since the
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Figure 5. Energy of the perturbations E as a function of
time t; solid red line corresponds to the energy of uncontrolled
case EN and solid blue line to the controlled case EC . The
statistics are computed for the time interval t ∈ [3000 8000].

objective function of the controller is to attenuate the amplitude of the per-
turbation where the outputs are located, a significant reduction is observed at
that region; the reduction is also homogeneous in spanwise direction.

3.2. Decentralised Controllers

Having shown that centralized controller with a very high complexity may
reduce energy by nearly an order of magnitude, we now investigate how decen-
tralized controllers of lower complexity compare in performance. As already
mentioned, the decentralized controllers are designed in two steps; (i) construct-
ing a control unit using only a few actuators and sensors; (ii) by replicating the
units in the spanwise direction.

3.2.1. Design and Performance of Single Control Units

The simplest control unit is obtained by to connecting one sensor C2 to one
actuator B2. Despite the relative simplicity of this configuration both in terms
of the design and implementation, the results are prone to the stability problems
and poor control performance (Li & Gaster 2006; Semeraro et al. 2011).

Motivated by the experimental work of Li & Gaster (2006), we choose to
investigate two control units:

1. The first one consists of three actuators (the center actuator B2,8 and
two adjacent to the center B2,7 and B2,9), three estimation sensors
(C2,7, C2,8 and C2,9) and 9 objective sensorsC1,(4,5,··· ,12). During the de-
sign process of the control unit, we assume that there exists 5 upstream
disturbances B1,(6,7,··· ,10), but the actual performance of the controller is
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Figure 6. Streamwise root mean square velocity averaged
along wall normal direction for the uncontrolled case N (a)
and controlled case C (b) and the corresponding percentage
of the reduction (c). The statistics are computed for the time
interval t ∈ [3000, 8000]. The white dots indicate the location
of estimation sensors C2 and the actuators B2.

Case Description Control Order Norm Energy
penalty Reduction Reduction

k − l r 1− ‖Gk‖
2
2

‖GN‖2
2

Ēk

D 18/5− 3− 3− 9/1 20 155 4.6% 0.109

E 18/5− 1− 3− 9/1 20 155 2.2% 0.044
F 18/3− 3− 3− 9/1 20 119 3.4% 0.087
G 18/5− 3− 3− 3/1 10 87 8.4% 0.083

Table 3. In each case only one control unit is employed. The
noise autocovariance for all the cases are assumed as α2 = 10−6

and the norms are computed for time t > 2000.
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(a)

18/5-3-3-9/1

(b)

18/5-1-3-9/1

Figure 7. A schematic view of two control units. The con-
troller shown in (a) is designed considering 5 upstream distur-
bances B1,(6,7,··· ,10), 3 estimation sensors C2,(7,8,9), 3 actuators
B2,(7,8,9) and 9 outputs C1,(4,5,··· ,12) as the objective function
(circles). This control unit performs when 18 disturbances are
evolving into the domain (squares). The layout and the num-
ber of sensors and actuators remain the same for the control
unit depicted (b), but only one estimation sensor C2,8 is used.

assessed when 18 disturbance sources are active (see sketch in Figure 7a).
The description identifier of this control unit is (18/5−3−3−9/1), where
the different numbers are respectively; number of disturbances B1 / the
design configuration of the system consists of d - p -m - k (disturbances-
estimation sensors-actuators-outputs) / number of control units.

2. The second one (18/5 − 1 − 3 − 9/1) has only one estimation sensor,
namely the center one (C2,8) as shown in Figure 7b. The remaining
parameters are the same the first control unit.

Figure 8 shows the control signal for the two lateral actuators B2,7 and
B2,9 for both control unit one and two. It is obvious that the two actuators
behave in the same manner for the second controller (case E in Table 3) while
they are acting independently for the multiple sensor control unit (case D in
Table 3). After designing the control units, their performances are monitored
while 18 disturbances B1 evolve and convect downstream (18/5− 3− 3− 9/1).
Figure 8 depicts the control signal for the two lateral actuators B2,7 and B2,9

for both cases. It is obvious that the two actuators behave in the same manner
for the symmetric controller (case E) while they are acting independently for
the asymmetric one (case D).

Figure 9 shows the streamwise velocity cancellation at two different planes
z = −13.5 and y = 0.6 for case D. The maximum rms reduction in this case
is 48%. The same number of sensor and actuators (1 sensor - 3 actuators) are
used in the experimental setup by Li & Gaster (2006). The maximum rms
reduction in this case is similar to the one obtained in the experiment. In the
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Figure 8. Control signal driving the actuators B2,7 (solid
line) and B2,9 (dotted line) are shown in (a) for a three-
estimation sensors-based control unit (case D in Table 3) and
in (b) for single-estimation sensors-control unit (case E in Ta-
ble 3).

experimental setup the data is extracted at a lower plane y = 0.36 but the
maximum reduction in case D occurs at y ≈ 0.6. The difference between the
two cases may arise from the fact that the effect of the actuators are different
in both cases. Moreover, in this case we use 18 sources of disturbance with a
periodic boundary condition which numerically analogues to using an infinite
number of actuators while in the experimental setup, they only used 15 sources
of disturbance. Figure 10 shows the streamwise velocity cancellation averaged
along wall normal direction. The white dots indicate the spatial configuration
of the sensors and actuators for the two cases D and E. The Figs. 10a and
10b confirm that a level of cancellation up to 40% is achieved in the central
area downstream of the actuators while it faded away as we move downstream.
Controller based on only one upstream sensor can act on a limited region while
the controller based on three sensors is able to influence a broader domain.
The reason is that the latter controller can identify the discrepancy between
the disturbances coming from lateral sides, i.e. the observability of the system
is significantly larger. This controller can attenuate the energy of the system
up to 10.9% (see Table 3 case D), while the single-sensor controller can only
suppress the energy up to 4.4%. Furthermore, in terms of norms of the system,
the corresponding reduction between the two controllers are 4.6% and 2.2%.
In the following section we use the control unit, case F .

3.2.2. Effect of Crosstalk

As a localised disturbance propagates downstream, it will – after a short tran-
sient – develop into a wavepacket that grows in size and spreads along the
spanwise direction. Each estimation sensor C2,j does not only receive a signal
from the disturbance source directly upstream of it (wj), but also the lateral
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Figure 9. Percentage reduction in streamwise velocity can-
cellation (case E) at a) plane z = −13.5 and (b) plane y = 0.6.
White lines at y = 0.6 and z = −13.5 resemble the cross sec-
tion of the two planes and solid black line at y = 0.36 is used
by (Li & Gaster 2006) to extract the results.
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Figure 10. Percentage reduction in streamwise velocity can-
cellation averaged along wall normal direction for case D (a)
and E (b) is shown. The white dots indicate the location of
sensors C1, C2 and actuators B2.

sources (wh, for h 6= j) contribute to the total measured signal. The addi-
tional perturbations, originated from the lateral sources and detected by the
estimation sensors C2, are referred to as crosstalk (see Figure 12).

Consider now the control unit, Case F , from the previous section (3 es-
timation sensors and 3 actuators). The energy of the signals received by 3
estimation sensors from different numbers of disturbance sources B1 is shown
in Figure 11a. As one can observe, around 70% of the total energy of the signals
originate from 3 disturbance sources directly upstream of the estimation sen-
sors. In order to capture 90% of the total energy of the signals, 5 disturbance
sources are required in which, the additional 20% of the energy belongs to the
two lateral disturbance sources.
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Figure 11. Energy captured by 3 estimation sensors C2,(7,8,9)

originates from impulse response of different number of dist-
urbances (a) and energy harvested by using different num-
ber of outputs C1 from the impulse response of 3 actuator
B2,(7,8,9)(b). The data is normalised by the maximum value
when j = 18. The number of disturbances or outputs (el-
ements) denotes as j. j = 1 corresponds to an element lo-
cated at z = −13.5 (i=7). j = 3 corresponds to 3 elements
i ∈ (6, 7, 8). The numbering convention continues the same
with the central element located at i = 7; for instance, j = 5
corresponds to 5 elements i ∈ (5, 6, 7, 8, 9) and so on.

Crosstalk

C
2
B
2

unobservable

unobservable

Figure 12. A schematic layout of the control unit. Two kind
of perturbations, observed by 3 sensors C2,(7,8,9) are depicted;
they include the perturbation coming from sources directly in
front of the sensors and the lateral perturbations coming from
sides which is referred to as crosstalk.

To investigate the effect of the crosstalk in the performance of the control
unit, we compare two cases. The only difference between them is the number
of disturbance sources B1 considered in the design process. Just as before we
consider 5 disturbance sources B1 in case with crosstalk (case D) while we
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reduce the effect of crosstalk and only design the controller for 3 disturbance
sources B1 ( 18/3 − 3 − 3 − 9/1 or case F in Table 3). Table 3 shows the
performance of the two systems; the configuration that takes into account 90%
of the total energy can attenuate the energy of the disturbances up to 10.9%
while the configuration taking into account only 70% of the total energy can
reduce the energy up to 8.7%. This indicates the number of disturbance sources
in the control design process depends on the nature of the disturbance (e.g. how
fast it spreads in the spanwise direction). Capturing only part of the spreading
of a disturbance has a sizable effect on the control performance.

Next, we investigate the performance of the controllers when the control
units are replicated along the spanwise direction. First, we consider 6 control
units based on the configurations with high level crosstalk and with reduced-
level of crosstalk. Table 4 reports the reduction in the energy of the system
using these controllers. The performance of 6 control units considering the
crosstalk effect (case H) is only 11% less than the centralised controller (case C
in Table 2) where all the interconnections between the sensors and the actuators
are taken into account. On the other hand, if we only capture part of the
crosstalk effect (case J) we loose an additional 9% of performance.

3.2.3. Capturing the spread of the disturbances

Since the wavepackets spread along the spanwise direction while propagating
downstream, we need to distribute a minimum number of objective sensors
C1,j along the span to correctly capture the energy of the disturbances. On
the other hand, we have to be able to control the disturbances detected by
outputs C1 using the actuators B2. In fact, the further away the outputs
are from the centreline of an actuator, the less we can control the structures
detected by that outputs. More specifically, we consider again control units
which have 3 actuators (B2,(7,8,9)). Figure 11b reports the energy of the signals
captured by different number of outputs C1, which originate from the impulse
responses of the 3 actuators. We can observe that over 90% of the total energy
that originated from an impulse in the 3 actuators is captured by 9 outputs.
According to this observation, we compare two controllers, whose differentiate
only in the number of employed outputs in the control design. In the first
configuration (case D in Table 3) we consider 9 outputs (C1,i, i = 4, · · · , 12)
while in the second configuration (case G in Table 3) we implement 3 outputs
only (C1,i, i = 7, 8, 9). As one can observe in Table 3, the reduction in the
energy of the system Ēk in the case with 9 outputs is 10.9% while in the case
with 3 outputs is 8.3%.

It is important to note that in both configurations, we take into account
the crosstalk effect. If we compare the performance of the controller with 3
outputs (case G) to the controller that only partially accounts for the crosstalk
from the previous study in sec 3.2.2 (case F ), we can observe that the energy
reduction in the second case is larger, 8.3% vs 8.7%. Finally, we compare on
the performance of the 6 control units with 9 and 3 outputs in Table 4 (cases H
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Case Description Norm Energy
Reduction Reduction

k − 1−
‖Gk‖

2
2

‖Gn‖2
2

Ēk

H 18/5− 3− 3− 9/6 88.0% 0.69

J 18/3− 3− 3− 9/6 85.5% 0.60
K 18/5− 3− 3− 3/6 64.7% 0.48

Table 4. In each case 6 control unit are used. The control
units distributed equidistantly along the span and does not
have any overlap. The noise autocovariance for all the cases are
assumed as α2 = 10−6. In addition, the norms are computed
for time t > 2000.

and K). In the former, the energy is attenuated up to 69% while in the latter,
it is reduced up to 48%.

4. Conclusion

We have investigated and compared two different control strategies, namely a
centralised and a decentralised. In the former approach where all the sensors
and actuators are connected together, the complexity of the system (due to
the number of interconnections) may be to high for implementation in exper-
iments, in particular, as we aim to control over a wider span of the domain.
We have presented an alternative decentralised strategy, where several small
control units consisting of 3 pairs of actuators-sensors are assembled to cover
the full spanwise length of the flat plate. The choice 3 actuators-sensors as
well as the number of source disturbances and objective sensors included in the
design of a single control unit needs to be chosen with a physical insight on the
spatial and temporal scales of the perturbation inside the boundary layer. We
have focused on TS wavepackets, streaky structures observed under different
conditions inside the boundary layer, may need control units of different order.

As explained in Sec.3.2.3 our results reveal that the best performance is
obtained for a control unit which (i) has “sufficient”number of output measure-
ments and (ii) is designed to account for the perturbations which are coming
from the lateral sides (crosstalk) of the estimation sensors. We may also con-
clude that the influence of crosstalk is not as essential as the spreading effect.

Acknowledgements

The authors wish to thank Ardeshir Hanifi and Onofrio Semeraro for fruitful
discussions. Computer time was provided by the Center for Parallel Com-
puters (PDC) at the Royal Institute of Technology (KTH) and the National
Supercomputer Center (NSC) at Linköping University in Sweden.
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