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Abstract

A well-resolved large-eddy simulation (LES) of a spatially developing turbulent
boundary layer under zero pressure gradient up to comparably high Reynolds num-
bers (Reθ = 4300) is performed. The laminar inflow is located at Reδ∗ = 450
(Reθ ≈ 180), a position where natural transition to turbulence can be expected.
The simulation is validated and compared extensively to both numerical data sets,
i.e. a recent spatial direct numerical simulation (DNS) up to Reθ = 2500 (Schlatter
et al., 2009) and available experimental measurements, e.g. the ones obtained by
Österlund (1999). The goal is to provide the research community with reliable nu-
merical data for high Reynolds-number wall-bounded turbulence, which can in turn
be employed for further model development and validation, but also to contribute
to the characterisation and understanding of various aspects of wall turbulence.

The results obtained via LES show that good agreement with DNS data at lower
Reynolds numbers and experimental data can be obtained for both mean and fluc-
tuating quantities. In addition, turbulence spectra characterising large-scale organi-
sation in the flow have been computed and compared to literature results with good
agreement. In particular, the near-wall streaks scaling in inner units and the outer
layer large-scale structures can clearly be identified in both spanwise and temporal
spectra.
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1 Introduction

Turbulent flow around bodies with solid walls is a very important research
topic today for both technical and industrial as well as environmental appli-
cations. Whereas these flows are usually occuring in complex geometries with
curved surfaces leading to pressure gradients or even bluff shapes promoting
separation, the two-dimensional, spatially developing, zero-pressure-gradient
turbulent boundary layer on a flat plate has emerged as an important canoni-
cal flow case for theoretical, numerical as well as experimental studies. Of large
interest is for example the aspect of universality of the wall-normal profile of
the streamwise velocity component in the limit of high Reynolds numbers. Go-
ing back to the seminal work conducted by Theodore von Kármán in the first
half of the 20th century, the so-called “law of the wall” composed of the linear
region close to the wall, followed by a buffer region and logarithmic overlap re-
gion up to about 10-15% of the boundary-layer thickness, has been the centre
of intense discussions, see e.g. the corresponding section in the book by Pope
(2000). In recent years, several careful experiments have been conducted for
this canonical flow. For instance, Österlund et al. (2000) performed extensive
measurements of mean and fluctuating quantities in the MTL wind tunnel at
KTH Stockholm using hot-wire and hot-film anemometry for Reynolds num-
bers Reθ based on the momentum thickness θ and the freestream velocity U∞

ranging from 2530 to 27300; this data set includes five measurement positions
below Reθ = 6000, which are becoming accessible to numerical simulations
nowadays. Partly based on these experimental data, Monkewitz et al. (2007)
have recently presented various asymptotic results for high Reynolds numbers,
including the mean velocity profile.

Careful analysis (Örlü, 2009) of a large amount of literature data for (ex-
perimentally) low Reynolds number turbulent boundary-layer measurements
yields that some of these data do not necessarily adhere to accurate zero-
pressure-gradient equilibrium conditions and independent determination of
the skin friction. Therefore, new experimental measurements in the MTL
windtunnel at KTH Stockholm were performed by Örlü (2009) for a generic,
two-dimensional turbulent boundary layer with special focus on equilibrium
conditions, for Reθ = 2331 to 8792. Sample results have been included in
Schlatter et al. (2009). This data will certainly be helpful in the future for
detailed comparisons with simulation data obtained at high Re.

To get additional insight into the mean-flow properties of turbulent wall-
bounded flows, there is increased interest in understanding the dynamics of
such flows, both at large and small scales. This is highlighted by the recent
article by Marusic (2009). Furthermore, initial studies by Kim and Adrian
(1999) who identified very large-scale structures in pipe flows, motivated the
subsequent analysis of large-scale motions in channel, pipe and boundary-layer

2



Reθ = 300 Reθ = 1433 Reθ = 2560 Reθ = 3660 Reθ = 4307

Fig. 1. Instantaneous side view with grey-scale contours of the streamwise veloc-
ity component. The domain shown corresponds to the computational box for the
present LES, reaching up to approximately Reθ = 4350. Note that only half of the
domain extent in the wall-normal direction is shown, and the fringe region connect-
ing outflow and inflow is not included. The representation of the box is enlarged by
a factor of four in the wall-normal direction.

flows by many authors (see e.g. Hutchins and Marusic (2007a); Guala et al.
(2006); del Álamo and Jiménez (2003)).

However, as opposed to turbulent channel and pipe flow, relatively few nu-
merical results of direct or large-eddy simulations (DNS/LES) pertaining to
canonical turbulent boundary layers have been published for medium or high
Reynolds numbers. In recent years, the advancement of computer technol-
ogy has made it possible to perform simulations based on O(109) grid points;
in channel geometry this allowed for reaching Reynolds number higher than
Reτ = 2000 (based on friction velocity Uτ and channel half width h) by means
of DNS (Hoyas and Jiménez, 2006). The spatially developing boundary-layer
geometry, however, proves more difficult for accurate simulations. In partic-
ular, the long streamwise extent of the domain necessary for capturing the
downstream growth of the boundary layer, and the resulting longer averaging
times due to the loss of one homogeneous direction require a large compu-
tational effort even for moderate Re. In addition, the specification of suit-
able inflow and outflow conditions, and equally important, proper freestream
boundary conditions are essential for a successful simulation setup.

DNS relies on resolving all relevant temporal and spatial scales on the un-
derlying numerical grid. In LES, however, the resolution requirements can be
relaxed to some extent (Sagaut, 2005). The large, energy-carrying scales of
the flow are discretised on the grid and accurately simulated in both space
and time, whereas the influence of the smaller scales, which are presumably
more homogeneous, is modelled. For this purpose, a so-called subgrid-scale
(SGS) model is then added to the equations of motion to compensate for the
truncated resolution. Depending on flow case, accuracy requirements and em-
ployed SGS model, typically a reduction of the number of grid points by a
factor of O(10) can be obtained for wall-resolved simulations compared to a
DNS of the same case.

For boundary-layer flows, the DNS by Spalart (1988) using an innovative
spatio-temporal approach provided valuable data at Reθ = 300, 670, 1410;
this data set has been extensively used as reference for model development,
and validation of experimental techniques for the last decades. As a next step,
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a simulation taking into account the true growth of the boundary layer in the
downstream direction has been performed by Komminaho and Skote (2002)
up to Reθ = 700. This technique to include proper inflow and outflow condi-
tions in a spatially developing setting is usually termed “spatial simulation” as
opposed to flow cases with parallel mean flows such as channel or pipe flows.
Very recently, Wu and Moin (2009) performed a spatial DNS of a boundary
layer undergoing transition due to a periodically passing box of turbulence; the
turbulent state just after transition was located Reθ = 900 close to the outlet.
A similar Reθ was also simulated spatially by Li et al. (2009); this simulation
also includes the advection of passive scalars with various Prandtl numbers.
Focusing on DNS of higher Reynolds numbers, Khujadze and Oberlack (2004)
were using a spectral method with laminar inflow similar to the present simu-
lation setup, however in a much shorter domain. Nevertheless, Reθ = 2240 was
reached in these simulations. An even higher Reynolds number of Reθ = 2900
was reached by Ferrante and Elghobashi (2005). Their spatial simulation was
not started from laminar flow, but rather from turbulent inflow conditions
located at Reθ = 2340. A long domain stretching from about Reθ = 1000 to
2000 was considered in the recent simulations briefly summarised in Simens
et al. (2009). Also in this case, laminar-turbulent transition is not part of the
setup, and the flow is started directly from turbulent inflow conditions. Nev-
ertheless, a comparably long adjustment and settling region at the beginning
of the domain was necessary until equilibrium conditions could be assured.

A DNS using a spectral method similar to the one used by Komminaho and
Skote (2002), but in a much larger computational box was recently presented
by Schlatter et al. (2009), reaching Reθ = 2500 in a fully spatial setup with
the (laminar) inlet located at Reθ ≈ 200. A comparison with new experi-
ments performed at the same Reynolds number revealed excellent agreement
between DNS and measurements. This dataset will be used in the present
work extensively to validate the chosen simulation approach.

For turbulent boundary layers, the Reynolds number Reθ ≈ 4300 has to be
considered at present high from a simulation point of view. Due to the difficulty
of performing simulations and experiments at Reynolds numbers Reθ on the
order of a few thousand, there is a comparably large spread of the existing
data in the literature for integral, mean and fluctuating turbulent quantities,
see e.g. Honkan and Andreopoulos (1997). There is thus a need for accurate
and reliable simulation data of spatially developing turbulent boundary layers
with Reθ to be compared to high-quality experimental results. To this end, the
inflow in the numerical simulation should be positioned far enough upstream,
i.e. comparable to where natural transition occurs, to ensure that the flow
reaches a fully developed, undisturbed equilibrium state further downstream.
However, as pointed out by Österlund et al. (2000), a clear overlap region can
only be detected above Reθ ≈ 6000, which might be just about to become
accessible for adequately resolved transient numerical simulations.
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The aim of the present study is to perform and validate well-resolved spatial
large-eddy simulations (LES) in an effort to obtain accurate and reliable data
at higher Reynolds numbers exceeding Reθ = 2000. A snapshot of such a
simulation is presented in Fig. 1, with several relevant downstream positions
indicated. The inflow is positioned at a low streamwise Reynolds number,
Reδ∗ = 450 based on the displacement thickness δ∗ at the inlet. An exhaustive
amount of statistics, e.g. one and two-point statistics, Reynolds-stress budgets
and time series pertaining to turbulent quantities, are collected and evaluated.
In the present contribution, a selection of these statistics is presented, and
discussed in relation to previous numerical and experimental data.

The paper is organised as follows. In Section 2 the numerical method and the
simulation parameters are introduced. Then, Section 3 discusses statistical
quantities such as mean profiles, fluctuations and budgets. Spectral informa-
tion about turbulent structures are introduced in Section 4. Finally, conclu-
sions are given in Section 5.

2 Numerical Methodology

The simulations are performed using a fully spectral method to solve the three-
dimensional, time-dependent, incompressible Navier-Stokes equations (Cheva-
lier et al., 2007). In the wall-parallel directions, Fourier series with dealias-
ing are used, whereas the wall-normal direction is discretised with Cheby-
shev polynomials. The discretisation is based on a velocity-vorticity formu-
lation to exactly enfore continuity. Time is advanced with a standard mixed
Crank-Nicolson/Runge-Kutta scheme. The periodic boundary conditions in
the streamwise direction are combined with a spatially developing boundary
layer by adding a “fringe region” at the end of the domain (Bertolotti et al.,
1992; Chevalier et al., 2007). In this region, the outflowing fluid is forced via
a volume force to the laminar inflowing Blasius boundary-layer profile, lo-
cated at Reδ∗

0
= 450 based on the displacement thickness δ∗0 at the inlet. A

low-amplitude trip force acting in the wall-normal direction is used to cause
rapid laminar-turbulent transition close to the inlet (see Fig. 1). Compared to
the reference DNS (Schlatter et al., 2009) the forcing amplitude is marginally
reduced which leads to slightly later transition. The boundary conditions in
the freestream are of Neumann type, i.e. the wall-normal variation of the ve-
locity components is forced to zero at the upper boundary. This requirement
together with incompressibility leads to a constant streamwise velocity at the
upper boundary, whereas the normal velocity component might be non-zero to
account for the boundary-layer growth. The spectral method provides excellent
accuracy and dispersion properties as compared to low-order discretisations.

The computational domain is xL × yL × zL = 6000δ∗0 × 200δ∗0 × 240δ∗0 with
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4096×385×384 spectral collocation points in the streamwise, wall-normal and
spanwise directions, respectively. In physical space, the number of grid points
in the streamwise and spanwise direction are increased by a factor 3/2 due to
the dealiasing as mentioned above. The height of the computational domain is
chosen to be at least three times the largest 99%-boundary-layer thickness δ99;
in the spanwise direction an even larger domain has been chosen to ensure the
correct development of large-scale structures scaling in outer units. The grid
points are non-equidistantly distributed in the wall-normal direction, with at
least 10 collocation points within the region y+ < 10. The maximum grid
spacing in viscous units is then ∆x+ ×∆y+

max ×∆z+ = 25.3×14.2×10.8. The
statistics are sampled on-the-fly over ∆t+ ≈ 50, 000 viscous time units, or 36
in terms of δ99/Uτ at Reθ = 4300. Owing to the high computational cost of
the simulations, the numerical code is fully parallelised running on O(1000)
processors (Li et al., 2008). In total, the present simulation required 2 · 106

core hours on a modern PC cluster with high-speed interconnect.

Since the chosen resolution is not fully adequate for a direct numerical simu-
lation, the unresolved quantities have to be treated via a subgrid-scale model.
In the present case, the ADM-RT model (Schlatter et al., 2004) has been em-
ployed, supplementing the governing equations with a dissipative term. The
equations of motion for the resolved velocity ui and pressure p thus read

∂ui

∂t
+ uj

∂ui

∂xj

= −
∂p

∂xi

+
1

Re

∂2ui

∂xj∂xj

− χHN ∗ ui , (1)

together with the incompressibility contraint ∂ui/∂xi = 0. The relaxation
term χHN ∗ ui is based on a high-order three-dimensional filter operation
HN := (I − G)N+1 convoluted with ui. G is a lower-order, low-pass filter
defined in Stolz et al. (2001). The model coefficient χ, having units of an
inverse time, was chosen to be a constant throughout the whole flow domain,
i.e. χ = 0.2U∞/δ∗0; a low sensitivity of the results to the exact value of this
coefficient has already been reported by Schlatter et al. (2006) and Schlatter
(2005). In addition, the order of the high-pass filter is determined by the
coefficient N , which is chosen as N = 5 (Schlatter, 2005). This choice ensures
that the relaxation is confined to the smallest resolved scales in the flow, and
does not directly influence the larger scales.

The effect of the present SGS model is to cause fluctuations close to the
numerical cutoff to be damped. This additional dissipation regularises the
flow solution, and allows to perform accurate simulations of both transitional
and turbulent flows at reduced resolution, in particular for simulation methods
based on spectral discretisation, see e.g. Schlatter et al. (2006). Note that the
ADM-RT model converges by construction towards a DNS with increasing
resolution. In particular we would like to stress that the near-wall region is
fully resolved in both time and space (i.e. wall-resolved LES), as opposed to
more applied LES, e.g. based on wall-models (Piomelli and Balaras, 2002),
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hybrid approaches such as detached-eddy simulation (DES, Spalart (2009)),
or specific near-wall SGS models (Chung and Pullin, 2009).

For the present simulation case the grid resolution has been chosen to be very
fine for an LES; traditional LES resolution for wall-bounded flows could be as
much as two to three times lower in each direction. As e.g. shown in Schlatter
et al. (2004) using the ADM-RT model accurate channel-flow statistics could
be obtained even at such resolutions. It is however not the aim of the present
work to validate the LES modelling per se, or to reduce the resolution as much
as possible. Rather we focus on obtaining accurate simulation data at high
Reynolds numbers for turbulent boundary layers, which can then be further
analysed and used as reference data.

3 Averaged Results

As mentioned above, the laminar inflow for the present simulation is located
at Reδ∗ = 450, roughly corresponding to Reθ = 180, which is low enough to
ensure a physical flow development further downstream, see also Fig. 1. Once
a statistically stationary state has been reached, statististics are averaged over
the spanwise direction z and time t. Thus the Reynolds decomposition

u = 〈u〉 + u′ = U + u′ (2)

is used, the brackets 〈·〉 indicating the average in z and t. Note that throughout
this paper only resolved quantities are considered; subgrid-scale contributions
are not added onto e.g. the turbulent stresses. Based on the mean velocity
profile U(x, y) the shear stress at the wall is obtained as τw(x) = µ(dU/dy)|y=0.
Following the classical theory of turbulent boundary layers (see e.g. Pope,
2000), the friction velocity Uτ provides the relevant velocity scale throughout
the boundary layer, whereas the viscous length scale ℓ⋆ is the characteristic
length at least close to the wall. The scaled quantities in wall scaling are thus
written as, e.g., U+ = U/Uτ and y+ = y/ℓ⋆.

The various Reynolds numbers in the present spatially evolving boundary-
layer flow are shown in Figure 2, in particular Reθ ≡ U∞θ/ν based on the
free-stream velocity U∞ and the momentum thickness

θ ≡
∫

∞

0

U

U∞

(

1 −
U

U∞

)

dy , (3)

the Reynolds number Re∗δ ≡ U∞δ∗/ν based on the displacement thickness

δ∗ ≡
∫

∞

0

(

1 −
U

U∞

)

dy , (4)
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Fig. 2. Reynolds numbers for the present spatially evolving flow:
Reτ ≡ Uτδ99/ν based on the friction velocity Uτ and 99%-boundary-layer

thickness δ99, Reδ∗ ≡ U∞δ∗/ν based on free-stream velocity U∞ and displace-
ment thickness δ∗ as a function of Reθ ≡ U∞θ/ν based on momentum thickness
θ.

and Reτ ≡ Uτδ99/ν based on the friction velocity Uτ and the 99%-boundary-
layer thickness δ99. The computational inflow is located at Reδ∗ = 450, cor-
responding to a (laminar) Reθ = 180 and Reτ = 45. The usable region (see
discussion below) extends to Reθ = 4350, Reτ = 1370 or Reδ∗ = 6000.

First, integral quantities of the boundary layer such as the friction coefficient
are presented. Then, the mean velocity profile and profiles and budgets of tur-
bulent fluctuating quantities are discussed. Section 4 is devoted to an analysis
of the turbulent structures.

The skin-friction coefficient cf is shown in Fig. 3. The transitional region at the
beginning of the domain is clearly visible. According to the computed value
of cf the LES is seen to reach a fully-developed state around Reθ ≈ 700. The
comparison of the LES data with two data sets obtained from DNS (Schlat-
ter et al., 2009; Li et al., 2009) is very good. Note that both DNS data were
obtained based on a similar numerical setup as the present LES; however in
the LES the trip forcing amplitude was slightly reduced in order to have a
smoother laminar-turbulent transition close to the inlet. This is clearly visible
in Fig. 3 and subsequent figures as a tendency of the LES to approach the fully
developed turbulent state later than the reference DNS. Somewhat surpris-
ingly, the comparably simple empirical correlation cf = 0.024Re

(−1/4)
θ (Kays

and Crawford, 1993) provides an accurate fit to the present LES data for the
range of Reynolds numbers considered; this has already been observed for the
DNS data. On the other hand, the correlation cf = 2[(1/0.38) log Reθ +4.08]−2

based on the logarithmic region (Österlund, 1999) is marginally underpredict-
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Fig. 3. Skin-friction coefficient cf as a function of Reθ. present LES, DNS

(Schlatter et al., 2009), cf = 0.024Re
(−1/4)
θ (Kays and Crawford, 1993),

cf = 2[(1/0.38) log Reθ + 4.08]−2 (Österlund, 1999). • DNS by Spalart (1988),
� experimental results by Österlund (1999), DNS by Li et al. (2009).

ing the friction for lower Re. The agreement, however, with the experimental
measurement points (Österlund, 1999) in the range Reθ = 2500 to 4300 is
very good. Recall that experimentally the skin friction is obtained using an
oil-film technique which is independent of the hot-wire velocity measurements.
For comparison, the data points of the DNS by Spalart (1988) are also shown
in Fig. 3. In this case, the skin friction is overpredicted by approximately
5% at his highest Reθ = 1410. This might be a residual effect of the spatio-
temporal approach employed for the simulation, which does not extend to
higher Reynolds numbers.

The shape factor H12 = δ∗/θ, defined as the ratio of displacement δ∗ to mo-
mentum thickness θ, is shown in Fig. 4; H12 is often used as an easy way of
characterising the state of development of a boundary layer. Moreover, it has
been shown that H12 is a sensitive indicator of the quality of the boundary-
layer data (Chauhan et al., 2008). In Fig. 4 it can again be seen that the LES
is undergoing transition later than the DNS as mentioned above, and conse-
quently approaches a fully developed state later; it is interesting to note that
this state can be estimated to be reached at about Reθ ≈ 900. This number
appears to be slightly higher than what has been estimated for cf ; this fur-
ther indicates that the region close to the wall is reaching a fully turbulent
state earlier than the region further away from the wall. Therefore, for the
present simulation the boundary layer can be assumed to be in equilibrium
for an extended range of Reynolds numbers of about Reθ = 900−4300, which
corresponds to Reτ = 350−1350 with Reτ being based on the boundary-layer
thickness δ99.
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Fig. 4. Shape factor H12 as a function of Reθ. present LES, DNS (Schlatter
et al., 2009), correlation by Monkewitz et al. (2007), • DNS by Spalart (1988),
� experimental results by Österlund (1999), DNS by Li et al. (2009).

Profiles of the mean velocity scaled in viscous units U+(y+) obtained from
the present LES are shown in Figure 5. For comparison, both DNS data
from Spalart (1988) and Schlatter et al. (2009) and experimental results by
Österlund (1999) are shown as well. The similarity at the higher Reynolds
numbers, i.e. Reθ = 2500− 4300, is very satisfactory. In particular, the scaled
U+
∞

in the freestream is accurately predicted by the simulation, and the onset
and general shape of the wake region matches the one from the experiment.
However, there is a discrepancy between the present simulation data and that
of Spalart highest Reynolds number, Reθ = 1410. This difference might again
be attributed to the spatio-temporal simulation approach in the latter. In ad-
dition, at Reθ = 2500 there is virtually no difference between the DNS and
the present LES, which indicates that the mean flow is well captured even by
the lower resolution LES. In the near-wall region, all data collapse nicely on
the linear relation U+ = y+ as expected according to the expansions in the
viscous sublayer. In the figure, the von Kármán coefficient κ used to indicate
the logarithmic region (1/κ) log y+ + B is chosen as κ = 0.41 which seems to
be a good compromise for the present Reθ.

The log-law indicator function Ξ = y+(dU+/dy+) is presented in Fig. 6. The
general shape of the composite profile proposed by Monkewitz et al. (2007) is
followed up to y/δ99 ≈ O(0.1), the position where the wake region is expected
to begin (indicated by the symbol • in the Figure). In the overlap region Ξ
essentially measures the (inverse) von Kármán constant κ. From the present
data, the minimum of Ξ is reached at y+ ≈ 70 with a value of 1/Ξ ≈ 0.428 in
good agreement with the prediction by Monkewitz et al. (2007), but also DNS
results in both channel and boundary layers. The higher the Reynolds number,
the longer the present LES data follows the composite profile, including the
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Fig. 5. Mean velocity profile U+ in viscous units for present LES at
Reθ = 685, 1433, 2560, 3660, 4307, • measurements by Österlund (1999) at
Reθ = 2532, 3651, 4312. DNS by Spalart (1988) at Reθ = 670, 1410, and DNS
by Schlatter et al. (2009) at Reθ = 2511 (practically invisible). The profiles are
shifted by U+ = 3 along the ordinate for increasing Reθ. The linear and logarithmic
regions are indicated by a thin line, using 1/κ log y++B with κ = 0.41 and B = 5.2.

decreasing κ (increasing Ξ) after the minimum at y+ ≈ 70. However, even
Reθ = 4300 is too low to reach an asymptotical logarithmic region (Österlund
et al., 2000) with the proposed κ ≈ 0.38. Ξ in the wake region shows a clear
trend towards higher maxima for increasing Re. In addition, it is interesting
to note that in the inner region (y+ ≈ 10) the channel data by Hoyas and
Jiménez (2006) features a slightly larger Ξ than the boundary-layer data. This
behaviour is similar to a boundary layer under (weak) favourable pressure
gradient (Schlatter and Brandt, 2008), which demonstrates the sensitivity of
the near-wall region to possible pressure gradients (Nickels, 2004).

The velocity fluctuations, e.g. urms =
√

〈u′u′〉, and the Reynolds shear stress

〈u′v′〉 are depicted in Figure 7 in wall scaling. The agreement between the LES
and DNS at Reθ = 2500 is good; slight differences can be observed for the high
fluctuation regions close to the wall, in which the LES tends to underpredict
the maxima by 1-2 percent. A similar issue related to the spanwise resolution
is further discussed in connection with Fig. 17 further down.

As mentioned in many studies, there is only incomplete collapse in inner scal-
ing (see e.g. Hoyas and Jiménez, 2006), most dominantly for the streamwise
and spanwise fluctuations. In particular, the maximum wall-normal value of
urms is constantly increasing with Re as shown in e.g. Metzger and Klewicki
(2001); Marusic and Kunkel (2003), as well as in channel-flow simulation re-
sults. On the other hand, the total shear stress, −〈u′v′〉 + (1/Re)d〈U〉/dy,
scales very well in outer length units for the considered range of Reθ, and is
therefore not shown.

The fluctuation of the wall-normal gradient of the velocity, i.e. the fluctuating
streamwise wall-shear stress τw is considered in Fig. 8. As shown by Alfredsson
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respectively. The symbol • corresponds to 0.1δ99 for each respective Re.
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Fig. 7. Left: (Resolved) Reynolds stresses for the present LES at
Reθ = 685, 1433, 2560, Spalart (1988) at Reθ = 670, 1410 and Schlatter
et al. (2009). Right: Reynolds stresses for Reθ = 685, 1433, 2560, 3660, 4307.

et al. (1988) in good agreement with data obtained by various experimental
techniques and simulation approaches, τ+

rms ≈ 0.4 in wall-bounded flow. For
the present LES, a Re-dependence is clearly found. A new fit

τw,rms = 0.0155 log Reτ + 0.317 (5)

describes the present data. Here, Reτ is based on the friction velocity Uτ and
the boundary-layer thickness δ99 or the channel half-width h. The correlation
provides a reasonable description for Spalart’s DNS and various channel-flow
simulations (see also e.g. Abe et al., 2004). However, the data point obtained
from the DNS by Wu and Moin (2009) clearly shows a higher value. This
suggests that these data are in fact not fully-developed turbulence, but rather
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Fig. 8. Fluctuations of the wall shear stress τrms for present LES, DNS
Schlatter et al. (2009), ⋄ DNS by Spalart (1988), • DNS by Wu and Moin (2009),
� DNS of channel flow (Moser et al., 1999; del Álamo et al., 2004). Fit to
present data: 0.0155 log Reτ + 0.317.

transitional in nature; also for the present boundary-layer data, a higher τ+
rms

is obtained shortly after transition.

Based on the simulation results, the individual terms in the von Kármán
integral equation, here written for a zero-pressure-gradient boundary layer,

u2
τ = U2

∞

dθ

dx
+

d

dx

∫

∞

0

(

〈u′2〉 − 〈v′2〉
)

dy , (6)

relating the local skin friction to the growth of the momentum thickness θ,
may be considered, see Fig. 9. It turns out that the term U2

∞
dθ/dx is O(50)

times larger than the second relevant term, the integrated normal-stress dif-
ference. On the other hand, the expressions on both sides of the equation sign
balance each other to within less than 0.5%. In addition, Fig. 9 also provides
a practical measure for the useful region of the simulation, i.e. the region in
which an equilibrium turbulent boundary layer adhering to the boundary-
layer equations is recovered. For the present case, Reθ = 900 − 4100 can be
estimated, with an increasing departure for higher Reθ (see also comments to
Figs. 3 and 4 above).

Particularly in the modelling community, there is considerable interest in data
pertaining to the behaviour of the pressure and its fluctuations throughout
the boundary layer. Experimentally, it is very difficult to accurately measure
the pressure (Tsuji et al., 2007). In Fig. 10 the wall-pressure fluctuations
are shown, and Fig. 11 provides wall-normal profiles of prms with different
scalings. Although the pressure in an incompressible LES is strictly not a well-
defined quantity as it might contain subgrid-scale contributions, the agreement

13



Reθ

c f

0 1000 2000 3000 4000

0

1

2

3

4
x 10

−3

Fig. 9. Skin friction coefficient cf compared to the individual terms of the von
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Fig. 10. Pressure fluctuations at the wall p+
w,rms as a function of the fric-

tion Reynolds number Reτ , present LES, DNS Schlatter et al. (2009),
(p+

w,rms)
2 = 6.5 + 1.86 log(Reτ/333) (Farabee and Casarella, 1991). � DNS of

channel flow (Moser et al., 1999; del Álamo et al., 2004; Hoyas and Jiménez, 2006).

between DNS and LES at Reθ = 2500 is statisfactory. It can further be seen
that a mixed scaling pw,rms/(Uτ · U∞) is most appropriate close to the wall,
reaching a value of approximately pw,rms ≈ 0.11UτU∞ at the wall y = 0. In
pure inner scaling, a collapse of the data at various Reθ > 1000 can be seen
for y+ > 200. At the wall, prms is approximately 10% higher than the pressure
fluctuations in channel flow at a corresponding Reτ .

In addition to the various mean and fluctuating quantities, of which a selection
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Fig. 11. Wall-normal profiles of the pressure fluctuations for the present LES at
Reθ = 685, 1433, 2560, 3660, 4307. DNS Schlatter et al. (2009) at Reθ = 2511.

has already been presented, the budgets of the full Reynolds-stress tensor were
computed. A sample result in Fig. 12 shows the budget of the turbulent kinetic
energy k = (1/2)〈u′

iu
′

i〉. The activity of the SGS model during the simulation
is clearly highlighted by the difference between the resolved dissipation and
the total dissipation which includes the dissipation due to the SGS transfer.
The total dissipation is computed as the residual of the energy budget when
considering all relevant terms except for the SGS dissipation; when running
DNS without explicit SGS model this residual is essentially zero (Li et al.,
2009).

In the near-wall region this additional dissipation due to the SGS model con-
tributes as much as 20% to the total dissipation of the turbulent energy k.
Furthermore, the comparison of the budget terms obtained from DNS and LES
compare favourably at Reθ = 2100. Close to the wall, the classical viscous scal-
ing does show the well-known behaviour of wall-bounded flows (see e.g. Pope,
2000), and a very good collapse of the individual terms with increasing Re is
observed. The outer part of the boundary layer however is more interesting,
as it highlights some of the major differences between internal (channel, pipe)
and external wall-bounded flows. In the highly intermittent region close to the
boundary-layer edge y ∼ δ99, a new balance between turbulent diffusion as a
source, and turbulent convection and velocity-pressure correlation on the loss
side is established; convection is virtually absent from the near-wall region,
and identically zero in parallel flows.
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4 Turbulent structures

Turbulent flow is characterised by the interaction of fluctuations and eddies
of various sizes, shapes and energies. It is the ensemble of these eddies that
eventually lead to, e.g., the characteristic law of the wall, or the well-known
profiles of the rms values. Close to the wall, the kinematic restrictions lead
to the appearance of distinct flow structures which evolve with their own
dynamics. The most apparent turbulent structures close to solid walls are the
turbulent streaks, described and characterised by many researchers, see e.g.
Kline et al. (1967); Kim et al. (1987), and more recently Lin et al. (2008).
Streaks are regions of elevated or decreased velocity as compared to the local
mean velocity; their size is essentially scaling in wall units, and their medium
length and spacing is usually given as approximately 1000 × 100 wall units.

The spanwise organisation of the structures in near-wall turbulence may be
considered by calculating spanwise two-point correlations Rαα of a given tur-
bulent quantity α. In Fig. 13, the spanwise two-point correlations of the ve-
locity components at y+ ≈ 8, and of the wall shear stress τw are shown. It
can be observed that the behaviour of Rττ and Ruu is very similar, featuring
a first minimum at ∆z+ ≈ 60. The two-point correlation of the wall-normal
velocity component Rvv exhibits a strong minimum at ∆z+ ≈ 25 (Kim et al.,
1987), about at half the separation as for u. However, with increasing Reθ the
first minimum of Ruu weakens and moves to higher values, and a second flat
minimum appears at large separation ∆z = O(δ99) (Österlund, 1999). This
indicates that superimposed onto the smaller-scale streaky structures a wider
modulation must exist. Such large-scale turbulent structures have received
considerable interest over the last years, both experimentally (e.g. Kim and
Adrian, 1999; Guala et al., 2006; Hutchins and Marusic, 2007a) and numer-
ically (del Álamo and Jiménez, 2003; Schlatter et al., 2009); open questions
relate to the dynamic importance of these structures and possible explanations
of their origin and regeneration, see e.g. the recent discussions in Hutchins and
Marusic (2007b) or Mathis et al. (2009).

To further characterise the spanwise scaling, Fig. 14 shows a map of the two-
point correlation of the wall-shear stress Rττ as a function of the Reynolds
number Reθ. At any sufficiently high Reθ two minima can be discerned: The
inner peak, corresponding to the near-wall streaks, can clearly be seen with a
spacing of about 120 (local) wall units, as the first minimum of Rττ at 2∆z+ ≈
120 (dashed line in Figure 14). However, a second peak (solid line) scaling as
2∆z ≈ 0.85δ99 is clearly visible in the two-point correlation for higher Reθ,
indicating the footprint of the large-scale structures onto the fluctuating wall-
shear stress. For Reθ < 1000, the two peaks merge into one and no clear
separation is present. However, for Reθ > 1500 two distinct peaks can be
observed. A similar plot is also shown in Schlatter et al. (2009), however being
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restricted to Reθ < 2500. The scales measured at the wall are essentially the
same in the DNS and LES.

4.1 Spanwise spectra

The influence of the Reynolds number on the scale separation between the
small scale (inner) peak and the larger scale (outer) peak is demonstrated in
Fig. 15 with the help of premultiplied spanwise spectra kzΦuu(λz)/u

2
rms of the

streamwise velocity u. The small-scale peak corresponding to the streaks is
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Fig. 13. Spanwise two-point correlation Rαα(∆z) for streamwise velocity u,
wall-normal velocity v, spanwise velocity w (at y+ ≈ 8) and the

wall shear stress τw. Left: Reθ = 1430, Right: Reθ = 4006.

Fig. 14. Spanwise two-point correlation Rττ of the wall-shear stress τw computed
from the present LES. The spanwise axis is scaled by the displacement 2∆z in
order to directly show the spanwise pattern spacing. corresponds to 0.85δ99,

corresponds to 120 plus units. The colors range from blue (Rττ ≤ −0.06) to
red (Rττ ≥ 0.06); contour lines go from -0.15 to 0.15 with spacing 0.02.

18



Fig. 15. Premultiplied spanwise spectra kzΦuu(λz)/u2
rms of the streamwise ve-

locity fluctuation u. The vertical lines indicate λz = δ99, the horizontal lines
y = 0.35δ99; contour lines have a spacing of 0.1. From left to right and top to
bottom: Reθ = 1433, 2560, 3660, 4307.

Fig. 16. Premultiplied spanwise spectra kzΦuu(λz)/U2
τ of the streamwise veloc-

ity fluctuation u. The vertical lines indicate λz = 0.85δ99, the horizontal lines
y = 0.2δ99, contour line spacing 0.5. Top: Reθ = 1433, bottom: Reθ = 4307.

centred around 120 plus units, whereas the large-scale peak is clearly scaling
in outer units, i.e. attaining its maximum at a wall-normal distance of approx-
imately y = 0.35δ99 with a spanwise size λz ≈ δ99. Scaling the energy spectra
with U2

τ (Fig. 16), the inner peak features a clear maximum at y+ = 15 (see
e.g. del Álamo and Jiménez, 2003)), and the outer peak reaches its maximum
at a wall-normal distance of approximately 0.2δ99.
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Fig. 17. Dependence of resolved urms fluctuations on the range of spanwise scales
included at Reθ = 4307. urms with full LES resolution ∆z+ = 10.8, in
direction of arrow: scales ≥ 2000+, ≥ 250+, ≥ 100+, ≥ 40+.

Closely connected to the spectral distribution of fluctuation energy in a signal
is the way how such a signal might be measured with reduced resolution. For
example, hotwire sensors have a finite length, and thus measure in fact an
average signal over this specific length (Hutchins et al., 2009). This averaging
operation could be simplified (i.e. by not considering any nonlinear transfer
function of the wire etc.) as an integral in wavenumber space of the fluctuation
energy with a lower limit that corresponds to the cutoff wavenumber (i.e. the
inverse sensor length). The result of such a calculation is shown in Fig. 17 for
the streamwise velocity fluctuation urms. It becomes apparent that limiting
the integration of the total fluctuations to scales larger than 40 plus units
already has a significant impact on the results. In particular, for a lower limit of
≥ 250+, the outer peak becomes more dominant than the inner peak (Hutchins
et al., 2009).

4.2 Temporal spectra

As opposed to channel flow computed in a (streamwise) periodic domain, the
definition of streamwise spectra and thus the streamwise size of the turbulent
structures is not as obvious in boundary-layer flow due to the spatial develop-
ment. Usually, temporal signals are recorded at a given position, and then the
Taylor hypothesis is invoked, assuming a certain convection velocity Uc(x, y)
in an effort to transform temporal spectra into spatial ones. This procedure
naturally assumes that the convection velocity is only a function of the posi-
tion, but not of the size of scales; which might not be entirely true. Therefore,
in the present contribution only temporal spectra are shown, without conver-
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sion into spatial spectra. Nevertheless, as a side note, the convection velocity
for the present LES has been evaluated and similar results as e.g. Quadrio
and Luchini (2003) have been obtained: The mean convection velocity closely
follows the mean velocity profile, and levels off close to the wall with about
U+

c ≈ 11, featuring a small dip at y+ ≈ 5.

Temporal samples of the flow were recorded at various streamwise and wall-
normal positions in the flow; spanning the whole spanwise extent. A first
quantification of the fluctuations of such time series is given in Fig. 18 show-
ing the probabilty density function (pdf) of the streamwise velocity at five
positions from the wall to the free stream. The signal recorded closest to the
wall, y+ = 2.8, clearly shows a non-symmetric distribution with a large spread
of velocity magnitues: Values as large as 0.5U∞, but also slightly negative ve-
locities are measured. This last observation is interesting, and preliminary
visualisations show that small regions with local reversed flow are related to
strong quasi-spanwise vortices in the near-wall region. As expected, the pdf’s
further away from the wall tend to approach a Gaussian distribution (see e.g.
the pdf at y+ = 100). Right at the boundary-layer edge y = 0.9δ99, again a
non-symmetric pdf is observed, featuring a characteristic pointy tip around
its maximum, U ≈ 0.992U∞.

To obtain spectral information, the time series of the probe signals are subse-
quently transformed into Fourier space using Hanning windows based on the
Welch method with up to 64 overlapping windows. In Fig. 19 premultiplied
temporal spectra obtained from the present LES and the reference DNS are
compared at Reθ = 2500 at various wall-normal positions. Both simulation ap-
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Fig. 18. Probability density functions of the streamwise velocity at Reθ = 4300
and wall-normal positions y+ = 2.8, 15, 30, 100 and y = 0.9δ99. Gaussian
distribution with the same parameters as the pdf at y+ = 100, i.e. mean µ = 0.627,
variance σ2 = 0.00632.
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proaches show spectra which are very similar; the main peak at λt ≈ 3δ99/U∞

(corresponding to about 1000 plus units when converted in spatial spectrum)
and the flanks are accurately reproduced by the LES.

Contour plots of premultiplied temporal spectra are presented in Fig. 20 for
two Reynolds numbers Reθ = 1433 and 4307. Note the good agreement of the
present higher-Re data to the results reported in the experimental study by
Hutchins and Marusic (2007a). A fairly broad range of temporal frequencies
is seen to be excited in the near-wall region (y ≈ 15), and with higher Re
a tendency towards larger (i.e. longer lasting) structures is seen in the outer
region y > 0.1δ99. The longest relevant scales can be estimated to be O(40)
in units of δ99/U∞, however longer events > 100δ99/U∞ are also observed.
The most dominant structure in the outer region is observed at a constant
(temporal) period of approximately λt = 10δ99/U∞. Via the consideration of
two-dimensional spectra (not shown) this structure could be identified with
having a spanwise scale λz = 0.85δ99. Assuming a convection speed of about
0.6U∞ for these large structures, a length scale λx = 6δ99 is obtained, which
compares well to the experimental finding presented by Hutchins and Marusic
(2007a) for boundary-layer flow. It should be highlighted again that for the
large-scale structures an unambiguous collapse of the scales throughout the
boundary layer is obtained only in the temporal spectra. The streamwise spec-
tra (obtained by invoking Taylor’s hypothesis) does not show a clear collapse
of scales.
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Fig. 19. One-dimensional premultiplied temporal spectrum ωΦuu(λt)/U2
τ of the

streamwise velocity fluctuation u at Reθ = 2500 for present LES, DNS
Schlatter et al. (2009). In direction of the arrow: y+ = 15, 30, 100, 300.
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Fig. 20. Premultiplied temporal spectrum ωΦuu(λt)/U2
τ of the streamwise velocity

fluctuation u. Contour spacing 0.3. Left : Reθ = 1433, right : Reθ = 4307.

5 Conclusions

A well-resolved large-eddy simulation (LES) of a spatially developing turbu-
lent boundary layer under zero pressure gradient up to (numerically) high
Reynolds numbers (Reθ = 4300) is presented. The employed subgrid-scale
model is the ADM-RT model (Schlatter et al., 2004), which is an efficient and
simple regularisation method based on high-order filters. The (laminar) inflow
is located at Reδ∗ = 450 (Reθ ≈ 180), a position far enough upstream to
ensure a proper flow development further downstream. Results are validated
and compared extensively to both numerical data sets (Schlatter et al., 2009)
and available experimental measurements, e.g. the ones obtained by Österlund
et al. (2000).

The LES results are in good agreement with these existing data for both
mean and fluctuating quantities, e.g. mean velocity, skin friction and fluctu-
ating shear stress, energy budgets, pressure fluctuations, and terms in the von
Kármán integral equations. In addition, spanwise and temporal correlations
and spectra characterising large-scale flow organisation have been analysed.
In particular, the near-wall streaks scaling in inner units and the outer layer
large-scale structures can clearly be identified in both spanwise and temporal
spectra. The spacing of the near-wall streaks is estimated as 120 plus units in
width and about 1000 in length. The dominant large-scale structure is about
0.85δ99 wide and persists for about 10δ99/U∞ time units. A clear collapse in
time scale throughout the boundary layer spanning from the wall towards the
free stream could be observed.

The goal of the present study was to provide reliable numerical data for high
Reynolds-number wall-bounded turbulence, which can in turn be employed
for further model development and validation, but also to contribute to the
further characterisation and understanding of wall turbulence, in particular
boundary-layer flows. The present work summarised some of these results,
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however the evaluation of the data base is still on-going.

The data of the present LES will be made available at www.mech.kth.se.
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