
FLOW-SESE Course 2021

Nek5000
Theory, Implementation and Optimization

Edited by Saleh Rezaeiravesh, Niclas Jansson,
Adam Peplinski, Jonathan Vincent, Philipp Schlatter



2



Table of contents

Preface 5

Group 1/2: Spectral element method and discrete operators 7

Group 3: PnPn-2 method for incompressible flows 35

Group 4: PnPn formulation and its implementation in Nek5000 46

Group 5: Iterative solvers and projection method 59

Group 6: Time integration in Nek5000 71

Group 7: Pressure preconditioning 95

Group 8: Direct stiffness summation 113

Group 9: Solver stabilization 129

Group 10: Work balancing in Nek5000 146

Group 11: Boundary conditions and meshing 159

3



4



Preface

This book contains the 10 group reports prepared during the Nek5000 course organised at
KTH during the spring term 2021, with support by the FLOW Centre and Swedish e-Science
Education (SESE) as part of the Swedish e-Science Research Centre (SeRC).

Overview:
In this course, we discuss the theory, numerics and implementation of the various methods
in Nek5000. Nek5000 is a spectral-element based solver for CFD, and is available as an
open source package. The code has become popular among researchers worldwide, mainly
because of its relatively high accuracy per grid point, its parallel efficiency and the wide user
community and available packages (e.g. statistics, linear stability, adjoints etc.). The
development of the various methods goes back to the mid 80ies, and a number of different
approaches are now implemented, both when it comes to the integration of Navier-Stokes,
the communication kernels and efficient single-core performance. For SeRC, Nek5000 is
one of the two main codes to focus on, and in Sweden about 30 people are actively working
with Nek5000. Therefore, we believe that offering an in-depth course on the internal
workings of Nek5000, the relevant theory of SEM, implementations and physical models is a
relevant contribution to SESE.

Intended learning outcomes:
● Understand the basic theory of solutions to the Navier-Stokes equations and its

implications to the numerical treatment
● Understand the formulation of the pressure treatment for both PnPn and PnPn-2

methods
● Spectral-element discretisation and necessary stabilization, time integrators
● Workflow of Nek5000, and the various iterative solvers (including preconditioners,

projections)
● Imposition of boundary conditions and limitations
● Implementation of meshing and metrics
● Understanding of the basic communication kernels (GS lib)
● Pre-requisites and target group
● Basic knowledge in scientific computing, programming and CFD. Basic interest in

fluid mechanics is recommended as most practical examples are related to fluid
mechanics.

The course is aimed at researchers for academia (MSc, PhD students, researchers) and
industry that use (or intend to use) Nek5000 in their work. The focus is on the underlying
theory and implementation, and not on running Nek5000 for specific cases. Of course,
support to install and get started with Nek5000 can be provided if necessary.

5

https://www.flow.kth.se/
https://sese.nu/
https://e-science.se/
https://nek5000.mcs.anl.gov


Course schedule
The course started with 6 meetings:

● Thursday, 11/3, 13-16: Introduction and outline, style files. Short tutorial how to run
Nek5000

● Friday, 12/3, 10-12: Fortran 77 Tutorial
● Monday 15/3 13-15: Fourier and Chebyshev methods part I
● Tuesday 16/3 13-15: Fourier and Chebyshev methods part II
● Wednesday 17/3 13-15: Fourier and Chebyshev methods part III
● Friday 11/6 11-13: Computer Architectures/HPC

The second part of the course consists of group work and presentations, spread over 11
meetings during the sprint term 2021:

● SEM discretisation (09.04.2021, 9-11) Legendre polynomials + SEM discretisation.
Properties and weak form, discretisation of advection/diffusion. Continuous level

● Discrete operators (09.04.2021, 11-13) Matrix-free formulation, tensor operations,
implementation of operators, axhelm, mxm, gather-scatter. Discrete level.

● Pressure correction method and PN-PN-2 formulation (16.04.2021, 13-15)
● PN-PN formulation (23.04.2021, 13-15)
● Iterative solvers and projection method (30.04.2021, 13-15)
● Time integration, OIFS, characteristics (07.05.2021, 13-15)
● Pressure preconditioners/Schwarz Multigrid (14.05.2021, 13-15)
● Direct stiffness summation (21.05.2021, 13-15)
● Solver stabilisation (28.05.2021, 13-15)
● Work balancing(04.06.2021, 13-15)
● Meshing and boundary conditions (11.06.2021, 13-15)

Recommended book
Deville, Fischer, Mund, High-Order Methods for Incompressible Fluid Flow, Cambridge
University Press, 2002

Link to Nek5000: https://nek5000.mcs.anl.gov

Stockholm, 2021-11-17

Saleh Rezaeiravesh, Niclas Jansson, Adam Peplinski, Jonathan Vincent, Philipp Schlatter

6

https://nek5000.mcs.anl.gov


Spectral element method and discrete operators

A. Perez A. V. Mohanan M. Moniri Z. Yuan

April 13, 2021

Abstract
This report describes the topics covered by groups G01 and G02. The

report was made collaboratively by the authors in an online HackMD
document with accompanying presentation. The report is organized as
follows. In sections 1 and 2, continuous Galerking method and basis
functions in spectral element methods are covered. In section 3, spectral
element method is applied to solve the advection-diffusion problem with
different type of boundary conditions and the simple time integration
method. In the end of this section, relationship between modal and nodal
bases is compared. In section 4 we show how the formulation is extended
to multiple sub-domains, while in section 5 the formulation for multiple
dimensions is shown. Finally, in section 6 we take a look at how discrete
spectral operators are efficiently implemented in practice with examples of
code from Nek5000 version 19.

1 Continuous Galerkin formulation
Based on posing problems in their variational (weak) form which is an equivalent
integral form to that of their classical representation. Take advection-diffusion
equation as an example: expressed in strong form as

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2 . (1)

A residual can be defined as:

L(u) = ∂u

∂t
+ c

∂u

∂x
− ν ∂

2u

∂x2 . (2)

The weak form is obtained by multiplying the residual by a test function v(x)
and integrating over the domain:

(v, L) =
∫

Ω
v(∂u
∂t

+ c
∂u

∂x
− ν ∂

2u

∂x2 )dx = 0. (3)

The order of the second derivative in the diffusion term can be reduced by
integrating by parts:

∫
Ω

(v ∂u
∂t

+ cv
∂u

∂x
+ ν

∂v

∂x

∂u

∂x
)dx = 0, (4)

1

Nek5000 Course 2021

Page 7

https://hackmd.io/@jmtW1K-nT5O31NGGrCd6Pg/ByZNQkZH_
https://hackmd.io/@jmtW1K-nT5O31NGGrCd6Pg/ByZNQkZH_
https://hackmd.io/@ashwinvis/B1PY2JorO


by choosing a basis v(x) that vanishes at the boundaries of the domain ∂Ω. The
Galerkin formulation is then the following.

Find u such that: ∫
Ω

(v ∂u
∂t

+ cv
∂u

∂x
+ ν

∂v

∂x

∂u

∂x
)dx = 0. (5)

A potential candidate for u(x, t) can be represented by a combination of trial
functions ψ(x) such that:

uN (x, t) =
N∑
n=0

un(t)ψn(x) = ψ(x)T · u(t), (6)

where ψ(x) and u are the column vectors for the basis functions and the coeffi-
cients, respectively. In the Galerkin method, the test function v(x) can also be
represented by the same set of trial functions.

v(x) =
N∑
n=0

vnψn(x) = ψ(x)T · v. (7)

Applying this to the weak formulation of the Advection/Diffusion equation and
considering c = ν = 1 for simplicity, the following is obtained:

N∑
i=0

N∑
j=0

vi(
∫

Ω
i jdx)duj

dt
+

N∑
i=0

N∑
j=0

vi(
∫

Ω

′
i
′
jdx)uj+

N∑
i=0

N∑
j=0

vi(
∫

Ω
i
′
jdx)uj = 0,

(8)

where ′ stands for a derivative with respect to x. The above equation in matrix
form is:

vTM
du

dt
= −vTKu− vTCu, (9)

which implies,
M
du

dt
= −Ku− Cu, (10)

and,

M [i, j] =
∫

Ω
i(x) j(x)dx, (11)

K[i, j] =
∫

Ω

dψi(x)
dx

dψj(x)
dx

dx, (12)

C[i, j] =
∫

Ω
i(x)dψj(x)

dx
dx, (13)

where M,K, and C are mass, stiffness, and convective matrices, respectively.
There are still some questions to be answered: what type of basis functions
should be used?

2

Nek5000 Course 2021

Page 8



2 Basis Functions in Spectral Element Methods
Both modal and nodal bases are used in Nek5000 which is based on spectral-
element method.

In the modal approach, the chosen bases are known and the coefficients in
the expansion must be calculated. In the nodal approach, the coefficients are
simply the nodal values of a given function, while the polynomial basis must be
constructed. They each provide different advantages or properties that can be
exploited.

2.1 Legendre Polynomials (Modal Basis)
Legendre polynomial of order k, which is denoted by Lk(x), is the eigensolution
of the Legendre differential equation which is shown below:

− d

dx

((
1− x2) d

dx
Lk(x)

)
= k(k + 1)Lk(x). (14)

Legendre polynomials can be defined in many ways, and the various definitions
highlight different aspects as well as suggest connections to different mathematical
structures and physical and numerical applications. In physical settings, the
Legendre differential equation arises naturally whenever one solves the Laplace
equation by separation of variables in spherical coordinates.

2.1.1 Visual representation

The first six Legendre polynomials are:

n Ln(x)
0 1
1 x
2 1

2
(
3x2 − 1

)
3 1

2
(
5x3 − 3x

)
4 1

8
(
35x4 − 30x2 + 3

)
5 1

8
(
63x5 − 70x3 + 15x

)
The polynomials are plotted in figure 1 for x ∈ [−1, 1].

2.1.2 Properties

• Orthogonality: The set of Legendre polynomials form an orthogonal family,
that means: ∫ 1

−1
Lm(x)Ln(x)dx = 2

2n+ 1δmn. (15)

• Completeness: Legendre polynomials are complete. This means that the
given piece-wise continuous function f(x) with finitely many discontinuities

3

Nek5000 Course 2021

Page 9



Figure 1: Legendre Polynomials up to order 5.

in the interval [-1,1], can be approximated by the following sum:

fn(x) =
n∑
l=0

alLl(x), (16)

in which al is a coefficient and Ll(x) is the Legendre polynomial of order l, and
fn(x)→ f(x) as n→∞.

The completeness property can be written in the following form:

∞∑
l=0

2l + 1
2 Ll(x)Ll(y) = δ(x− y). (17)

Note x, y ∈ [−1, 1] and δ(x− y) = 1
2π
∫∞
−∞ eip(x−y)dp.

• Bonnet’s recursion formula: The Legendre polynomials can also be defined
as the coefficients in a formal expansion in powers of t of the generating
function Abramowitz [1974]:

1√
1− 2xt+ t2

=
∞∑
n=0

Ln(x)tn. (18)

By differentiating the generating function with respect to t, the following is
obtained:

x− t√
1− 2xt+ t2

= (1− 2xt+ t2)
∞∑
n=1

nLn(x)tn−1. (19)

4

Nek5000 Course 2021

Page 10



By substituting the denominator of the left-hand-side of the above equation with
the summation and rearranging the whole equation we get:

nLn(x)tn−1 − (2n+ 1)xLn(x)tn + (1 + n)Ln(x)tn+1 = 0. (20)

Equating terms with identical powers of t we find:

(1 + n)L1+n(x)− (2n+ 1)xLn(x) + nLn−1(x) = 0, n ≥ 2. (21)

• Other properties
– (2n+ 1)Ln(x) = L′n+1(x)− L′n−1(x),
– Ln(x) is even or odd if n is even or odd: Ln(−x) = (−1)nLn(x),
– Ln(1) = 1 , Ln(−1) = (−1)n.

2.2 Lagrange Interpolation Polynomials (Nodal Basis)
For an elemental grid on Ω̂ (Ω̂ := {ξ| − 1 ≤ ξ ≤ 1}) with p+ 1 nodes Ξp+1 :=
ξ0, · · · , ξp the Lagrange interpolation polynomial of a smooth function f(ξ) on
[−1, 1] is defined as

Ipf(ξ) =
p∑
i=0

f(ξi)πi(ξ) ξ ∈ Ω̂, (22)

and

πi(ξ) =
p∏
j=0
i6=j

ξ − ξi
ξi − ξj

0 ≤ i, j ≤ p. (23)

2.2.1 Properties

• An interesting property of the Lagrangian polynomials is the fact that:
πi(xj) = δij .

• If the Lagrange polynomials are applied to the Gauss-Lobatto-Legendre
(GLL) points, it is also possible to define them as

πj(ξ) = −1
N(N + 1)

(1− ξ2)L′N (ξ)
(ξ − ξj)LN (ξj)

0 ≤ j ≤ N. (24)

In other words, Lagrange interpolation polynomials can be expressed in terms of
Legendre polynomials.

• Lagrange polynomials have Local support on Ω̂, which means that they
are non-zero only in [-1,1] and vanish outside these boundaries.

3 Spectral Element Method in 1D
In Spectral Element Method, the integration domain Ω is partitioned into
intervals (elements). In one dimension, a partition of (a, b) ∈ Ω with E elements,
which is denoted by ∆E, can be written as

5

Nek5000 Course 2021

Page 11



∆E : a = x0 < x1 < · · · < xE = b. (25)

A reference or parent element is also defined as Ω̂ : [−1 < ξ < 1]. Particularly in
this report, the points ξ correspond to the GLL points. For the convenience of
numerical integration (GLL quadrature rule), we need to map the element from
physical domain to the reference domain Ω̂.

In 1D, a simple mapping that relates the upper boundary xeu and the lower
boundary xel of element e with the reference element is

xe(ξ) = 1− ξ
2 xel + 1 + ξ

2 xeu = 1 + ξ

2 (xeu − xel ) + xel , (26)

where (xeu − xel ) is the element size h. Also, the inverse mapping can be defined
as

ξ(xe) = 2x
e − xel
h

− 1. (27)

For illustration, the 1D spectral element mesh of order 5 with 1 element in a
domain Ω = [0, 2] is shown in Figure 2:

Figure 2: GLL nodes within one element in a domain Ω= [0,2].

3.1 SEM formulation for Advection-Diffusion Equation
with a Single Element

In this section, the advection-diffusion problem is solved within a single element.
Having chosen the GLL points for the reference grid, and by choosing to follow a
nodal approach, i.e. the Lagrange polynomials as bases, it is possible to complete
the discretization of the advection-diffusion equation:∫

Ω
(v ∂u
∂t

+ cv
∂u

∂x
+ ν

∂v

∂x

∂u

∂x
)dx = 0. (28)

For this purpose, let us recall the process to derive the stiffness matrix by only
analyzing the diffusion term and considering ν = 1. Starting from the following
expression for the element e with domain Ω:∫

Ωe

(∂v
∂x

∂u

∂x
)dx, (29)

there are two main aspects to keep in mind:

6

Nek5000 Course 2021

Page 12



3.1.1 Chain Rule

In (6), we showed a function u(x, t) can be represented by a combination of trial
functions and corresponding coefficients. Here, the relationship can be rewritten
as the following form:

u(x)|Ωe =
N∑
i=0

ueiπi(ξ), ξ ∈ [−1, 1]. (30)

As such in the derivative of u with respect to x it is important to consider the
chain rule:

∂u(x)
∂x

∣∣∣∣
Ωe

=
N∑
i=0

uei
∂πi
∂ξ

∂ξ

∂x
, ξ ∈ [−1, 1]. (31)

3.1.2 Change of Integration Domain

Due to the mapping, the integration domain to evaluate the weak form is changed.
Consequently, the Jacobian determinant must be introduced as a scaling factor,
which for this case is:

J(ξ) = ∂x

∂ξ
= h

2 . (32)

Introducing the previous notation into the diffusive term in (28), the following
is obtained:

∫
Ωe

(∂v
∂x

∂u

∂x
)dx =

N∑
i=0

N∑
j=0

vei (
∫

Ω̂

∂πi
∂ξ

∂πj
∂ξ

( ∂ξ
∂x

)2J(ξ)dξ)uej . (33)

This yields a similar form as the one shown in the second term if formulation
of the Galerkin method (8); however, additional terms that account for the
mapping and geometry of the element in physical domain are included now. For
the stiffness matrix in 1D, the geometry term becomes a constant since:

( ∂ξ
∂x

)2J(ξ) = ( 2
h

)2h

2 = 2
h
. (34)

Substitute (34) into (33) and rewrite it into matrix form, yields:

∫
Ωe

(∂v
∂x

∂u

∂x
)dx = (ve)TKeue, (35)

where

Ke[i, j] = 2
h

∫
Ω̂

∂πi
∂ξ

∂πj
∂ξ

dξ, Ω̂ ∈ [−1, 1]. (36)

7

Nek5000 Course 2021

Page 13



Up to the point, we have assumed that all integrals are evaluated analytically.
As we have seen, within each elemental domain we want to evaluate integrals of
the form ∫ 1

−1
f(ξ)dξ. (37)

The form of f(ξ) is, however, problem specific and therefore we need an automated
way to evaluate such integrals. This suggests the use of numerical integration , and
particularly a quadrature rule. The fundamental concept is the approximation
of the integral by a finite summation of the form∫ 1

−1
f(ξ)dξ =

Q−1∑
i=0

ρif(ξi) +R(f), (38)

where ρi are specified weights and ξi represent Q distinct points in the interval
−1 ≤ ξi ≤ 1, and R(f) is the residual. In particular, we introduce Gauss-
Lobatto-Legendre quadrature here:

ξi =


−1 i = 0,
ξ1,1
i−1 i = 1, 2...Q− 2,

1 i = Q− 1,
(39)

ρi = 2
N(N + 1)

1
[LN (ξi)]2

, (40)

R(f) = 0 if f(ξ) ∈ P2Q−3([−1, 1]). (41)

In the above formulae LQ(ξ) is the Legendre polynomial. The zeros of the Jacobi
polynomial ξα,β (here α = β = 1, it represents the zeros of L′Q(ξ)) do not have
an analytic form and commonly the zeros and weights are tabulated. Tabulation
of data can lead to copying errors and therefore a better way to evaluate the
zeros is the use of a numerical algorithm such as a Newton-Raphson technique.
Having determined the zeros, the weights can be evaluated from this technique.
This is done by generating the Legendre polynomial from a recursion relationship
(Find description on Wiki here). The GLL quadrature is accurate if the order of
polynomial integrand is no more than 2Q− 3.

Then it is possible to numerically integrate and differentiate the terms such that
the final form of the matrix is obtained:

Ke[i, j] = 2
h

N∑
m=0

ρmD
(1)
N,miD

(1)
N,mj , (42)

where DN is the differentiation matrix obtained as follows:

D
(1)
N,ij = dπj

dξ

∣∣∣∣
ξ=ξi

=


LN (ξi)
LN (ξj)

1
ξi−ξj

i 6= j,

− (N+1)N
4 i = j = 0,

(N+1)N
4 i = j = N,

0 otherwise .

(43)

8

Nek5000 Course 2021

Page 14



Following the same procedure as for the stiffness matrix, the mass and advection
matrices can also be obtained, keeping in mind that πi(xj) = δij :

Me
ij := h

2 ρiδij , (44)

Ce[i, j] =
N∑
m=0

ρmπmiD
(1)
N,mj = ρiD

(1)
N,ij . (45)

Extra bit: What about non-linearities? The non-linear term in the Navier-
Stokes equation and Burger’s equation are treated in a similar way as that of
the constant convective term. For the case with non-linear term ududx , the same
procedure is followed, the orthogonality of the basis functions used and taking
advantage of the quadrature rules, the following expression is obtained:

Ce[i, j] = ρiu
e
iD

(1)
N,ij . (46)

Note that the advective matrix depends on u which needs to be taken into
consideration for time stepping. In a explicit method, the advective matrix
would need to be evaluated at each iteration.

3.1.3 Applying Boundary Conditions: Homogeneous Dirichlet BC

• If u ∈ XN
0 , the basis coefficients on the boundary are zero:

u0 = uN = 0. (47)

• In our definition of global assemble matrix, the index is ranged from 0 to
n on the global vectors v and u.

• Therefore we need to construct a restriction matrix R and prolongation
matrix RT that eliminate u0 and un+1. Note we can generate a matrix
RTR which can map a function from XN to XN

0 .

3.1.4 Neumann Boundary Condition

Let’s consider the Poisson equation as the example for simplicity:

−d
2u

dx2 = f(x), (48)

u(−1) = 0, du
dx

(1) = g. (49)

After applying Galerkin method, integrating by parts and applying Neumann
BC on the right boundary and Dirichlet BC on the left boundary, we can end
up with following equation:∫ 1

−1

dv

dx

du

dx
dx =

∫ 1

−1
vf(x)dx+ v(1)g. (50)

9

Nek5000 Course 2021

Page 15



Figure 3: Left: applying the homogeneous Dirichlet BC to global basis coefficients.
Right: the way to map a function from XN to XN

0 .

We can continue with the derivation and reach to the linear system:

Au = F. (51)

Rewrite it into the matrix format:

We can see only the last term in the forcing vector is modified due to the
Neumann BC.

3.1.5 Time Integration

We have linear system:

ut = λu, (52)

where λ ∈ C is a system parameter which mimics the eigenvalues of linear
systems of differential equations. The equation is stable if Real(λ) ≤ 0. In this
case the solution is exponentially decaying. (limt→∞u(t) = 0).

For time integration, the explicit Euler method is used here:

un+1 = un + hλun = (1 + hλ)un = (1 + hλ)n+1u0, (53)

where h = ∆t. So for explicit Euler method, for a solution to be stable as t→∞,
condition |1 + λh| < 1 should be satisfied. In the complex plane, we can find the
optimal h by forcing every λh inside the neutral stability curve.

10

Nek5000 Course 2021

Page 16



Figure 4: Neutral stability curve for explicit Eular method.

For the illustration purpose, the advection-diffusion problem is solved with
Dirichlet BCs and Euler backwards time integration method. The final result
with polynomial order p = 32, total time t = 0.1 and initial condition can be
compared in figure 5.

Figure 5: Final result at t = 0.1 with p = 32, with Dirichlet BC applied on both
boundaries.

3.2 Relationship between Modal and Nodal Bases
The key historical distinction between a spectral element and a p-type finite
element is whether the expansion is nodal or modal. As previously mentioned, the
Galerkin approximation is the minimising solution independent of the polynomial
approach so if there are no integration errors then the methods are mathematically
equivalent. However each approach does have different numerical properties
in terms of efficiency of implementation, ability to vary the polynomial order
and the conditioning of the global matrix systems. The details can be found in
Karniadakis [2005].

3.2.1 Nodal Approach

Till now, we used the Lagrange interpolations at GLL points to build the trail
function. The elemental mass matrix using this expansion is full, if we evaluate
the inner product M [p][q] = (πp, πq) exactly. If, however, we use the Gauss-
Legendre-Lobatto quadrature rule corresponding to the same choice of nodal
points on which the expansion was defined, the mass matrix is diagonal due to

11

Nek5000 Course 2021

Page 17



the Kronecker delta property:

M [p][q] = (πp, πq) ≈
Q∑
i=0

ρiπp(ξi)πq(ξi) =
Q∑
i=0

ρiδpiδqi = ρpδpq, (54)

where ρi are the weights for the Gauss-Legendre-Lobatto rule using Q+ 1 points.
The quadrature rule using Q+ 1 points is exact only for polynomials of order
2Q − 1. The diagonal components of the elemental mass matrix using the
quadrature rule are equal to the row sum of the elemental mass matrix using
exact integration. Summing the rows and using this as the entry of a diagonal
matrix is common practice in finite elements and is known as lumping the
mass matrix. In the standard finite element case, lumping the mass matrix is
an approximation, but in the spectral element case this lumping has a direct
equivalence.

Q∑
q=0

M [p][q] =
Q∑
q=0

(πp, πq) = (πp(ξ),
Q∑
q=0

πq(ξ)). (55)

We note that the sum of the Lagrange basis over all modes is simply ‘1’:∑Q
q=0 πq(ξ) = 1, and so the sum of the pth row becomes:

Q∑
q=0

M [p][q] = (πp(ξ),
Q∑
q=0

πq(ξ)) = (πp(ξ), 1). (56)

The last term is defined as the weight corresponding to the pth point in the
Gauss-Lobatto-Legendre quadrature rule using Q+ 1 points.

As a final point, we note that the elemental Laplacian matrix using the spectral
element expansion does not have any notable properties of this type and is full
for all choices of quadrature order.

3.2.2 Modal Approach

Thanks to the orthogonality of Legendre polynomials:∫ 1

−1
Pm(x)Pn(x)dx = 2

2n+ 1δmn, (57)

we can construct the elemental mass matrix easily using this relationship. It is
worth to note that more generally, the sequence of polynomial functions {pk}∞k=0,
where the degree of pk is equal to k, forms a system of orthogonal polynomials
with respect to ω if:

(pk, pl)L2
w

:=
∫ 1

−1
ω(x)pk(x)pl(x)dx = γkδkl, (58)

where L2
w is the Hilbert space of Lebesgue-weighted-square-integrable functions

and ω denotes any non-negative integrable weight function: γk := ‖pk‖2L2
w
. More

detailed description can be found in Deville et al. [2004].

Now, we can plot the structure of mass matrices via different approaches shown
in figure 6.

12

Nek5000 Course 2021

Page 18



Figure 6: The structure of mass matrix via different approaches.

4 Spectral Element Method in 1D - Multiple
Elements

The following section is based on chapter 2 and 5 in Deville et al. [2004]. The
subdivision of the physical domain Ω into multiple elements has been stated
in section 3 , but the practical application of it has not. To start, it is very
important to analyze continuity between the elements.

4.1 Continuity (Scatter-Gather)
One of the advantages of using Lagrangian basis in SEM is the fact that function
continuity is enforced by equating coincident nodal values, that is:

xei = xê
î
⇒ uei = uê

î
. (59)

Defining N as the number of distinct nodes in Ω, the previous equation represents
(N + 1)dE −N constrains on the choice of the local nodal value uei .

The constraint can be recasted in matrix form, keeping in mind that the global
nodal values can be represented in vector form u and so can the local element
wise nodal values ue. If a collection of element nodal values is defined as a
collection of the local vectors uL such that:

uL =


u1

u2

· · ·
ue

· · ·
uE

 =



u1
0
u1

1
· · ·
ue0
ue1
· · ·
uEN


. (60)

If u is continuous, then there exists a Boolean connectivity matrix Q that maps
u to uL ensuring that the constraints are satisfied. Such that:

uL = Qu. (61)

The matrix Q is known as the Scatter operator and its action is to copy entries
from the global domain into the local one.

13

Nek5000 Course 2021

Page 19



An additional matrix QT is also defined, which is known as the Gather operator:

v = QTuL. (62)

The function of this operation is to sum entries from corresponding nodes. It
is then important to keep in mind that v 6= u

For instance, the shape of Q in 1D for 2 elements and a basis of order 1 is as
shown in (63).

Q =


1 0 0
0 1 0
0 1 0
0 0 1

 . (63)

With this definition, uL can be found by applying the operator to u, as shown
in (64)

uL =


u1

0
u1

1
u2

0
u2

1

 =


u0
u1
u1
u2

 =


1 0 0
0 1 0
0 1 0
0 0 1


u0
u1
u2

 = Qu. (64)

It is clear that using the scatter operator, the values from the global matrix are
copied to the local one. For example, the global value u1, which is the value of
the common grid between elements 1 and 2, is copied to local coefficients u1

1 and
u2

0.

A gather-scatter operation can be performed in sequence such that Σ′ = QQT .
Denoted as Direct Stiffness Summation. Defined, for example by Deville
et al. [2004], as a local to local transformation that amounts to summing shared
interface variables and redistributing them to their original locations, leaving
the interior nodes unchanged.

Note: In practice, the matrices Q and QT are never constructed. Rather, their
actions are implemented using indirect addressing.

4.2 Construction of a Global Basis
For simplicity the process will be initially shown for the diffusion term. It has
been stated that for a given element, the following expression holds:

∫
Ωe

(∂v
∂x

∂u

∂x
)dx = (ve)TKeue. (65)

The extension of (65) to the whole domain is given in:∫
Ω

(∂v
∂x

∂u

∂x
)dx =

E∑
e=1

(ve)TKeue = (vL)TKLuL. (66)

Where uL and vL are the local vectors as previously defined and KL is known
as the Unassembled Stiffness Matrix, which has the following form:

14

Nek5000 Course 2021

Page 20



KL =


K1 0 0 0
0 K2 0 0
0 0 · · · 0
0 0 0 KE

 . (67)

Since the previous finding holds for continuous u, v, based on the discussion in
the previous section, it is possible to say that there exists Boolean matrices and
vectors u, v such that uL = Qu and vL = Qv. Applying this to (66) yields:

∫
Ω

(∂v
∂x

∂u

∂x
)dx = (v)TQTKLQu, (68)

where K = QTKLQ is known as the Assembled Stiffness Matrix. Following
the same reasoning, it is also possible to find an expression for other operators:

M = QTMLQ. (69)

C = QTCLQ. (70)

The problem is then solved in the global domain as stated in (71). The solution
for the 1D advection diffusion problem can be seen in figure 7.

M
du

dt
= −Ku− Cu. (71)

Figure 7: Numerical solution of the 1D advection-diffusion in multiple subdo-
mains

4.2.1 Note of Caution - Discontinuous terms.

The use of Q to map from the local to global is restricted to continuous functions.
If in the original equation, there exists a source term f such that:

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2 + f, (72)

15

Nek5000 Course 2021

Page 21



an additional term is required to be included in the discretization procedure
which has the following form:

∫
Ω

(vf) dx. (73)

Performing the same procedure as for the other terms, i.e expressing f as
f(x) =

∑N
i=0 fiπi(ξ), constructing element matrix and then the global one yields

(74).

∫
Ω

(vf) dx = (v)TQTMLfL. (74)

For this case, the expression f
L

= Qf can not be applied a priori since the
source terms might be discontinuous across the boundaries.

4.2.2 Working in Local terms

If all the scatter and gather operations are expressed explicitly, (71) can be
expressed as:

QTMLQ
du

dt
= −QTKLQu−QTCLQu. (75)

Multiplying the global formulation by Q yields:

Σ′ML
duL
dt

= −Σ′KLuL − Σ′CLuL. (76)

This new formulation brings some advantages: It is now possible to work on each
element locally, evaluating operations without the need to map from global to
local terms. Additionally, the gather and scatter operations are now performed
in sequence, which for parallel processes reduces the overhead produced due to
data communication.

5 Spectral Element Method - Multiple Dimen-
sions

For the extension of the formulation to multiple dimensions, it is beneficial to
explain some concepts first.

5.1 Definition: Tensor-Product
Let A and B be k × l and m × n matrices. A km × ln matrix C of the following
form can be defined:

C =


a11B a12B · · · a1lB
a21B a22B · · · a2lB
· · · · · · · · · · · ·
ak1B ak2B · · · aklB

 . (77)

16

Nek5000 Course 2021

Page 22



For this case, C is said to be the tensor product of A and B and can be denoted
as:

C = A⊗B. (78)

The definition of tensor-product is very important, as many operations in the
multidimensional problems using SEM end up acquiring this form, and using
tensor-products allows simplifications on the application of linear operators to
the quantities.

5.2 Definition: Matrix-Free Formulation - Explained in
2D

Consider the next representation of u in the reference domain (x, y) ∈ Ω̂ :=
[−1, 1]2

u(x, y) =
M∑
i=0

N∑
j=0

uijπM,i(x)πN,j(y). (79)

It is possible to use a vector representation of the coefficients as follows:

u := (u1, u2, · · · , ul, · · · , uN )T = (u00, u10, · · · , uIJ , · · · , uMN )T , (80)

where N = (M + 1)(N + 1) is the number of basis coefficients and the mapping
l = 1+i+(M+1)j translates the two-index coefficient representation to standard
vector form with the leading coefficient advancing more rapidly.

The derivative with respect to x of u(x, y) at the GLL points is:

wpq = ∂u

∂x

∣∣∣∣
ξM,p,ξN,q

=
M∑
i=1

N∑
j=1

uijπ
′
M,i(ξM,p)πN,j(ξN,q) =

M∑
i=1

uiqπ
′
M,i(ξM,p),

(81)

Which can be represented in the following matrix-vector product form:

w = Dxu =


D̂x 0 0 0
0 D̂x 0 0
0 0 · · · 0
0 0 0 D̂x



u00
u10
· · ·
uMN

 . (82)

Here, D̂x is the one-dimensional derivative matrix associated with the GLL
points, which is applied to each row of the coefficients matrix. The y derivative
would then be defined following a similar process but applying the matrix D̂y

to each column. The general derivative operators can be defined very easily by
using the tensor-product definitions, which yields:

Dx = I ⊗ D̂x Dy = D̂y ⊗ I, (83)

17

Nek5000 Course 2021

Page 23



where I is the identity matrix. In the evaluation of a multidimensional PDE,
matrix-vector multiplications of the form v = (A⊗B)u are very common and
normally defined as:

vij =
n∑
l=1

m∑
k=1

ajlbikukl , i = 1, · · · ,m j = 1, · · · , n. (84)

In vector form, the same expression can be recast thanks to the associative
property of tensor product:

Cu = (A⊗ I)(I ⊗B)u. (85)

In practice, however, the matrix C does not need to be formed, as one can
evaluate the effect of matrix C on the vector as follows:

• Compute w = (I ⊗B)u

wij =
m∑
k=1

bikukj , i = 1, · · · ,m j = 1, · · · , n. (86)

• Then compute v = (A⊗ I)w

vij =
m∑
l=1

ajlwil =
m∑
l=1

wila
T
lj , i = 1, · · · ,m j = 1, · · · , n. (87)

This way, the evaluations can be done with a fewer number of operations.

5.2.1 Matrix-Matrix Operators

It is important to note that if the vector u is viewed as a matrix U such that
{U}ij = uij , then the tensor-products can be recasted in the following form:

(A⊗B)u = BUAT . (88)

These properties are extremely beneficial to the performance of SEM solvers.

5.3 Obtaining the Element Operators
The are many similarities with the process to get the element operators in 1D
to extended dimensions. Note that in the SEM, each element on the physical
domain x ∈ Ω must be mapped to the reference element in the computational
domain r ∈ Ω̂.

Usually iso-parametric mappings are employed, for instance for a 2D case:

x(r, s)|Ωe =
N∑
i=0

N∑
j=0

xeijπi(r)πj(s), (r, s) ∈ (−1, 1)2. (89)

The representation of a variable in the physical domain is then expressed as a
function of Lagrange interpolants which vary in the computational domain,

u(x, y) =
M∑
i=0

N∑
j=0

uijπM,i(r)πN,j(s). (90)

18

Nek5000 Course 2021

Page 24



Equal care must be taken with certain aspects, just as in the one-dimensional
SEM.

5.3.1 Chain Rule

Derivatives taken with respect to variables in the original domain must take into
consideration the chain rule:

∂u

∂x
= ∂u

∂r

∂r

∂x
+ ∂u

∂s

∂s

∂x
, (91)

or in Rd:
∂u

∂xk
=

d∑
k=1

∂u

∂ri

∂ri
∂xk

. (92)

5.3.2 Change of Integration Domain

Changing the integration domain, from the physical to the reference, brings with
itself the necessity to include the appropriate scaling factor. Thus, it is needed
to recall the definition of the Jacobian Determinant:

J(r) = det ∂xi
∂rj

= det

 ∂x1
∂r1

· · · ∂x1
∂rd

· · · · · · · · ·
∂xd

∂r1
· · · ∂xd

∂rd

 . (93)

The discretization of the diffusive term is presented in order to illustrate the
process. The d-dimensional form of the bi-linear diffusive term for a given
element is written as:

A(v, u) =
d∑
k=1

∫
Ωe

∂v

∂xk

∂u

∂xk
dx. (94)

The chain rule is applied to the derivatives and a change of variable is done in
the integration domain from Ωe to Ω̂:

A(v, u) =
d∑
i=1

d∑
j=1

∫
Ω̂

∂v

∂ri
(
d∑
k=1

∂ri
∂xk

∂rj
∂xk

J(r)) ∂u
∂rj

dr. (95)

Following this, all the metrics and geometry-associated variables can be grouped
together into a variable:

Gij(r) =
d∑
k=1

∂ri
∂xk

∂rj
∂xk

J(r), 1 ≤ i, j ≤ d. (96)

The integrals in the diffusion term can be numerically evaluated using the
quadrature rules, such that the following expression is obtained:

19

Nek5000 Course 2021

Page 25



A(v, u) =
d∑
i=1

d∑
j=1

N∑
klm

[
∂v

∂ri
Gij(r)

∂u

∂rj

]
(ξk,ξl,ξm)

ρkρlρm. (97)

All that is left is to expand u and v in terms of the Lagrange polynomials. In
this case, the differentiation procedures follows similar to the one already shown.
An example for a derivative in one of the directions is the following:

∂u

∂r1
|(ξk,ξl,ξm) =

N∑
p=0

D̂kpuplm = (I ⊗ I ⊗ D̂)u, k, l,m ∈ {0, · · · , N}3. (98)

Grouping the geometric terms and quadrature weights into a set of d2 diagonal
matrices Gij , i, j ∈ 1, · · · , d2 such that:

(Gij)k̂k̂ = [Gij ](ξk,ξl,ξm) ρkρlρm, (99)

with k̂ = 1 + k+ (N + 1)l+ (N + 1)2m where k, l,m ∈ {0, · · · , N}3and defining:

D1 = (I ⊗ I ⊗ D̂), D2 = (I ⊗ D̂ ⊗ I), D3 = (D̂ ⊗ I ⊗ I). (100)

In a final step, it is possible to achieve one compact form of the energy inner-
product:

A(v, u) = vT

D1
D2
D3

T G11 G12 G13
G21 G22 G23
G31 G32 G33

D1
D2
D3

u = vTDTGDu. (101)

From this expression, the element stiffness matrix is defined as Ke = DTGD.
The mass matrix is obtained by an extension of the previously shown procedure
and yields (in 3D) the following diagonal form:

Mî̂i = J(ξk, ξl, ξm)ρiρjρk î = 1 + i+ (N + 1)j + (N + 1)2k. (102)

6 Implementation: Matrix-Free Formulation
What follows is based on sections 8.1 - 8.3 in Deville et al. [2004]. In the previous
sections we learned how tensor-products are formally represented on paper.
Tensor-products are required for evaluation of the spectral operators, but it
is not feasible to form large assembled global matrices, because global matrix
operations are memory- and performance-wise expensive. Consider the example
of computing the diffusion term using the element stiffness matrix (Ke). The
overall operation can be represented by the following:

20

Nek5000 Course 2021

Page 26



• Local matrix-vector products: which is a local operation within an
element,

Ae = veTKeue ,

which in turn is a vectorizable algorithm and thus its performance is CPU
bounded; and

• Direct stiffness summation: which involves consecutive gather (QT )
and scatter (Q),

AL = QQTAe ,

which in turn is dominated by communications and thus its performance
is memory bandwidth bounded.

By splitting the operation to a two-step procedure allows Nek5000 to fine-tune
and optimize the overall performance.

6.1 Short detour: Vectorization and performance
Let us have a quick look at how to avoid common pitfalls to favour vectorization.
Compilers are smart and capable of vectorizing loops, provided:

• Dependencies are avoided, e.g.: backward substitution of a tri-diagonal
solve,
do i = n−1, 1 , −1

x ( i ) = (b( i ) − u( i ) ∗ x ( i +1) ) / d( i )
enddo

would be much slower than something like,
do i = 1 , n

x ( i ) = a ( i ) + b( i )
enddo

• Branching avoided: subroutines, functions, if statements, I/O;

• Data locality: strides in memory are aligned with cache lines.

6.2 Example of 3D gradient computation in Nek5000
To demonstrate all these concepts we take a look at how a gradient of any array
is computed in Nek5000. Let us recall that derivatives in each directions are:

• defined as tensor products (I ⊗ I ⊗D)ue, etc.,
• implemented as matrix-matrix multiplications ΣpDipu

e
pjk.

This ensures data locality and vectorization. To compute the gradient of an
array, the function gradm1 (see listing 1) is often employed. This ultimately calls
the matrix-matrix multiplication mxm subroutine.

For the 3-D case the gradient is locally evaluated with a matrix of shape (lx1
, lx1, lx1). Note that lx1 = m1 = n+1 is the polynomial order plus 1 to include
element boundaries. Within the subroutine local_grad3 the derivative matrices D
and DT are multiplied against a single element of the u array using subroutine
mxm.

21

Nek5000 Course 2021

Page 27



subroutine gradm1 ( ux , uy , uz , u )
c
c Compute g rad i en t o f T −− mesh 1 to mesh 1 ( v e l . to v e l . )
c Output : ux , uy , uz | Input : u
c

include ' SIZE '
include 'DXYZ'
include 'GEOM'
. . .

c
parameter ( lxyz=lx1 ∗ ly1 ∗ l z 1 )
real ux ( lxyz , 1 ) , uy ( lxyz , 1 ) , uz ( lxyz , 1 ) ,u ( lxyz , 1 )

! Scratch arrays
common /ctmp1/ ur ( lxyz ) , us ( lxyz ) , ut ( lxyz )

integer e

nxyz = lx1 ∗ ly1 ∗ l z 1
ntot = nxyz∗ n e l t

n = lx1 −1
do e=1, n e l t

i f ( i f 3 d ) then
c a l l l oca l_grad3 ( ur , us , ut , u , n , e , dxm1 , dxtm1 )
do i =1, lxyz

ux ( i , e ) = jacmi ( i , e ) ∗( ur ( i ) ∗rxm1 ( i , 1 , 1 , e )
$ + us ( i ) ∗sxm1 ( i , 1 , 1 , e )
$ + ut ( i ) ∗txm1 ( i , 1 , 1 , e ) )

uy ( i , e ) = jacmi ( i , e ) ∗( ur ( i ) ∗rym1 ( i , 1 , 1 , e )
$ + us ( i ) ∗sym1 ( i , 1 , 1 , e )
$ + ut ( i ) ∗tym1 ( i , 1 , 1 , e ) )

uz ( i , e ) = jacmi ( i , e ) ∗( ur ( i ) ∗rzm1 ( i , 1 , 1 , e )
$ + us ( i ) ∗szm1 ( i , 1 , 1 , e )
$ + ut ( i ) ∗tzm1 ( i , 1 , 1 , e ) )

else
. . .

enddo
c

return
end

Listing 1: Subroutine to compute gradient of an array u. Code snippet from
Nek5000/core/navier5.f

22

Nek5000 Course 2021

Page 28



subroutine l oca l_grad3 ( ur , us , ut , u ,N, e ,D, Dt)
c Output : ur , us , ut Input : u ,N, e ,D, Dt

real ur ( 0 : n , 0 : n , 0 : n ) , us ( 0 : n , 0 : n , 0 : n ) , ut ( 0 : n , 0 : n , 0 : n )
real u ( 0 : n , 0 : n , 0 : n , 1 )
real D ( 0 : n , 0 : n ) ,Dt ( 0 : n , 0 : n )
integer e

c
m1 = n+1
m2 = m1∗m1

c
c a l l mxm(d ,m1, u ( 0 , 0 , 0 , e ) ,m1, ur ,m2)
do k=0,n

c a l l mxm(u ( 0 ,0 , k , e ) ,m1, dt ,m1, us (0 , 0 , k ) ,m1)
enddo
c a l l mxm(u ( 0 , 0 , 0 , e ) ,m2, dt ,m1, ut ,m1)

c
return
end

Listing 2: Subroutine to compute the local gradient of a spectral element. Code
snippet from Nek5000/core/navier5.f

Derivative operators The matrices D and DT are initialized once and stored
in the include file DXYZ within a common block. In listing 3 we find the code
responsible for generating these operators.

Matrix multiplication The subroutine mxm is responsible for matrix-matrix
multiplication and has several optimized implementations in listing 4. If n2 = 4
and no preprocessor macros are active then mxf4 would be called by mxmf2 (see
listing 5).

6.2.1 Back to local_grad3

Now that we understand how the subroutine mxm works and how the derivative
operators are initialized, we turn our attention back to listing 2. Here, all three
derivatives on a 3-D matrix u(m,m,m) one direction at a time. To do so the
matrix is reshaped such that the leading dimension is the direction along which
the derivative operator would be multiplied.

Figure 8: Interpretation of 3D data array as a contiguous vector in memory.
Source: Deville et al. [2004].

1st mxm ur = (I ⊗ I ⊗ D̂) = D̂(m,m)u(m,m2). See figure 9.
subroutine l oca l_grad3 ( ur , us , ut , u ,N, e ,D, Dt)
Output : ur , us , ut Input : u ,N, e ,D, Dt
. . .

m1 = n+1
m2 = m1∗m1

23

Nek5000 Course 2021

Page 29



subroutine get_dgl l_ptr ( ip ,mx,md)
c
c Get pointer to GLL−GLL i n t e r p o l a t i o n dgl ( ) f o r p a i r (mx,md)
c

include ' SIZE '

c dgradl ho lds GLL−based d e r i v a t i v e / i n t e r p o l a t i o n o p e r a t o r s

parameter ( ldg=lxd ∗∗3 , lwkd=4∗lxd ∗ lxd )
common / dgradl / d( ldg ) , dt ( ldg ) , dg ( ldg ) , dgt ( ldg ) , j g l ( ldg ) , j g t

( ldg )
$ , wkd( lwkd )

i f ( ip . eq . 0 ) then
. . .

c a l l gen_dgl l (d( ip ) , dt ( ip ) ,md,mx, wkd)
. . .
return
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subroutine gen_dgl l ( dgl , dgt ,mp, np ,w)

c
c Generate d e r i v a t i v e from np GL po i n t s onto mp GL p o i n t s
c
c dgl = d e r i v a t i v e matrix , mapping from v e l o c i t y nodes to

p r e s s u r e
c dgt = transpose o f d e r i v a t i v e matrix
c w = work array o f s ize (3∗ np+mp)
c
c np = number o f p o i n t s on GLL g r i d
c mp = number o f p o i n t s on GL g r i d
c
c
c

real dgl (mp, np ) , dgt ( np∗mp) ,w(1)
c
c

i z = 1
id = i z + np

c
c a l l zwg l l (w( i z ) , dgt , np ) ! GL p o i n t s
c a l l zwg l l (w( id ) , dgt ,mp) ! GL p o i n t s

c
ndgt = 2∗np
l d g t = mp∗np
c a l l lim_chk ( ndgt , ldgt , ' l d g t ' , ' dgt ' , ' gen_dgl ' )

c
n = np−1
do i =1,mp

c a l l fd_weights_fu l l (w( id+i −1) ,w( i z ) ,n , 1 , dgt ) ! 1=1 s t
d e r i v .

do j =1,np
dgl ( i , j ) = dgt ( np+j ) !

D e r i v a t i v e matrix
enddo

enddo
c

c a l l transpose ( dgt , np , dgl ,mp)
c

return
end

Listing 3: Subroutines to compute and initialize the derivative operators. Code
snippet from Nek5000/core/navier1.f

24

Nek5000 Course 2021

Page 30



subroutine mxm( a , n1 , b , n2 , c , n3 )
c
c Compute matrix−matrix product C = A∗B
c f o r c on t i gu o u s l y packed matr i ce s A,B, and C.
c

real a ( n1 , n2 ) ,b ( n2 , n3 ) , c ( n1 , n3 )
c

. . .

#i f d e f BGQ
! Uses IBM Blue Gene s p e c i f i c s u b r o u t i n e s
. . .
goto 111

#endif

#i f d e f XSMM
! Uses LIBXSMM: a l i b r a r y f o r dense and sparse matrix

opera t ions
. . .
goto 111

#endif

#i f d e f BLAS_MXM
! Uses the BLAS l i b r a r y bundled with Nek5000 / prov ided at

compile−time
c a l l dgemm( 'N ' , 'N ' , n1 , n3 , n2 , 1 . 0 , a , n1 , b , n2 , 0 . 0 , c , n1 )
goto 111

#endif

! Uses the loop−u n r o l l e d matrix m u l t i p l i c a t i o n s u b r o u t i n e s
in mxm_std . f

101 c a l l mxmf2( a , n1 , b , n2 , c , n3 )

111 continue
. . .
return
end

Listing 4: Various matrix multiplication implementations. Code snippet from
Nek5000/core/mxm_wrapper.f

subroutine mxf4 ( a , n1 , b , n2 , c , n3 )
c

real a ( n1 , 4 ) ,b (4 , n3 ) , c ( n1 , n3 )
c

do j =1,n3
do i =1,n1

c ( i , j ) = a ( i , 1 ) ∗b (1 , j )
$ + a ( i , 2 ) ∗b (2 , j )
$ + a ( i , 3 ) ∗b (3 , j )
$ + a ( i , 4 ) ∗b (4 , j )

enddo
enddo
return
end

Listing 5: Matrix multiplication implementation when n2 = 4. Code snippet from
Nek5000/core/mxm_std.f

25

Nek5000 Course 2021

Page 31



c a l l mxm(d ,m1, u ( 0 , 0 , 0 , e ) ,m1, ur ,m2)
. . .

Figure 9: Interpretation of 3D data array as a n × n2 matrix. Source: Deville
et al. [2004].

2nd mxm us = I ⊗ D̂ ⊗ I = u(m,m)D̂
T
(m,m). See figure 10.

subroutine l oca l_grad3 ( ur , us , ut , u ,N, e ,D, Dt)
Output : ur , us , ut Input : u ,N, e ,D, Dt
. . .

m1 = n+1
m2 = m1∗m1
. . .
do k=0,n

c a l l mxm(u ( 0 ,0 , k , e ) ,m1, dt ,m1, us (0 , 0 , k ) ,m1)
enddo
. . .

Figure 10: Interpretation of 3D data array as a sequence of n matrices of shape
n× n. Source: Deville et al. [2004].

26

Nek5000 Course 2021

Page 32



Figure 11: Interpretation of 3D data array as a n2 × n matrix. Source: Deville
et al. [2004].

3rd mxm ut = D̂ ⊗ I ⊗ I = u(m2,m)D̂
T
(m,m). See figure 11.

subroutine l oca l_grad3 ( ur , us , ut , u ,N, e ,D, Dt)
Output : ur , us , ut Input : u ,N, e ,D, Dt
. . .

m1 = n+1
m2 = m1∗m1
. . .
c a l l mxm(u ( 0 , 0 , 0 , e ) ,m2, dt ,m1, ut ,m1)

return
end

Final step Once the derivatives in the transformed coordinates ur, us and ut
are computed, these arrays are multiplied with metric terms and the Jacobian
inside the subroutine gradm1 (listing 1) to yield the components of the gradient
in the original 3-D coordinate system.

References
Legendre wiki. https://en.wikipedia.org/wiki/Legendre_polynomials#Recurre
nce_relations. Accessed: 2021-05-20.

Milton Abramowitz. Handbook of Mathematical Functions, With Formulas,
Graphs, and Mathematical Tables,. Dover Publications, Inc., USA, 1974. ISBN
0486612724.

M. Deville, Paul Fischer, and E. H. Mund. High-Order Methods for Incompressible
Fluid Flow. Cambridge University Press, 2004. ISBN 0-511-03760-0.

George Karniadakis. Spectral/hp element methods for computational fluid dy-

27

Nek5000 Course 2021

Page 33

https://en.wikipedia.org/wiki/Legendre_polynomials#Recurrence_relations
https://en.wikipedia.org/wiki/Legendre_polynomials#Recurrence_relations


namics. Numerical mathematics and scientific computation. Oxford University
Press, Oxford, 2nd ed.. edition, 2005. ISBN 1-4294-2205-X.

28

Nek5000 Course 2021

Page 34



Pn − Pn−2 Methods for Incompressible Flows (I):

Fractional-step versus LU-decomposition

Saumitra Vinay Joshi∗ Hamidreza Abedi†

June 7, 2021

1 Introduction

The non-dimensionalized unsteady incompressible Navier-Stokes equations are

ut + (u ·∇)u = −∇p+
1

Re
∇2u, (1a)

∇ · u = 0. (1b)

These can be discretized using a number of spatial and temporal schemes. In
this report, I summarize studies by J. Blair Perot [4] comparing two very similar
approaches of discretizing and solving them. The first is the fractional step
method, and the second is the block LU-decomposition method. The studies
reveal that the block LU-decomposition method is a more appropriate choice
because:

• It does not require boundary-conditions for the intermediate velocity vari-
able, and

• It has no restriction of the order of accuracy of the splitting to first-order
and can be increased to arbitrarily high orders.

2 Fractional-step Method

Equations (1a) and (1b) are discretized in time, leaving the space-discretization
for later. Using the first-order backward Euler method for the diffusive terms
and first-order forward Euler method for the convective terms results in

un+1 − un

∆t
+ (un ·∇)un = −∇pn+1 +

1

Re
∇2un+1, (2a)

∇ · un+1 = 0. (2b)

∗ETSIAE, School of Aeronautics, Universidad Politecnica de Madrid, Plaza Cardenal Cis-
neros 3, Madrid E-28040 Spain, saumitravinay.joshi@alumnos.upm.es

†Chalmers University of Technology, Sven Hiltins Plats 1, Göteborg 41258,
hamidreza.abedi@chalmers.se

1

Nek5000 Course 2021

Page 35

mailto:saumitravinay.joshi@alumnos.upm.es
mailto:hamidreza.abedi@chalmers.se


The fractional-step method approximates Equation (2a) by calculating an
intermediate velocity u∗ by omitting the pressure. It then uses the pressure to
project u∗ into the space of “discretely incompressible” functions, giving the
final velocity. Mathematically, this looks like a time-splitting of (2a) as

u∗ − un

∆t
+ (un ·∇)un =

1

Re
∇2u∗, (3a)

un+1 − u∗

∆t
= −∇pn+1. (3b)

To determine the pressure in Equation (3b), take the divergence of Equation
(3b) and invoke the incompressibility condition of Equation (2b), giving the
pressure Poisson equation,

(∇ ·∇) pn+1 =
1

∆t
∇ · u∗. (4)

It can be solved as a repetition of three steps for every timestep, as

1

∆t

[
I − ∆t

Re
∇2

]
u∗ =

1

∆t
∇2un − (un ·∇)un, (5a)

∆t (∇ ·∇) pn+1 = ∇ · u∗, (5b)

un+1 = u∗ − ∆t∇pn+1. (5c)

The spatial discretization in the fractional-step method is only applied at
this stage on equations (5a) to (5c). While this makes the method independent
of any particular discretization scheme, it leads to the following two issues:

1. Need for additional boundary-conditions: As each of the three equations
(5a) to (5c) are discretized separately, they all require boundary-conditions.
This creates the need for explicitly providing boundary-conditions for u∗

and p. Boundary conditions for u∗ lead to several uncomfortable ques-
tions, such as which field out of u∗ and u is more physically correct [2].
There is considerable debate on the appropriate boundary-conditions for
discretized p [5, 1, 6].

2. Difficulty in reducing splitting error : By adding equations (3b) and (3a)

and comparing with Equation (2a), the error term is
∆t

Re
∇2∇pn+1. Thus

the fractional-step scheme is first-order accurate in time, and increasing
its temporal accuracy is known to be very difficult [3].

3 Generalized Block LU-decomposition Method

Consider discretizing equations (1a) and (1b) using any discretization scheme
in space and using first-order forward Euler method for the diffusive terms and

2

Nek5000 Course 2021

Page 36



first-order backward Euler method for the convective terms in time. Their
discrete form is written as

B
vn+1 − vn

∆t
− C (vn) = DTpn+1 +

1

Re
Avn+1, (6a)

−Dvn+1 = 0, (6b)

where C (·) is some conservative discrete convective operator, DT the dis-
crete gradient operator, A the discrete laplacian operator and D the discrete
divergence operator. Note that the boundary-values are included as constants
in appropriate locations in the solution-vectors.

Let us rearrange Equation (6a) as(
1

∆t
B +

1

Re
A

)
vn+1 −DTpn+1 = h, (7)

where h = C (vn) + 1
∆tBv

n. Let H =
(

1
∆tB + 1

ReA
)
. Add DTpn to both

sides of Equation (7) to reformulate the momentum equation in terms of the
update in pressure between consecutive timesteps (as is done in NEK5000) as

Hvn+1 −DT
(
pn+1 − pn

)
= h+DTpn, (8)

With an as-of-yet-unspecified operator Q, add to both sides of Equation (8)
the term −HQDT

(
pn+1 − pn

)
. Rearranging, we get

Hvn+1 −HQDT
(
pn+1 − pn

)
= h+DTpn

− (HQ− I)DT
(
pn+1 − pn

)
,

(9)

where the term on the second line is the error. Denoting pn+1 −pn by φn+1

and − (HQ− I)DT
(
pn+1 − pn

)
by en+1, we get the following system:(

H −HQDT

−D 0

)(
vn+1

φn+1

)
=

(
h+DTpn

0

)
+

(
en+1

0

)
, (10)

The LHS-matrix of Equation (10) can be block LU-decomposed as(
H −HQDT

−D 0

)
=

(
H 0
−D −DQDT

)(
I −QDT

0 I

)
(11)

such that the system is decomposed into two sub-systems as(
H 0
−D −DQDT

)(
v∗

φn+1

)
=

(
h+DTpn

0

)
+

(
en+1

0

)
(12)

and (
I −QDT

0 I

)(
vn+1

φn+1

)
=

(
v∗

φn+1

)
. (13)

These correspond to the following three steps per timestep:

Hv∗ = h+DTpn, (14a)

−DQDTφn+1 = Dv∗, (14b)

vn+1 = v∗ +QDTφn+1 (14c)

3

Nek5000 Course 2021

Page 37



with the splitting error en+1. Some points to note at this stage:

1. As all modifications to the fully discrete equations (6a) and (6b) are al-
gebraic, there is no requirement for additional boundary-conditions for
v∗.

2. While papers claim that there is no boundary treatment on the pressure
[4], it was shown in [2] that the LU-decomposition method (referred to
therein as ”Inexact Factorization”) weakly imposes a zero-normal-gradient
condition on p at the boundaries.

3. There is no error or approximation introduced in the discrete continuity
equation. As a result, mass conservation is guaranteed.

3.1 Choice of Q

The choice of Q controls the splitting error and the simulation cost. Consider
again the splitting error

en+1 =

( 1

∆t
B +

1

Re
A

)
︸ ︷︷ ︸

H

Q− I

DT
(
pn+1 − pn

)
. (15)

Choosing Q = H−1 eliminates the splitting error. This is known as the
Uzawa method [7]. However, this introduces a nested approximate matrix in-
version for every iteration of Equation (14b), which can be expensive.

For high-Re flows, the term 1
ReA is small, and we can choose Q = ∆tB−1.

For the spectral element method, the mass matrix B is easily invertible and
hence the nested iterations of the Uzawa method are eliminated. In this case,
the splitting error is first order

en+1 =
∆t

Re
AB−1DT

(
pn+1 − pn

)
. (16)

Other choices of Q can increase the order of accuracy of the splitting [4].

4 Implementation on NEK5000

The following steps show the implementation of the fractional-step method in
NEK5000. For the fluid problems, "subroutine fluid (igeom)" existing in
"drive2.f" is called in "drive1.f". The subroutine "fluid (igeom)" is a
driver for solving the incompressible Navier-Stokes equations.

In "drive1.f":

• ...

...

if (ifflow) call fluid (igeom)

!(Solve for fluid, velocity and pressure.)

...

...

4

Nek5000 Course 2021

Page 38



Subroutine "fluid (igeom)" is located at "drive2.f".

In "drive2.f":

• ...

...

subroutine fluid (igeom)

!(Driver for solving the incompressible Navier-Stokes equations.)

...

...

call plan3 (igeom)

!(iftran=1, ifrich=0)

!(Solve time-dependent (transient) equations, velocity and pressure.)

...

...

return

end

Subroutine "plan3 (igeom)"is placed in "planx.f". It computes pressure and
velocity coupling using fractional step method. In "planx.f", "subroutine

incomprn (ux,uy,uz,up)" located at induct.f is called.

In "planx.f":

• SUBROUTINE PLAN3 (IGEOM)

...

...

IF (IGEOM.EQ.1) THEN

! Old geometry

CALL MAKEF

!(Evaluate RHS (term h) in Eq. 14a.)

!(Extrapolate pressure, solve for intermadiate velocity.)

ELSE

!(IGEOM.EQ.2)

! New geometry, new b.c.

intype = -1

!(Implicit)

call sethlm (h1,h2,intype)

!(Set the variable property arrays h1 (diffusion) and h2 (helmholtz

operator) in the Helmholtz equation.)

call cresvif (resv1,resv2,resv3,h1,h2)

!(Compute start-residual/RHS in the velocity solver, second term

in RHS of Eq. 14a.)

5

Nek5000 Course 2021

Page 39



call ophinv (dv1,dv2,dv3,resv1,resv2,resv3,h1,h2,tolhv,nmxv)

!(Invert H in Eq. 14a as ”out = (h1A+ h2B)−1 ∗ inp”.)

call opadd2 (vx,vy,vz,dv1,dv2,dv3)

!(Add the old velocities plus the differences.)

The intermediate velocities (v∗) in Eq. 14a are made.

call incomprn(vx,vy,vz,pr)

!(Update the intermediate velocity (v∗) by computing Eq. 14b and

Eq. 14c.)

!(Located at "induct.f".)

ENDIF

...

...

RETURN

END

In "induct.f":

• subroutine incomprn (ux,uy,uz,up)

...

...

call opdiv (dp,ux,uy,uz)

!(Calculate RHS of Eq. 14b, Dv∗.)

...

...

call esolver (dp,h1,h2,h2inv,intype)

!(Solving φn+1 in Eq. 14b, called dp here.)

...

...

call add2(up,dp,ntot2)

!(Add dp to the pressure, up.)

call opgradt (w1 ,w2 ,w3 ,dp)

!(Calculate the gradient of the solution, DTφn+1.)

call opbinv (dv1,dv2,dv3,w1 ,w2 ,w3 ,h2inv)

!(Inverted mass matrix.)

...

call opadd2cm (ux ,uy ,uz ,dv1,dv2,dv3, dtb )

!(Make the second term (QDTφn+1) in Eq. 14c to update v∗.)

...

...

RETURN

END

Subroutine "ESOLVER (RES,H1,H2,H2INV,INTYPE)" is located at navier0.f.

In "navier0.f":

6

Nek5000 Course 2021

Page 40



• SUBROUTINE ESOLVER (RES,H1,H2,H2INV,INTYPE)

...

...

if (.not. ifsplit) then

if (param(42).eq.1) then

!(P042: linear solver for the pressure equation (0: GMRES, 1:

CG))

!(param(42) is hard-coded and set to be zero)

CALL UZAWA (RES,H1,H2,H2INV,INTYPE,ICG)

else

call uzawa gmres(res,h1,h2,h2inv,intype,icg)

!("subroutine uzawa gmres(res,h1,h2,h2inv,intype,iter)" is located

at "gmres.f")

!(Linear solver for the pressure equation (GMRES))

endif

else

...

...

RETURN

END

References

[1] Philip M. Gresho and Robert L. Sani. On pressure boundary conditions
for the incompressible navier-stokes equations. International Journal for
Numerical Methods in Fluids, 7(10):1111–1145, October 1987.

[2] J.L. Guermond, P. Minev, and Jie Shen. An overview of projection meth-
ods for incompressible flows. Computer Methods in Applied Mechanics and
Engineering, 195(44):6011–6045, 2006.

[3] Yvon Maday, Anthony T Patera, and Einar M Rønquist. An operator-
integration-factor splitting method for time-dependent problems: applica-
tion to incompressible fluid flow. Journal of Scientific Computing, 5(4):263–
292, 1990.

[4] J.Blair Perot. An analysis of the fractional step method. Journal of Com-
putational Physics, 108(1):51–58, 1993.

[5] Dietmar Rempfer. On Boundary Conditions for Incompressible Navier-
Stokes Problems. Applied Mechanics Reviews, 59(3):107–125, 05 2006.

[6] R. L. Sani, J. Shen, O. Pironneau, and P. M. Gresho. Pressure boundary con-
dition for the time-dependent incompressible navier–stokes equations. Inter-
national Journal for Numerical Methods in Fluids, 50(6):673–682, February
2006.

[7] Roger Temam. Navier-stokes equations: Theory and numerical analysis.
2:500 pp, 01 2001.

7

Nek5000 Course 2021

Page 41



Part 2: Solution-algorithms for the generalized

block-LU decomposition using SEM

Yashas Bharadhwaj∗

June 5, 2021

∗Dept. of Mechanics and Maritime sciences, Chalmers University of Technology, Göteborg,
Sweden

1

Nek5000 Course 2021

Page 42



1 Solution to the Stokes Problem

The stokes problem in matrix form is given by: H −DT
1

H −DT
2

−D1 −D2 0

 u1

u2

p

 =

 f
1
f

2
fp

 (1)

with H =
(
β0

∆tB + 1
ReA

)
is the Helmholtz operator [1].

The solution to the Stokes problem demands the use of iterative solvers. The
system presented in equation(1) can be solved with two approaches; A precondi-
tioned conjugate gradient method with the choice of Legendre-based quadrature
(i.e. Chebyshev) or to decouple pressure and velocity by formally carrying out
Block LU Decomposition (Uzawa Method) on the system.

Procedure undertaken by Nek5000 to solve for the N-S equation is as de-
scribed below:

Step 1. Compute intermediate velocity components

∆u∗ = H−1
(
hn +DT pn−1 −Hun−1

)
(2)

Step 2. Add contribution to velocity from previous time step

u∗ = un−1 + ∆u∗ (3)

Step 3. Solve the Poisson problem

E∆pn = Du∗ (4)

Step 4. Add pressure contribution from previous time-step

pn = pn−1 + ∆pn (5)

Step 5. Obtain updated velocity

un = u∗ + ∆un (6)

1.1 Solution scheme for updated velocity field

In PN − PN−2 method, solution to the updated velocity field is obtained by
contribution from two consecutive time steps, i.e.

Hun = hn−1 +DT pn−1 − ∆t

β0
HB−1DT∆pn (7)

2

Nek5000 Course 2021

Page 43



H
(
un−1 + ∆un

)
= hn−1 +DT pn−1 − ∆t

β0
HB−1DT∆pn (8)

H∆un = hn−1 +DT pn−1 −Hun−1 − ∆t

β0
HB−1DT∆pn (9)

Hence, upon solving for equations (2)-(6) along with ∆un (9), the difference
between two consecutive time steps is incorporated into the solver.

1.2 Preconditioning and pressure calculation

The ability of any given iterative method to arrive at the exact solution upon
certain iterations is highly dependent on properties of the matrix. This serves
as a justification for preconditioners.

For larger values of ∆t the Helmholtz operator reduces to H−1 ≈ Re.A−1,
which can very well serve as preconditioner (Stokes preconditioner). However,
when the choice of Q such that H−1 ≈ (∆t/β0)B−1 = Q is made, the previous
approximation holds inconsistent. As a consequence, it leads to splitting error
which then requires the use of Uzawa method to resolve this problem. Further-
more, Uzawa method with its nested iterations for the pressure problem in (5)
is to be solved.

To solve for the pressure, its perturbation equivalent (equation (4)) is solved
by invoking the esolver within incomprp. Furthermore, depending on the
fla raised by param(42), equation (5) is solved. If param(42) = 0, then GM-
RES method (uzawa_gmres) is implemented (see Algorithm 1), else CG solver
(uzawa) is implemented if param(42) = 1 (see Algorithm 2)

Implementation of both the iterative methods consists of evaluation of an
input vector by the cdabdtp routine (Application of E operator) (see Algorithm
3). Different choices for Q are implemented by supplying them through the
coefficient arrays of the Helmholtz operator H1 and H2. Solution for pressure
solver is implemented in the incomprp subroutine.

Algorithm 1 Uzawa Method: GMRES

1: procedure uzawa|(rcg)
2: call CHKTCG2 → check that tolerances are not very small for the solver
3: call CDABDTP → Apply E operator
4: if conv. criterion is satisfied:
5: break the loop
6: else: perform preconditioning based on param(43)

7: if param(43) == 1 → Schwarz preconditioning
8: else: HSMG preconditioning
9: call CDABDTP → Apply E operator

10: call ortho → orthogonalize w w.r.t null-space
11: call ortho → orthogonalize res w.r.t null-space
12: return res

3

Nek5000 Course 2021

Page 44



Algorithm 2 Uzawa Method: preconditioned conjugate gradient (pcg)

1: procedure uzawa|(rcg) input array (rcg) = Diu
∗
i

2: call CHKTCG2 → check that tolerances are not very small for the pcg solver
3: call UZPREC → precondition the input array
4: call convprn → check if convergence criterion satisfied
5: if conv. criterion is satisfied:
6: break the loop
7: else:
8: call CDABDTP → Apply E operator
9: call ortho → orthogonalize rcg w.r.t null-space

10: call UZPREC → precondition the input array
11: call ortho → orthogonalize rcg w.r.t null-space
12: return rcg

Algorithm 3 Application of E operator

1: procedure CDABDTP|(ap, wp, h1, h2, h2inv, intype)
2: call OPGRADT(TA1,TA2,TA3,WP) → tai

3: if inptype == 0 or inptype == 1:
4: call OPHINV(TB1,TB2,TB3,TA1,TA2,TA3,H1,H2,TOLHIN,NMXH) → tbi
5: else:
6: call OPBINV(TB1,TB2,TB3,TA1,TA2,TA3,H1,H2,TOLHIN,NMXH) → tbi
7: end if
8: call OPDIV(AP,TB1,TB2,TB3) → return ap
9: end procedure=0

2 References

References

[1] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for
Incompressible Fluid Flow. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, Cambridge, 2002.

4

Nek5000 Course 2021

Page 45



Pn-Pn Formulation and its Implementation in

Nek5000

David Krantz∗, Masumeh Gholamisheeri† and Martin Karp‡

October 6, 2021

1 Introduction

In this report, the Pn-Pn formulation for incompressible flows is derived and
its implementation in Nek5000 is introduced. Initially, the higher-order time
integration of the Navier-Stokes (NS) equations is demonstrated, which is based
on a semi-implicit explicit approach and thus a proper treatment of the pressure
term and stability and accuracy of the mixed scheme should be investigated.
In this report, the Karniadakis scheme [2] is used for the splitting of the in-
tegrated NS equations. By considering some assumption, a Poisson equation
for the pressure is derived and its corresponding pressure boundary condition
is introduced. However, since the pressure boundary condition contains terms
that should be evaluated at the new time step (i.e. n + 1) and previous time
steps (i.e. n), solving for the exact pressure boundary condition is difficult and
computationally expensive. In section 4, possible solutions to overcome this dif-
ficulty are mentioned and the most stable scheme is used. However, using this
scheme causes mass conservation errors known as splitting errors. In section 5
the order of these errors is demonstrated and it is expressed that the solution
lies in the control of boundary values (i.e. imposing suitable pressure bound-
ary conditions). The last part of this report deals with the low-Mach number
formulation of the compressible NS equations and a brief explanation of the
numerical approach for solving these equations. In the end, the implementation
of the Pn-Pn approach in Nek5000 is provided in section 7.

2 Navier-Stokes Equations

Navier-Stokes Formulation: The governing equations for Newtonian incom-
pressible flows with constant properties reads as

∂v

∂t
= −∇p+ νL(v) + N(v) in Ω, (1)

and the incompressibility constraint is defined as

Q = ∇ · v = 0 in Ω. (2)

∗KTH Numerical Analysis, davkra@kth.se
†KTH Engineering Mechanics, masumeh@kth.se
‡KTH Computational Science and Engineering, makarp@kth.se

1

Nek5000 Course 2021

Page 46

mailto:davkra@kth.se
mailto:masumeh@kth.se
mailto:makarp@kth.se


Here, v is the velocity vector, (= ux̂+vŷ+wẑ), p is the pressure, and kinematic
viscosity is shown by ν. The linear and nonlinear operators in NS equations are
represented by L and N, and are defined as

L(v) = ∇2v = ∇(∇ · v)−∇× (∇× v) (3)

N(v) = −1

2
[v · ∇v +∇(v · v)]. (4)

The nonlinear operator is written in the skew-symmetric form, which is a lin-
ear combination of convective and conservative forms [4]. Note that the skew-
symmetric form is not used in Nek5000, however, it was convenient to have it
in the convective formulation. The above-described NS equations require dis-
cretization in both time and space. Here, we integrate the equation (1) with the
use of high-order time-stepping schemes. This type of schemes give rise to mixed
explicit-implicit schemes. As a result, proper treatment of the pressure term and
the stability and accuracy of such mixed schemes should be investigated [2].

Integrating equation (1) over one time step, ∆t, results in

vn+1 − vn = −
∫ tn+1

tn

∇pdt+ ν

∫ tn+1

tn

L(v)dt+

∫ tn+1

tn

N(v)dt, (5)

where the superscript index n refers to time level tn = n∆t. The pressure term
is written as ∫ tn+1

tn

∇pdt = ∆t∇pn+1 (6)

where pn+1 is the scalar field that ensures that the final velocity field is incom-
pressible at the end of time level (n + 1) [2], meaning that the velocity field is
divergence free. The nonlinear and linear terms are approximated using explicit
and implicit schemes, respectively. The former is approximated using the Je or-
der scheme from the Adams-Bashforth family, while the latter is approximated
by a scheme of order Ji from the Adams-Moulton family. Hence,∫ tn+1

tn

N(v)dt = ∆t

Je−1∑
q=0

βqN(vn−q) (7)

and ∫ tn+1

tn

L(v)dt = ∆t

Ji−1∑
q=0

γqL(vn+1−q), (8)

where βq and γq are the appropriately chosen weights for explicit and implicit
schemes, respectively [1]. It should be noted that the reason for the choice of
implicit scheme for the linear term is the stability of the scheme. Also, it is
noteworthy that the left hand side of equation (5) is an illustration of a first
order method, and to obtain a so-called stiffly stable scheme we use a higher-
order method to discretize ∂v/∂t, we can generalize this for different orders
as

∂v

∂t
=
γ0v

n+1 −
∑Ji−1

q=0 αqv
n−q

∆t
, (9)

where αq are the coefficients of the stiffly stable scheme of order Ji. As for γ0 it

holds that γ0 =
∑Ji−1

q=0 αq. The solution to the above semi-discrete system, (5),
can beobtained by using the discretiziations shown in ,(6)-(9), and splitting the
computation into three substeps as is provided in section 3.

2

Nek5000 Course 2021

Page 47



3 Karniadakis Scheme

Commonly known as the Pn-Pn formulation, the Karniadakis scheme is not
necessarily constrained to only Spectral Element Methods, even if it was its
original focus and usage today. At its core, it simply decouples the pressure
and velocity from each other and can be applied to other methods as well. In
this section, we will introduce the splitting and provide an overview of how
the scheme is used to decouple the pressure and velocity. By inserting (9) and
discretizations of the linear and non-linear term similar to those in (7) and (8)
into (1), we arrive at the following semi-discrete system

γ0v
n+1 −

∑Ji−1
q=0 αqv

n−q

∆t
= −∇p̄n+1 + ν

Ji−1∑
q=0

γqL(vn+1−q) +

Je−1∑
q=0

βqN(vn−q).

(10)

In order to solve this system, the Karniadakis scheme splits the system into three
substeps. The idea being that we can use equation (10) to solve the following
split system

v̂ −
∑Ji−1

q=0 αqv
n−q

∆t
=

Je−1∑
q=0

βqN(vn−q) in Ω (11)

ˆ̂v − v̂

∆t
= −∇p̄n+1 in Ω (12)

γ0v
n+1 − ˆ̂v

∆t
= ν∇2vn+1 in Ω (13)

with Dirichlet boundary conditions

vn+1 = ~v0 on ∂Ω. (14)

However, in this system the velocity and pressure at time step n+ 1 are still
coupled and the velocity is not discretized. We need to address this and we do
so by first making the observation that the incompressibility condition must be
satisfied for v,

∇ · v = 0 in Ω. (15)

By taking the divergence of (10) we arrive at the following Poisson equation for
the pressure

∇2p̄n+1 = ∇ ·

(
v̂

∆t
+ ν

Ji−1∑
q=0

γqL(vn+1−q)

)
in Ω (16)

However, this system is still coupled since we need to evaluate ∇2vn+1. Follow-
ing the derivation of [3], we consider the decomposition of the velocity field v
into its irrotational and solenoidal components, vI and vS respectively, namely

v = vI + vS , (17)

where ∇ × vI = 0, and ∇ · vS = 0. For incompressible flows the irrotational
part vI conveniently vanishes. By utilizing this decomposition and the identity

3

Nek5000 Course 2021

Page 48



∇2vn+1 = ∇(∇ · vn+1)−∇× (∇× vn+1) shown in (3) we can rewrite ∇2vn+1

as
∇2vn+1 = −∇× (∇× vn+1), (18)

since vI is 0 for incompressible flows. What we now may do is approximate this
equation with an explicit scheme leading us to our final Poisson equation for
the pressure

∇2p̄n+1 = ∇ ·

(
v̂

∆t
+

Je−1∑
q=0

βq
(
−∇× (∇× vn−q)

))
, in Ω. (19)

We now have almost all the tools needed to solve the system. First we use (11)
to obtain the nonlinear terms, then we use this to calculate the pressure at the
next time step according to (19) and lastly we use the computed pressure field
to solve the Helmholtz equation for the velocity in (13). This splitting of the
pressure equation and velocity is at the very core of the Karniadakis scheme
used in Nek5000. The small changes necessary for the Low Mach formulation
is described in [5].

However, the steps described here are not sufficient in order to obtain a
solution. While we have prescribed boundary conditions for the volcity, the
boundary conditions for the pressure is an open question. Imposing proper
boundary conditions for the pressure Poisson equation (19) is incredibly im-
portant for the accuracy of this method and we will address this in the next
section.

4 Pressure Boundary Condition

Imposing a suitable boundary condition to the Poisson equation for the pressure
in (19) is not trivial. We approach this problem by first deriving the pressure
boundary condition from the semi-discrete formulation and then approximating
the unknown implicit terms using a high-order extrapolation scheme. Solving
the semi-discrete form in (10) for ∇p̄n+1 gives

∇p̄n+1 = −
γ0v

n+1 −
∑Ji−1

q=0 αqv
n−q

∆t
+ νγ0L(vn+1)

+ ν

Ji−1∑
q=1

γqL(vn+1−q) +

Je−1∑
q=0

βqN(vn−q),

(20)

where we have taken the first term of the linear summation term outside of its
summation. We note that by doing this both summations are explicitly known
since they only depend on velocities up to time step n. Then, by taking the
partial derivative of (20) with respect to the surface normal at the boundary
gives

∂p̄n+1

∂n
= −n ·

(
γ0v

n+1 −
∑Ji−1

q=0 αqv
n−q

∆t

)
+ νγ0

(
n · L(vn+1)

)
+ n ·

(
ν

Ji−1∑
q=1

γqL(vn+1−q) +

Je−1∑
q=0

βqN(vn−q)

)
, on ∂Ω.

(21)

4

Nek5000 Course 2021

Page 49



Since we assume that we have Dirichlet boundary conditions on the velocity we
treat both the first and last term of (20) as known. The difficulty now lies in
computing L(vn+1) = ∇(∇·vn+1)−∇×(∇×vn+1) = ∇Qn+1−∇×(∇×vn+1)
since vn+1 is unknown.

There are different ways of handling this problematic term and we will briefly
mention four approaches, and then present the one that is used in Nek5000. The
first approach is to treat the term as is, but the problem with this is that it
results in a coupled system between the pressure and velocity at time step n+1,
which is what we want to avoid by performing the aforementioned splitting.
Next, due to the incompressibility constraint, we require ∇Qn+1 = 0. Thus, it
would not be unreasonable to set the problematic term to zero. However, this
approach introduces large errors at boundaries. More specifically, this error,
called the splitting error, becomes the dominating error factor, which in turn
limits the resulting scheme to first order regardless of the order of the temporal
scheme [3]. The third alternative is to approximate the velocity field using
what we know, i.e. replace L(vn+1) with L(vn), or approximating vn+1 using a
high-order explicit extrapolation scheme. This approach results in a high-order
scheme. However, it may experience weak instability [2]. The last approach,
which is the one used in Nek5000, is to replace L(vn+1) by the rotational form
of the Laplacian ωn+1 = ∇ × (∇ × vn+1) as in (17)-(18), which also yields a
high-order scheme. The advantage of this scheme is that we gain a factor ∆t1/2

in accuracy compared to the previous one [3].
The latter approach was then extended in [2] by considering an approxima-

tion of the unknown ωn+1 using an explicit scheme

ω̃n+1 =

Je−1∑
q=0

βq(∇× (∇× vn−q)). (22)

Inserting (18) and (22) into (21) gives the final expression of the pressure bound-
ary condition

∂p̄n+1

∂n
= −n ·

(
γ0v

n+1 −
∑Ji−1

q=0 αqv
n−q

∆t

)
+ n ·

(
Je−1∑
q=0

βqN(vn−q)

+ν

Ji−1∑
q=0

γq∇Qn+1−q + ν

Je−1∑
q=0

βq(−∇× (∇× vn−q))

)
, on ∂Ω.

(23)

Note that the first term of the third summation, γ0∇Qn+1, is set to zero since we
require Qn+1 = 0 in order to fulfil the incompressibility constraint. Solving the
Poisson equation for the pressure in (19) with the Neumann boundary conditions
in (23) requires a compatibility condition. However, this condition is always
satisfied if v̂ is defined as in (11), see [2] for more details.

5 Splitting Error

This section describes how the splitting error affects the pressure computations
but also how it relates to the accuracy of the global solution.

5

Nek5000 Course 2021

Page 50



Rewriting the pressure boundary condition in (21) using the rotational form
of the Laplacian gives

∂p̄n+1

∂n
= −n ·

(
γ0v

n+1 −
∑Ji−1

q=0 αqv
n−q

∆t

)

+ n ·

(
Je−1∑
q=0

βqN(vn−q) + ν

Ji−1∑
q=0

(
γq∇Qn+1−q + ωn+1

))
.

(24)

By comparing (24) with (23) we see that an error is introduced due to the
approximation ω̃n+1 of ωn+1. This difference originates from the splitting errors.
More specifically, the difference is

‖ωn+1 − ω̃n+1‖ = O
(
∆tJe

)
, (25)

where Je is the order of the explicit extrapolation scheme.
If we take the divergence of the semi-discrete formulation in (10) we have

γ0Q
n+1 −

∑Ji−1
q=0 αqQ

n−q

∆t
− γ0∇2Qn+1 = −∇2p̄n+1

+∇ ·

(
ν

Ji−1∑
q=1

γqL(vn+1−q) +

Je−1∑
q=0

βqN(vn−q)

)
.

(26)

Assuming that the divergence of the velocity field is zero for all time steps up
to n+ 1, then (26) reads

∇2p̄n+1 = ∇ ·

(
v̂

∆t
+ ν

Ji−1∑
q=0

γqL(vn+1−q)

)
, (27)

which is the Poisson equation for the pressure previously seen in (16). Here, v̂
is defined in (11). Suppose that ∇2p̄n+1 is computed using (27), then

γ0Q
n+1 −

∑Ji−1
q=0 αqQ

n−q

∆t
− γ0∇2Qn+1 = 0 (28)

should hold. Assume instead that the divergence of the velocity field is zero for
all time steps prior to n+ 1, then Qn+1 is found as

Qn+1 − ν∆t∇2Qn+1 = 0, (29)

which is a Helmholtz equation for Qn+1. Since (29) is elliptic we have a maxi-
mum value principle interpretation of it that says that Qn+1 takes its maximum
value on ∂Ω. From (29) we also see that if Qn+1 6= 0 on ∂Ω, then Qn+1 de-
cays exponentially to zero with a rate of s/l, where s is a general coordinate
normal to the boundary and l =

√
ν∆t is known as the (numerical) boundary

layer thickness. We note that l → 0 as Re → ∞ since ν ∝ Re−1, i.e. that the
approximation becomes better for large Reynolds numbers.

The above shows that the divergence at step n+1 is dominated by its bound-
ary values ∂Q/∂n or by the divergence in the previous step. The problem of
controlling Qn+1 thus lies in the control of its boundary values, which in turn

6

Nek5000 Course 2021

Page 51



corresponds to imposing suitable pressure boundary conditions [3]. Further-
more, it was shown in [2] that the time-differencing error of the velocity field
is one order smaller in ∆t than the corresponding error of boundary divergence
∂Q/∂n. But, the accuracy of ∂Q/∂n depends on the treatment of the pressure
boundary condition. We thus expect that approximating the pressure boundary
condition with e.g. a first-order method would result in second-order results in
the velocity field.

To conclude, the temporal accuracy of the global solution is directly influ-
enced by the boundary values of the divergence, which in turn depends on the
treatment of the pressure boundary condition [2].

6 Low-Mach Number Formulation

In the sections above, the Navier-Stokes equations for incompressible flows were
approximated with an explicit-implicit schemes. It is interesting to look into the
approximate equations for compressible flows in the absence of high frequency
acoustic waves. The resulting equations when the Mach number approaches
zero are as follow [5];

ρcp(
∂T

∂t
+ v · ∇T ) = ∇ · λ∇T +

N∑
i=1

h◦i Ψ̇i −∇ · ρT
N∑
i=1

cp,iYiVi +
∂P0

∂t
, (30)

ρ(
∂Yi
∂t

+ v · ∇Yi) = −∇ · ρYiVi + Ψ̇i. i = 1, . . . , N , (31)

P0 = ρRT , (32)

ρ(
∂v

∂t
+ v · ∇v) = −∇p+∇ · µ

(
∇v + (∇v)T − 2

3
(∇ · v)I

)
, (33)

∂ρ

∂t
+ v · ∇ρ = ρ∇ · v . (34)

In the above equations, temperature field is shown by T , ρ is the density, and
Yi and Vi are the mass fraction and diffusion velocity of the i-th species [6].
The heat of formation and rate of production of the i-th species are denoted
by h◦i and Ψ̇i, respectively. The heat conductivity and dynamic viscosity are
shown by λ and µ, and cp,i is the specific heat capacity of the i-th species.
The equations (31)-(34) are derived from the balance of ε◦, where ε = γM2,
where γ is the ratio of specific heats, and M is the Mach number. Here, p0 is
the thermodynamic pressure and p is the dynamic pressure, where p0 can only
be a function of time. In an open system where the pressure has to reach a
constant value at infinity, (i.e. atmospheric pressure), the last term of equation
(30) vanishes.

The phenomena that are involved in a system of chemically-reactive flow in-
cludes hydrodynamic, diffusion, transport and thermo-chemistry [5]. To present
a numerical approach for the integration of the governing equations, several
simplified assumptions should be made. 1) The transport processes are ignored,
leading to a single-step reaction mechanism. This means that all species have
the same molecular weight, specific heat capacity and binary diffusion coeffi-
cients, (i.e. Dij , that appears in the definition of Vi). 2) All dynamic transport

7

Nek5000 Course 2021

Page 52



coefficients µ, λ, ρD, and specific heat capacity cp are assumed to be indepen-
dent of temperature. As a result, the kinematic transport coefficients, ν, α and
D become directly proportional to temperature. 3) Thermodynamic pressure is
assumed to be constant in both time and space (open system assumption). In
addition, the reaction rate is written in the Arrhenius form. Arrhenius equation
provides the dependence of a reaction rate constant of a chemical reaction to
the absolute temperature.

k = Ae
−Ea
RT (35)

where k is the rate constant (i.e. frequency of collisions resulting in a reaction),
A is the pre-exponential factor that is a constant for each chemical reaction, Ea

is the activation energy for the reaction and T is the absolute temperature (in
Kelvin).

Once the equations (30)-(34) are nondimensionalized with appropriate quan-
tities, and considering the above-mentioned simplifying assumptions, the system
of equations reads as

∂T̃

∂t̃
+ ṽ · ∇̃T̃ =

α̃

RePr
∇̃2T̃ +Da

N∑
i=1

h̃◦i
˙̃ ′
Ψi , (36)

∂Ỹi

∂t̃
+ ṽ · ∇̃Ỹi =

D̃

ReSc
∇̃2Yi +Da

˙̃ ′
Ψi, i = 1, . . . , N , (37)

1 = ρ̃T̃ , (38)

(
∂ṽ

∂t̃
+ ṽ · ∇̃ṽ) = −1

ρ̃
∇̃p̃+

ν̃

Re
(∇̃2ṽ +

1

3
∇̃(∇̃ · ˜̃v)) , (39)

∇̃ · ṽ =
1

RePr
∇̃2T̃ +Da

N∑
i=1

h̃◦i
T̃

˙̃ ′
Ψi , (40)

In the above equations, all variables with tildes are nondimensional, and Re,
Pr and Sc are Reynolds, Prandtl (ratio of momentum diffusivity to the thermal
diffusivity) and Schmidt (ratio of viscous diffusion to mass diffusion) numbers
respectively, Da is the pre-exponential Damköhler number (ratio of the flow
time scale to the chemical time scale) for one step reaction. The continuity
equation (34), is simplified using energy (30) and state (32) equations, and it
shows that the only nonzero divergence of the velocity field is the heat release
by chemical reactions and diffusive heat transfer.

6.1 Numerical approach for low-Mach number

The terms of the energy and species equations (36)-(37) are advanced in time
implicitly, (due to the presence of chemical reaction source term that involves
different time scales and introduces stiffness), except for the convective terms.
For the convective term, a high-order explicit extrapolation for the velocity is
used. For time discretization of the momentum equation, a semi-implicit split-
ting method is used. Since the velocity field responds to changes in temperature
and density on a slower inertial time scale, the updated temperature and species

8

Nek5000 Course 2021

Page 53



field is used to determine density from equation (38), divergence of the velocity
field (40) and kinematic viscosity. The discretized system reads

1

∆t

J∑
q=0

αqT
n+1−q = −(

J−1∑
q=0

βqv
n−q) · ∇Tn+1 +

α

RePr
∇2Tn+1 +Da

N∑
i=1

h◦i Ψ̇i
′
. ,

(41)

1

∆t

J∑
q=0

αqY
n+1−q
i = −(

J−1∑
q=0

βqv
n−q) · ∇Y n+1

i +
D

ReSc
∇2Y n+1

i +DaΨ̇i
′
, (42)

Qn+1
T =

1

ReSc
∇2Tn+1 +Da

N∑
i=1

h◦i Ψ̇i
′

Tn+1
, (43)

1

∆t

J∑
q=0

αqv
n+1−q = −

J−1∑
q=0

βq(v · ∇v)n−q − 1

ρ
∇p+

ν

Re
(∇2v +

1

3
∇(∇ · v))n+1 ,

(44)
where Qn+1

T is the thermal divergence of the velocity field and αq and βq are
the coefficients of implicit and explicit parts of the J-th order time integration
scheme. All quantities which are functions of temperature and mass fractions
in the general case (α, D, ν, ρ and Ψ̇′i) are evaluated using Tn+1 and Y n+1

i .
All convective terms in all equations are integrated explicitly or semi-explicitly.
The time integration method is based on the backward differentiation, similar
to the integration of species and energy equations. Similar to the incompressible
flows, a pressure Poisson equation is derived that is accounting for the non-zero
thermal divergence of the velocity field.

The integration of (44) is explicit for the non-linear convective terms and
implicit for the viscous and pressure terms. It starts with the integration of the
convective terms

v̂

∆t
− 1

∆t

J−1∑
q=0

αqv
n−q = −

J−1∑
q=0

βq(v · ∇v)n−q . (45)

Then a variable coefficient Poisson equation is derived for the pressure p, by
taking the divergence of (44).

∇ · ( ∇p
ρn+1

) =
∇ · v̂ − γ0(∇ · v)n+1

∆t
+

1

Re
∇ · νn+1(∇2v +

1

3
∇(∇ · v))n+1 . (46)

To decouple the pressure and velocity calculation, the terms involving vn+1 in
the pressure equation (46) have to be expressed in terms of the known quantities.
Hence,

∇· ( ∇p
ρn+1

) =
∇ · v̂ − γ0(∇ · v)n+1

∆t
+

1

Re
∇· νn+1(

4

3
∇(∇·v)−∇× (∇×v))n+1 .

(47)
Now the velocity field is decomposed into two parts, irrotational and solenoidal,
v = vs + vI, where the vI is treated implicitly using thermal divergence of the
velocity field, (i.e. (∇·v)n+1 = (∇·vI)n+1 ≈ Qn+1

T ) and vs is treated explicitly

9

Nek5000 Course 2021

Page 54



(i.e. (∇ × v)n+1 = (∇ × vs)
n+1 ≈

∑J−1
q=0 βqω

n−q), where ω is the vorticity.
Consequently, the pressure equation is written as

∇· ( ∇p
ρn+1

) =
∇ · v̂ − γ0Qn+1

T

∆t
+

1

Re
∇·νn+1(

4

3
∇Qn+1

T −
J−1∑
q=0

βq∇×ωn−q) . (48)

The boundary condition for the pressure equation is derived by taking dot prod-
uct of (44) in the direction normal to the boundaries n̂. This results in a
Neumann pressure boundary condition and Dirichlet boundary conditions for
velocity

1

ρn+1

∂p

∂n
= −∂(n̂ · v)

∂t
−n̂·

J−1∑
q=0

βq(v·∇v)n−q+
νn+1

Re
n̂·(4

3
∇Qn+1

T −
J−1∑
q=0

βq∇×ωn−q) .

(49)
The first term in the right hand side of (49) is known for Dirichlet boundary
condition. The rest of the splitting scheme consists of the incorporation of the
pressure correction to the velocity field and integration of the viscous part of
the momentum equation in the following two steps:

ˆ̂v − v̂

∆t
= − ∇p

ρn+1
, (50)

− νn+1

Re
∇2vn+1 +

γ0v
n+1

∆t
=

ˆ̂v

∆t
+

1

3

vn+1

Re
∇Qn+1

T . (51)

The splitting scheme described above gives overall high-order of accuracy in
time and minimal errors in mass conservation i.e. splitting errors. It was shown
that the splitting errors are always smaller than the formal truncation error
O(∆tJ) of the J-th order integration scheme [5]. To complete the discretization
of the system mentioned above, a global spectral or spectral element method
can be used for the spatial discretization.

7 Implementation

In this section we will go through the implementation of the Pn-Pn method
with support for low-Mach reactive flows [5] in Nek5000. Overall, everything
related to this implementation is located in the file plan4.f. In this file we can
find the main subroutine plan4 that computes one time step according to the
Karniadakis scheme. This subroutine plan4 is shown in Listing 1. For clarity,
some common blocks have been omitted. Overall, the subroutine can be split
into three parts, roughly equivalent to the equations for the explicit factors (11)
(lines 8 - 19), the pressure (19) (lines 33 - 43) and the momentum (13) (lines
48 - 54). We will cover each of these parts from a higher level, and we will also
provide a stepping point for where related subroutines are located if one wants
a more detailed understanding. One thing to note, is that in Nek5000 we do not
solve for p̄n+1, but rather always for the difference ∆p = p̄n+1 − p̄n, the impact
of this is purely algebraic though.

10

Nek5000 Course 2021

Page 55



7.1 Explicit terms

The first steps of computing one time step is to compute the forcing contribution
from the nonlinear terms as well as the external forces, corresponding to v̂ = v∗.
This is implemented in Nek5000 in the subroutine makef (located in navier1.f)
which calculates the explicit contributions from the convection and external
forces such as gravity or a set pressure gradient. In addition to this, the BDF
contributions from previous velocity fields are computed on lines 10-12. With
the values from makef bfx, bfy, bfz and the explicit velocity contributions
vx_e, vy_e, vz_e, the right hand side of the pressure Poisson equation can
then be computed.

7.2 Pressure solve

Using the values from makef and sumab, the right hand side for the pressure
equation is computed in the call to crespsp on line 33. This subroutine is
also located in plan4.f. In this subroutine, crespsp, the operations necessary
to obtain the correct right hand side shown in (19), including the Neumann
boundary conditions for the pressure are computed. This Neumann boundary
condition is enforced by setting the appropriate values on the boundary for the
right hand side. In addition, if we solve for low-Mach and reactive flows, these
contributions, as shown in (48), are also taken into account. With the residual
computed in crespsp the system is then solved in the call to hsolve with a
preconditioned GMRES solver.

7.3 Velocity solve

Using the results from the pressure solve, the right hand side for the velocity as
shown in equation (13) is then computed in cresvspr on line 52. This is less
involved than for the pressure since we are only dependent on the explicit terms
and the gradient of the new pressure field. This linear Helmholtz equation is
then solved for in the call on line 54 to ophinv which solves for the velocity in
the x, y and z directions respectively with a preconditioned CG solver.

References

[1] C William Gear. Numerical initial value problems in ordinary differential
equations. Prentice-Hall series in automatic computation, 1971.

[2] George Em Karniadakis, Moshe Israeli, and Steven A Orszag. High-order
splitting methods for the incompressible navier-stokes equations. Journal of
Computational Physics, 97(2):414–443, 1991.

[3] Steven A Orszag, Moshe Israeli, and Michel O Deville. Boundary conditions
for incompressible flows, 1986.

[4] Einar Malvin Rønquist. Optimal spectral element methods for the unsteady
three-dimensional incompressible Navier-Stokes equations. PhD thesis, Mas-
sachusetts Institute of Technology, 1988.

11

Nek5000 Course 2021

Page 56



[5] AG Tomboulides, JCY Lee, and SA Orszag. Numerical simulation of low
mach number reactive flows. Journal of Scientific Computing, 12(2):139–
167, 1997.

[6] F. A. Williams. Combustion Theory. CRC Press, 1985.

12

Nek5000 Course 2021

Page 57



1 subroutine plan4 ( igeom )
2
3 NTOT1 = lx1 ∗ l y1 ∗ l z 1 ∗NELV
4
5 i f ( igeom . eq . 1 ) then
6
7 ! compute e x p l i c i t c on t r i b u t i on s bfx , bfy , b f z
8 ca l l makef
9

10 ca l l sumab( vx e , vx , vxlag , ntot1 , ab , nab )
11 ca l l sumab( vy e , vy , vylag , ntot1 , ab , nab )
12 i f ( i f 3 d ) ca l l sumab( vz e , vz , vzlag , ntot1 , ab , nab )
13
14 else
15
16 i f ( i f l omach ) ca l l opcolv ( bfx , bfy , bfz , vt rans )
17
18 ! add user de f ined d ivergence to q t l
19 ca l l add2 ( qt l , usrdiv , ntot1 )
20
21 i f ( igeom . eq . 2 ) ca l l l a g v e l
22
23 ! mask D i r i c h l e t boundaries
24 ca l l bcd i rvc (vx , vy , vz , v1mask , v2mask , v3mask )
25
26 ! compute pressure
27 ca l l copy ( pr lag , pr , ntot1 )
28 i f ( i c a l l d . eq . 0 ) tp r e s =0.0
29 i c a l l d=i c a l l d+1
30 npres=i c a l l d
31 etime1=dnekclock ( )
32
33 ca l l c re spsp ( r e sp r )
34 ca l l i nv e r s 2 (h1 , vtrans , ntot1 )
35 ca l l r z e r o (h2 , ntot1 )
36 ca l l c t o l s p l ( t o l s p l , r e sp r )
37 napproxp (1 ) = laxtp
38 ca l l hso lve ( ’PRES ’ , dpr , respr , h1 , h2
39 $ , pmask , vmult
40 $ , imesh , t o l s p l , nmxp, 1
41 $ , approxp , napproxp , binvm1 )
42 ca l l add2 ( pr , dpr , ntot1 )
43 ca l l ortho ( pr )
44
45 tp r e s=tp r e s+(dnekclock ( )−etime1 )
46
47 ! compute v e l o c i t y
48 i f ( i f s t r s .and . . not . i f a x i s ) then
49 ca l l bcneutr
50 ca l l cresvsp weak ( res1 , res2 , res3 , h1 , h2 )
51 else
52 ca l l c r e sv sp ( res1 , res2 , res3 , h1 , h2 )
53 endif
54 ca l l ophinv (dv1 , dv2 , dv3 , res1 , res2 , res3 , h1 , h2 , tolhv , nmxv)
55 ca l l opadd2 (vx , vy , vz , dv1 , dv2 , dv3 )
56
57 endif
58 return
59 END

Listing 1: One step of the Karniadakis scheme as implemented in Nek5000.

13

Nek5000 Course 2021

Page 58



Iterative solvers and projection method

Simon Kern∗, Valerio Lupi† and Vitor Kleine‡

June 9, 2021

1 Iterative solvers and projection method

Consider the n× n linear system

Ax = b. (1)

The computational complexity of direct algorithms to solve the linear system
is O(n3). The linear systems solved in Nek5000 can easily have an order of
106 or greater. For such large sparse matrices, the computational cost of di-
rect methods is prohibitively expensive. Instead, Nek5000 employs iterative
methods, such as the Generalized Minimal Residual (GMRES) method and the
Conjugate Gradient (CG) iteration, that rely on projection methods to find an
approximate solution.

Another advantage of iterative methods is that the matrix A does not need
to be formed or stored explicitly. Nek5000 is matrix-free, meaning that only the
product Ax, which is of size n, is available through a function, as opposed to
the matrix A which, although typically sparse, is n × n and is never explicitly
formed.

This report gives an overview of projection methods, iterative solvers, pre-
conditioners, and their implementation in Nek5000. For detailed discussion
about the methods, the reader is referred to section 2.7.4 of [2], chapter IV of
[8] and chapters 5 and 6 of [7].

1.1 Overview of the methods

In this section we present the theoretical foundation of projection methods, the
central component of the numerical schemes used in Nek5000 to solve large,
sparse linear systems of equations. Projection methods are a broad class of
methods used for approximating the solution of linear systems on a subspace.
In order to find the solution to the linear system of the form Ax = b, Nek5000
employs two projection approaches:

• Iterative solvers that are in the broad category of projection methods (such
as GMRES and CG); and

∗KTH Engineering Mechanics, skern@mech.kth.se
†KTH Engineering Mechanics, lupi@mech.kth.se
‡KTH Engineering Mechanics, vitok@mech.kth.se

1

Nek5000 Course 2021

Page 59

mailto:skern@mech.kth.se
mailto:lupi@mech.kth.se
mailto:vitok@mech.kth.se


• Explicit projection onto prior solutions of the linear system, before calling
the iterative solvers.

Both GMRES and CG, described in the following sections, search for ap-
proximate solutions x̃ belonging to a lower-dimensional Krylov subspace. The
m-order Krylov subspace, Km(A, b), generated by the matrix A and vector b, is
the subspace spanned by the vectors b, Ab, A2b, . . . , Am−1b:

Km(A, b) = span{b, Ab,A2b, . . . , Am−1b}. (2)

The exact solution x is guaranteed to lie in a Krylov subspace if A is non-
singular [5]. However, an acceptable approximation x̃ can be found, within a
desired tolerance, far before x is found exactly, especially if efficient precondi-
tioning is applied. Besides that, the Krylov subspace has properties that are
exploited by the iterative solvers in order to find the solution efficiently.

1.1.1 GMRES

The generalized minimal residual method (GMRES) finds the approximate so-
lution x̃ in the subspace Km(A, b) that minimizes ‖b− Ax‖2 using the Arnoldi
iteration.

The Arnoldi iteration (described in steps 1-7 of Algorithm 1) is a method
that finds a (m+ 1)×m upper Hessenberg matrix H̄m and a n×m orthogonal
matrix Vm = [v1 v2 . . . vm] whose columns represent an orthonormal basis of
Km(A, b), with v1 = b/‖b‖ such that:

AVm = Vm+1H̄m. (3)

Every vector x̃ in Km(A, b) can be written as x̃ = Vmy (y ∈ Rm). The
minimization problem becomes:

min
x∈Km

‖b−Ax‖2 = min
y∈Rm

‖b−AVmy‖2 = min
y∈Rm

‖ v1‖b‖ − Vm+1H̄my‖2

= min
y∈Rm

‖Vm+1(e1‖b‖ − H̄my)‖2 = min
y∈Rm

‖ e1‖b‖ − H̄my‖2
(4)

where e1 = (1, 0, 0, . . . , 0)T ∈ Rm+1 is the first vector of the standard basis. The
approximate solution x̃ at step m can be calculated from:

x̃ = Vmỹ (5)

with
ỹ = arg min

y∈Rm
‖ e1‖b‖ − H̄my‖2. (6)

The minimization problem (6) is a linear least-square problem. It is an
overdetermined linear system of dimension (m+1)×m that is solved in Nek5000
using Givens rotation matrices Gj (described in steps 8-11 of Algorithm 1),
following the original procedure of GMRES [6]. In this context, Givens rotation
matrices are unitary matrices designed to transform the Hessenberg matrix H̄m

into the (m+ 1)×m matrix R̄m = Gm . . . G2G1H̄m that is an upper triangular
matrix with an added row of zeros. Since Gj are unitary, the minimization
problem becomes:

ỹ = arg min
y∈Rm

‖ e1‖b‖ − H̄my‖2 = arg min
y∈Rm

‖γm − R̄my‖2 (7)

2

Nek5000 Course 2021

Page 60



where γm = Gm . . . G2G1e1‖b‖. Also, it can be shown that the residual can be
read directly from the last element of γm. Hence, there is no need to calculate ỹ
at every iteration. At the end of the iterative process, the linear system Rmỹ =
γm is solved by backward substitution (where the square upper triangular matrix
Rm is formed by the first m rows of R̄m). Further details on how Givens
rotations are applied to GMRES can be found in [6] or section 6.5.3 of [7].

Algorithm 1 Standard GMRES iteration

1: γ = ‖b‖2e1 ! Initialize right hand side
2: v1 = b/‖b‖2 ! Initialize V with v1
3: for j = 1, . . . ,m do ! m-step Arnoldi factorization
4: w = Avj ! Apply operator
5: hj = V Tw ! Compute new column hj of H

(Project w onto V )
6: w = w − V hj ! Orthogonalize against V

(Project w onto V⊥)
7: vj+1 = w/‖w‖2 ! Compute new column vj+1 of V
8: rj = Gj · · ·G2G1hj = Qhj ! Compute new column rj of R

using j Givens rotators
j − 1 previous, 1 new

9: γ = Gjγ ! Update right hand side
10: end for ! m steps or |γm+1| < tol
11: ỹ = R−1γ ! Compute ỹ
12: x̃ = V ỹ ! Compute approximate solution

1.1.2 CG

The conjugate gradient (CG) method is also a Krylov subspace iteration like
GMRES with the major difference that it is derived under the assumption that
A is symmetric positive definite (SPD). We therefore require

• symmetry: A = AT ,

• positive definiteness: xTAx > 0, ∀x 6= 0.

The first relation has a direct implication for the Arnoldi factorisation. The
upper Hessenberg matrix Hm, i.e. the projection of A on Km(A, b), is given by

Hm = V T
mAVm = V T

mA
TVm = (V T

mAVm)T = HT
m, (8)

since A = AT . Hm is both upper Hessenberg and symmetric and therefore
tridiagonal. This structure can be exploited to compute it more efficiently than
using the Arnoldi iteration since we can find a three-term recurrence relation
for subsequent columns in a procedure similar to the Lanczos iteration (see, e.g.
Lecture 36, chapter IV in [8]).

The second relation can be used to define a matrix norm related to A such
that

‖x‖A =
√
xTAx =

√
〈x, x〉A , (9)

where 〈·, ·〉A denotes the A-inner product. The definition is analogous for A−1

which is also SPD.

3

Nek5000 Course 2021

Page 61



The CG iteration finds the best approximation x̃ to x in the Krylov subspace
Km(A, b) w.r.t the A−1-norm, i.e. it minimises the residual

‖rm‖A−1 = ‖Ax̃− b‖A−1 = min
x∈Km

‖Ax− b‖A−1 , ∀m ≥ 1 (10)

In particular, this definition of the residual allows us to reformulate the min-
imisation problem as follows. Squaring both sides, we obtain

‖rm‖2A−1 = min
x∈Km

‖Ax− b‖2A−1 = min
x∈Km

(Ax− b)TA−1(Ax− b) (11)

= min
y∈Rm

(AVmy − b)TA−1(AVmy − b) (12)

= min
y∈Rm

yTV T
mAVmy − 2bTVmy + bTA−1b (13)

= min
y∈Rm

(AVmy − 2b)TVmy + bTA−1b, (14)

where in (12) we have used that x ∈ Km(A, b)⇔ ∃y ∈ Rm, x = Vmy. The result
is an unconstrained quadratic optimisation problem where the gradient and the
hessian with respect to y are given by p = 2(AVmy− b)TVm and h = 2V T

mAVm,
respectively. With V T

mAVm being SPD since A is SPD, the hessian is also SPD so
that the local optimality condition (i.e. p = 0) becomes the optimality condition
for the global minimum and we have

2(AVmy − b)TVm = 0 =⇒ rTmVm = 0, (15)

which means that the residual is always orthogonal to the search space Km(A, b).
Combining the orthogonality of the residual with the recurrence relations for

the current solution x̃, the residual rj and the gradient pj to their values at the
previous timestep, we can define the CG iteration. The standard (unoptimised)
CG iteration given in Algorithm 2 shows the recurrence relations for x̃, rj and
pj in steps 4,5 and 7, respectively, involving the coefficients αj (step 3) and βj
(step 6) recomputed at each step. For more details on the derivation of this
relation we refer to Lecture 38 in chapter IV in [8] or section 6.7 in [7]. In
addition to relation (15), it can be shown that ∀i 6= j we have

ri ⊥ rj , (16)

pi ⊥A pj , (17)

where the second condition relates the gradients that are A-orthogonal or A-
conjugate, thus giving the method its name.

The important point here is that, unlike GMRES, we only need to store 3
vectors in memory (namely x̃, rj and pj) because the orthogonality conditions
are enforced implicitly without requiring the costly orthogonalisation w.r.t a
growing basis. Furthermore, the recurrence relation implies that the cost per
timestep is constant thus avoiding the need to restart. The corresponding ad-
vantages in terms of memory requirements and computational cost make CG
the go-to method for the iterative solution of linear systems. Only when the
assumptions on A are not met one must resort to other methods, in the case of
Nek5000, restarted GMRES.

4

Nek5000 Course 2021

Page 62



Algorithm 2 Standard CG iteration [4]

1: x0 = 0, r0 = b, p0 = r0 ! Initialize vectors
2: for j = 1, . . . ,m do
3: αj = rTj−1rj−1/p

T
j−1Apj−1 ! Compute step length

4: x̃ = x̃+ αjpj−1 ! Compute current solution
5: rj = rj−1 − αjApj−1 ! Update residual
6: βj = rTj rj/r

T
j−1rj−1 ! Compute residual improvement

7: pj = rj + βjpj−1 ! Update search direction
8: end for ! maxit steps or ‖rm‖ < tol.

1.1.3 Preconditioning

Iterative solvers may suffer from low convergence rate for matrices that arise
from many applications, such as fluid dynamics simulations [7]. Precondition-
ing can improve both robustness and efficiency of the iterative methods. Left
preconditioning consists of multiplying both sides of the system by n×n matrix
P−1 and solving for the equivalent preconditioned system

P−1Ax = P−1b. (18)

Right preconditioning is equivalent to solving

AP−1u = b and x = P−1u (19)

The choice of P should make the matrix P−1A (or AP−1) better conditioned
for the iterative methods, in the sense that the number of iterations is reduced.
For the preconditioning to be effective in terms of reducing the time to solution,
applying P−1 should be cheap in comparison to applying A−1.

For diagonally dominant matrices typical of fluid dynamics applications,
one option is the Jacobi (or diagonal) preconditioner P := diag(A), where the
matrix P is a diagonal matrix formed by the elements on the main diagonal of
A. Other types of preconditioners are shown in Lecture 40 of [8] and chapters
9 and 10 of [7].

In the following we will not focus on preconditioning but rather treat the
generic preconditioning matrix P as a black box. For more details on precondi-
tioning in Nek5000 we refer to the reports by group G7.

1.1.4 Projection onto prior solutions

Integrating the Navier-Stokes equations in time leads at every timestep to the
solution of linear systems of the form Ax = b where both the operator A and the
inhomogeneity b, and hence the solution, changes little from one timestep to the
next. One way to exploit this structure in the solution process is to project the
current solution onto prior solutions and to solve only for the solution update.
In most cases this leads to a considerable reduction of iteration count of the
iterative solvers.

Assuming a set of k solutions Xp = [x1, . . . , xk] and right hand sides Bp =
[b1, . . . , bk] are known (such that Axj = bj), any linear combination x̄ = αXp =
α1x1 + · · ·+ αkxk of these vectors is also a solution of the linear system

Ax̄ = A(α1x1 + · · ·+ αkxk) = α1b1 + · · ·+ αkbk = αBp = b̄. (20)

5

Nek5000 Course 2021

Page 63



Hence, finding the solution of Ax = b is equivalent to finding the solution of

Aδx = r, (21)

where δx = x− x̄ is the solution update and r = b− b̄ is the corresponding right
hand side.

In practice, different options are available for the projection step. In Nek5000,
x is projected onto the column space of Xp using the A-inner product (for SPD
A) reflecting its relevance for the problem that we already encountered in the
Krylov subspace methods, in particular for CG iteration. This particular choice
of norm will also prove useful in the practical aspects of the projection technique
discussed below. Since the subsequent solutions xk are typically close to linearly
dependent, instead of the ill-conditioned matrix Xp, an A-orthogonal basis X is
constructed using an oblique Gram-Schmidt (GS) process to ensure numerical
stability. The basis for the column space of Bp is then chosen as B = AX to
ensure that b̄ = Ax̄ ∈ span{B}.

The projection of the unknown x onto X using the A-inner product is equiv-
alent to projecting the known b onto X using the Euclidian inner product:

α = 〈x,X〉A = XTAx = XT b = 〈b,X〉2, (22)

which allows the A-orthogonal projection to be carried out without explicit
knowledge of x and without an additional call to “Ax”. This can also be inter-
preted as the projection of b onto B using the A−1-inner product:

〈b, B〉A−1 = BTA−1b = (A−1B)T b = XT b. (23)

The equivalent linear system (21) can then be solved efficiently using Krylov
subspace iteration as described in the previous sections. The complete solution
is then reconstructed from the solution update δx and the linear combination
of the previous solutions: x = δx + x̄. Algorithm 5 shows the steps of the
projection method as it is implemented in Nek5000. Once the new solution is
found, the basis of previous solutions is updated to include it. Further details
can be found in [3] and [1].

1.2 GMRES, CG and projections in Nek5000

In this section we describe how the theoretical tools for the iterative solution of
large linear systems are combined in practice in Nek5000. The general workflow
of the solvers in Nek5000 is shown in Fig. (1). The projection and reconstruction
steps can be seen as pre- and postprocessing of the linear system, respectively,
that generates the input to the inner preconditioned Krylov subspace iterations
performed with GMRES or CG.

1.2.1 Right-preconditioned restarted GMRES iteration

The pseudo-code reflecting important details of the implementation of the right-
preconditioned GMRES(m) in Nek5000 is given in Algorithm 3.

Implementation notes for GMRES:

6

Nek5000 Course 2021

Page 64



Aδx = r
find δx ∈ Km(P−1A,P−1r) with

r = b − b̄

x̃ = δx + x̄

given

Ax̄ = b̄

P-CG

δx = arg min
Km

∥∥P−1(Aδx− r)
∥∥
A−1

P-GMRES(m)

δx = arg min
Km

∥∥P−1(Aδx− r)
∥∥
2

m = lgmres

Figure 1: Diagram of the components of the iterative solution process for linear
systems Ax = b in Nek5000 including projections followed by preconditioned Krylov
subspace iteration. x̃ is the approximate solution of the linear system, x̄ is the (oblique)
projection of x onto the space of previous solutions with Ax̄ = b̄, r is the residual
after projection, δx is the corresponding solution update, Km(A, b) is the mth Krylov
subspace of A applied to b and P is a generic preconditioning matrix.

• L,U (lines 3,8) is a secondary diagonal preconditioner (“Uzawa splitting”)
with I = LU based on the mass matrix B.

uzawa gmres L =
√
B−1 and U =

√
B

hmh gmres L = U = I (void)

• The Givens rotations (lines 12-13) are not computed as explicit matrix
products but using atomic Givens rotations acting on 2 vector elements
at a time.

• The GMRES algorithm is restarted after m = lgmres steps using the last
residual as a starting vector. lgmres is set in SIZE and should not exceed
about 40 for performance reasons.

• The approximate solutions (x∗) of the subsequent Arnoldi factorizations
are additive to form the final approximation x̃ since the residual is set
to r − Ax̃ at every restart (i.e. removing contributions from previous
restarts).

• Maximum (inner + outer) iteration count maxit = 100 for uzawa gmres

(hardcoded in gmres.f) and maxit = 200/1000 for hmh gmres (hardcoded
in drive2.f for transient/steady case and passed to the solvers as argu-
ments).

• Orthogonalization (lines 10-11) is carried out via Classical Gram-Schmidt
(CGS). Double GS (DGS) and modified GS (MGS) is also implemented
but commented out.

• The vector norm ‖ · ‖ is the Euclidean norm computed using the stan-
dard global inner product. On the pressure mesh the inner product is

7

Nek5000 Course 2021

Page 65



Algorithm 3 Right-preconditioned restarted GMRES iteration for Ax̃ = b

1: x̃ = 0, r0 = b ! Initialize vectors
2: while not done do ! Until convergence or maxit reached
3: r = Lr0 ! Apply L (= U−1)
4: r = r −Ax̃ ! Subtract known solution (for restart)
5: γ = ‖r‖e1 ! Initialize right hand side
6: v1 = r/‖r‖ ! Initialize V with v1
7: for j = 1, . . . ,m do ! m-step Arnoldi factorization
8: z = P−1Uvj ! Apply U and P (preconditioners)
9: w = Az ! Apply operator

10: hj = V Tw ! Compute new column hj of H
11: w⊥ = w − V hj ! Project w onto V⊥
12: rj = Gj · · ·G1hj = QThj ! Compute new column rj of R

using j Givens rotators
13: γ = Gjγ ! Update right hand side
14: vj+1 = w⊥/‖w⊥‖2 ! Compute new column vj+1 of V
15: end for ! m = lgmres steps
16: y = R−1γ ! Compute y
17: x̃ = x̃+ V y ! Update solution vector
18: if ‖w‖ < tol then
19: Done. ! GMRES converged
20: else if maxit reached then
21: Done. ! GMRES diverged
22: else
23: Restart iteration with r0 := x̃
24: end if
25: end while

unweighted (wt = 1) while on the velocity mesh the multiplicity of the
element boundaries needs to be taken into account (wt = vmult)1.

• For the pressure equation, the average is subtracted using the subroutine
ortho (orthogonalization with respect to null space of E).

1.2.2 Preconditioned CG iteration

The pseudo-code reflecting important details of the implementation of P-CG
in Nek5000 is given in Algorithm 4. A major difference to the standard CG
algorithm is the possibility of using a lagged residual (flex-CG).

Implementation notes for CG:

• The inner products (lines 8, 10) are computed using the Euclidean inner
product. On the pressure mesh the inner product is unweighted (wt = 1)
while on the velocity mesh the multiplicity of the element boundaries need
to be considered (wt = vmult)1.

1A commonly used quantity is the energy norm that is computed using the weighted
Euclidean inner product using the mass matrices bm1/bm2 as weight. These matrices already
account for mesh multiplicities where necessary.

8

Nek5000 Course 2021

Page 66



Algorithm 4 Right-preconditioned (flexible) CG iteration for Ax̃ = b

1: x̃0 = 0, r0 = b, p0 = 0, ρ1 = 1 ! Initialize vectors, ρ1
2: z0 = P−1r0 ! Initialize lagged residual (flex)
3: for j = 1, . . . , maxit do
4: zj = P−1rj ! Apply preconditioner P
5: if flex then
6: zj = zj − zj−1 ! Use lagged residual
7: end if
8: ρ2 = rTj zj ! Update residual norm
9: β = ρ2/ρ1 ! Compute residual improvement

10: ρ1 = rTj−1zj−1 ! Lagged residual norm
11: pj = pj−1 + βzj ! Update search direction
12: wj = Apj ! Compute step length
13: αj = ρ1/p

T
j wj ! using 〈pj〉A

14: x̃j = x̃j−1 + αjpj ! Update solution
15: rj+1 = rj − αjwj ! Update residual
16: if ‖rj+1‖m < tol then
17: break ! CG converged
18: end if
19: end for

• The A-inner product is computed sequentially (lines 12-13) using the Eu-
clidean inner product:

〈pj , wj〉2 = pTj wj = pTj Apj = 〈pj , pj〉A. (24)

1.2.3 Implementation of the projection scheme

Algorithm 5 Projection technique for the solution of Axn = bn

1: Given X = [x̂1, ..., x̂k] ! A-orthonormal basis of prior solutions

2: Given B = [b̂1, ..., b̂k] = AX ! RHS corresponding to X
3: α = XT bn ! Oblique projection of xn onto X

α = 〈xn, X〉A = 〈bn, X〉2
4: x̄ = αX, b̄ = αB = Ax̄ ! Compute linear combinations x̄, b̄
5: r = bn − b̄ ! Define residual s.t. r ⊥ X
6: Aδx = r ! Solve for solution update δx
7: xn = δx+ x̄ ! Reconstruct solution xn
8: b̂ = Axn ! Recompute exact b̂ corresponding

to approximate solution xn
9: Update X,B ! A-orthonormalize xn against X.

Update B with corresponding
transformed version of b̂

Implementation notes for the projections:

• Projections are disabled for the first 5 timesteps.

9

Nek5000 Course 2021

Page 67



• Three different implementations of projections exist in Nek5000 (see sub-
routine glossary):

1. Standard velocity projections

2. Velocity projections for the stress formulation (coupled velocity fields)

3. Pressure projections

where the velocity projections are mutually exclusive (they have overlap-
ping common blocks!) but are independent of the pressure projections. In
fact, projections are typically used for both velocity and pressure simul-
taneously.

• All projection schemes in Nek5000 assume A to be SPD (since the A-inner
product is used).

• Velocity projections (A = H):

– Size of projection space is set to mmx = (mxprev-4)/2 (line 1174 in
navier4.f).

– b̄ is computed as b̄ = αB on step 4. No additional call to “Ax” is
required.

– h1 and h2 (from the last timestep to determine a change in H) as
well as X and B are stored contiguously in memory (in this order)
and accessed via the same variable rvar.

– Update and reorthonormalization of the basis (steps 8-9) are per-
formed according to [1]. Some of the implementation details are:

∗ If H changes, the column spaces of X and B are fully reorthonor-
malized w.r.t the new H before projection (steps 1 and 2).

∗ The newest solution is prepended to the space X and the oblique
QR factorization is completed performing an orthogonal trans-
formation via a matrix H built using Givens rotations.

∗ If the new vectors are linearly dependent with respect to the
previous ones, they are redundant and discarded.

∗ Since the solution update δx is only computed up to a set solver
tolerance, instead of the bn, the exact right hand side b̂ = Axn
corresponding to the approximate solution xn = δx + x̄ is used
to update B (step 8).

∗ The weights for the projection during the basis update are com-
puted as α = 1

2 (XT b+BTx) since the two terms are mathemat-
ically identical and neither basis is inherently better suited:

XT b = XTAx = XTATx = (AX)Tx = BTx. (25)

• Pressure projections (A = E):

– Size of pressure projection space is mxprev set in SIZE.

– Only the basis of prior solutions X is stored. b̄ is computed as b̄ = Ax̄
on step 4. Steps 2 and 8 do not apply.

– When the projection space is full, X is discarded entirely and restarted
with current solution.

10

Nek5000 Course 2021

Page 68



– The constant pressure mode (null space of E operator) removed using
subroutine ortho.

• The orthonormalization procedure is performed differently for each set of
projection routines (see subroutine glossary).

1.2.4 Subroutine glossary

This section gathers the subroutines for “Ax” operations and the iterative
solvers as well as projection and oblique orthogonalization routines used in
Nek5000 including their location in the core. For the “Ax” routines and the
iterative solvers we differentiate between the subroutines that contain the ac-
tual code and “wrappers” which represent an intermediate call layer.

1. Matrix-vector multiplies (Ax)

a) Helmholtz equation
H = h1A+ h2B (26)

axhelm “Standard” Helmholtz operator hmholtz.f

axhmsf Stress formulation, coupled Helmholtz sub1.f

hxdg hmholtz.f

hxdg surfa hmholtz.f

b) Pressure equation

E =
ldim∑
i

DiH
−1DT

i (27)

cdabdtp2 navier1.f

c) Wrappers: ax, axstrs, axstrs nds, ophx, . . .

2. Iterative solvers

a) P-GMRES(m)
uzawa gmres Pressure equation gmres.f

hmh gmres Helmholtz equation gmres.f

b) P-CG
uzawa Pressure equation navier1.f

cggo3 Helmholtz equation hmholtz.f

hmh flex cg Helmholtz equation hmholtz.f

cggosf Coupled Helmholtz equations subs1.f

cggo dg Helmholtz equation hmholtz.f

c) Wrappers: hmholtz, hmholtz dg, incomprn, ophinv, esolver, hmhzpf,
hsolve, laplacep, hmhzsf, cggo3

3. Projection, reconstruction and oblique GS routines

2There are 3 choices (input argument intype) to control the structure of H = h1A+ h2B
within the operator E by varying h1 and h2.

3contains both solver code itself and branches with calls to other solvers, in particular to
GMRES (despite the name).

11

Nek5000 Course 2021

Page 69



a) Velocity projections (standard)
project1 a Steps 3− 5, proj ortho navier4.f

project2 a Steps 7− 9, proj ortho navier4.f

proj ortho H-orthogonal double GS (MGS option
available)

navier4.f

b) Velocity projections (stress formulation)
strs project a Steps 3− 5, strs orthok subs1.f

strs project b Steps 7− 9, no reorthonormalization subs1.f

strs orthok H-orthogonal modified GS subs1.f

c) Pressure projections
setrhsp Steps 3− 5, Classical GS (hardcoded) induct.f

gensolnp Steps 7 and 9, econjp induct.f

econjp E-orthogonal classical GS (see [3]) induct.f

4. Preconditioners

The preconditioners are either hardcoded for the specific solver routine or
accessible via parameters in the .par-file. For details, see the reports by
group G7.

References

[1] Nicholas Christensen. Efficient projection space updates for the approxima-
tion of iterative solutions to linear systems with successive right hand sides.
Master’s thesis, University of Illinois at Urbana-Champaign, 2017.

[2] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for
Incompressible Fluid Flow. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, Cambridge, 2002.

[3] Paul F Fischer. Projection techniques for iterative solution of Ax = b with
successive right-hand sides. Computer methods in applied mechanics and
engineering, 163(1-4):193–204, 1998.

[4] M.R. Hestenes and E Stiefel. Methods of conjugate gradients for solving
linear systems. J. Res. Nat. Bur. Stand., 49:409–436, 1952.

[5] Ilse CF Ipsen and Carl D Meyer. The idea behind krylov methods. The
American mathematical monthly, 105(10):889–899, 1998.

[6] Youcef Saad and Martin H Schultz. GMRES: A generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems. SIAM Journal on
scientific and statistical computing, 7(3):856–869, 1986.

[7] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[8] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50.
Siam, 1997.

12

Nek5000 Course 2021

Page 70



Time integration in Nek5000

Ananda Subramani Kannan∗ and Timofey Mukha†

June 28, 2021

Contents

1 Introduction 2

2 Fundamental properties of linear multistep methods 2

2.1 General form of a linear multistep method . . . . . . . . . . . . 2

2.2 Adams-Bashforth schemes (ABk) . . . . . . . . . . . . . . . . . 4

2.3 Backward differencing schemes (BDFk) . . . . . . . . . . . . . . 5

2.4 Necessary properties of a time integration method . . . . . . . . 6

2.5 Linear stability analysis based on the model equation . . . . . . . 7

2.6 Region of stability for ABk and BDFk schemes . . . . . . . . . . 8

2.7 Stability and choice of time-step . . . . . . . . . . . . . . . . . . 10

3 Temporal discretization of the unsteady Navier-Stokes equa-
tions 12

3.1 Extrapolation of the convective term (EXTk) . . . . . . . . . . . 12

3.2 Stability of the BDFk/EXTk method . . . . . . . . . . . . . . . 13

3.3 The Operator-Integration Factor Scheme (OIFS) . . . . . . . . . 14

3.4 Variable time stepping . . . . . . . . . . . . . . . . . . . . . . . 16

∗Chalmers University of Technology, Department of Mechanics and Maritime Sciences
ananda@chalmers.se

†KTH Royal Institute of Technology, Department of Engineering Mechanics, tmu@kth.se

1

Nek5000 Course 2021

Page 71

mailto:ananda@chalmers.se
mailto:tmu@kth.se


3.5 Spectral element discretization of the unsteady convection-diffusion
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Extension towards the Navier-Stokes equations . . . . . . . . . . 19

4 Implementation pointers 21

5 Appendix. Newton’s polynomial interpolation 22

1 Introduction

This report provides an overview of the time integration strategies employed in
the spectral-element code Nek5000. The material is split into three parts. In
Section 2, basic theory of linear multistep methods is presented, focusing on
Adams-Bashforth and backward differencing schemes. A deliberate choice has
been made to derive all schemes via the introduction of associated interpolating
polynomials (which is somewhat atypical for the case of backward differencing).
Fundamental properties of time integration schemes—consistency, stability, and
convergence—are also discussed, and linear stability analysis of the introduced
methods is performed. A large amount of the material in the Section is directly
based on the classical textbook on higher order methods by Deville et al. [3],
which is recommended for a deeper dive in the presented topics.

Section 3 deals with more specialized time-integration techniques present in
Nek5000, such as high-order extrapolation of the convective term and the Operator-
Integration Factor Scheme. Furthermore, the previously introduced schemes are
generalized to support a variable time step. Finally, the last two subsections are
dedicated to expose how time-stepping interacts with the spectral element-based
spatial discretization used in Nek5000 to obtain a fully discrete problem.

The concluding section gives an overview of the implementation of the discussed
methods and provides pointers to specific functions in the Nek5000 codebase.

2 Fundamental properties of linear multistep meth-
ods

2.1 General form of a linear multistep method

The exposition of time-integration schemes will be based on the following model
problem:

du

dt
= f(u, t), (1)

2

Nek5000 Course 2021

Page 72



where, u(t) is an unknown scalar function of time, and f(u, t) is some—generally
non-linear—function. Below, the time-derivative will also be denoted using a
prime, when convenient, i.e. u′.

Here, we will focus on methods for solving (1) falling under the category of so-
called linear multi-step methods. As the name implies, such numerical schemes
are based on linear combinations of the values of u and f taken at multiple time
steps. Mathematically, this can be expressed as

ũn+1 −
∑k
j=1 aj ũ

n+1−j

h
=

k∑
j=0

bjf
n+1−j ,

where k is the number of known values of u and f the method is based on, ũ
indicates a numerically approximated value of u, with the convention ũn+1−j :=
ũ
(
tn+1−j) , fn+1−j := f

(
ũn+1−j , tn+1−j), and h is the time step, which will for

now be considered constant. Commonly, the above equation is rewritten in the
following form.

ũn+1 − hb0fn+1 =
k∑
j=1

aj ũ
n+1−j + h

k∑
j=1

bjf
n+1−j , (2)

The coefficients aj and bj depend on the choice of the numerical scheme. Note
that fn+1 = f

(
ũn+1, tn+1

)
is unknown. This makes the coefficient b0 special.

If b0 = 0 then ũn+1 is readily computed from known quantities. Such schemes
are referred to as explicit. On the other had, if b0 6= 0, eq. (2) constitutes a
system of equations that has to be solved. Quite generally, this extra price
is compensated by increased stability, a concept that we will be explained in
Section 2.4.

Based on the above, we can distinguish the following subclasses of the linear
multistep method:

• If k = 1 and b0 = 0 =⇒ Single-step explicit methods

• If k = 1 and b0 6= 0 =⇒ Single-step implicit methods

• If k > 1 and b0 = 0 =⇒ Multi-step explicit methods

• If k > 1 and b0 6= 0 =⇒ Multi-step implicit methods

Some commonly used representatives of these classes are shown in Fig. 1. In the
following sections we will discuss Adams-Bashforth and Backward differencing
schemes in detail since these are actually used in Nek5000.

An important limitation of multi-step methods is that these methods need start-
ing procedures, since several numerical values are needed to advance the time-
marching process, while only the initial condition is given. Usually, this is
accomplished using a single-step method, or using a different class of methods,
such as Runge–Kutta.

3

Nek5000 Course 2021

Page 73



du
dt = f(u, t)

Explicit schemes:

• Forward Euler*

• Adam’s Bashforth (ABk)

Implicit schemes:

• Backward Euler*

• Adam’s Moulton (AMk)

• Backward differencing (BDF)

Figure 1: Overview of the common strategies and the corresponding numeri-
cal schemes used for temporal discretization. The ’*’ superscript represents the
single-step methods. Further, the single-step forward and backward Euler meth-
ods are a first-order specializations of Adams-Bashforth and Adams-Moulton
schemes, respectively.

2.2 Adams-Bashforth schemes (ABk)

Adams-Bashforth is a set of explicit schemes based on the observation that
eq. (1) formally admits the following solution

u(t)− u(t0) =

∫ t

t0

f(u, s)ds, (3)

A kth-order numerical scheme is constructed by applying this at each time step
and approximating f by a Newton polynomial Nk−1 built on the values of f at
k previous time steps.

ũn+1 − ũn =

∫ tn+1

tn
Nk−1dt. (4)

At this point, it is recommended that the reader checks Appendix Section 5,
which provides a review of Newton polynomials. Considering k = 1, 2, we adapt
the formulae in eq. (58) found in the appendix to get:

N0(t) = fn, (5)

N1(t) = fn +
fn − fn−1

h
(t− tn) .

These polynomials are substituted into eq. (4) to correspondingly yield first and
second order approximations for u(t). The first order accurate AB, a.k.a. for-
ward Euler, approximation is written as:

4

Nek5000 Course 2021

Page 74



ũn+1 − ũn =

∫ tn+1

tn
N0dt = hfn, (6)

while the second order AB approximation (AB2) is written as:

ũn+1 − ũn =

∫ tn+1

tn
P1dt = fnh+

h

2

(
fn − fn−1

)
=

3h

2
fn − h

2
fn−1. (7)

It is instructive to reflect on how these schemes fit into the general linear multi-
step template given by eq. (2). As expected, b0 = 0 since the scheme is explicit,
and the only non-zero aj is a1 = 1. The coefficients bj , j 6= 0 depend on the
order of the scheme. For example, for the second-order scheme b1 = 1.5 and
b2 = −0.5.

Finally, note how the potential non-linearity of f poses no threat. This is an
important advantage of explicit methods!

2.3 Backward differencing schemes (BDFk)

A family of implicit schemes is now considered, referred to as the backward
differencing schemes of order k (BDFk). Again, the Newton polynomial Nk is
put to use, but instead of building an interpolant for f , one is built for u. The
interpolant is constructed starting with the unknown value ũn+1 at tn+1 and
then incorporating known values at previous time steps to increase the order
of accuracy. The approximation of u′ is obtained by taking the derivative of
the polynomial and evaluating its value at t = tn+1. The right-hand-side f is
evaluated at tn+1 owing to the implicit nature of the method. According to the
above, the scheme can be expressed as:

N ′k(tn+1) = fn+1. (8)

Note that a kth-order scheme is achieved with a kth-order polynomial, unlike
ABk, where Nk−1 was sufficient.

When writing out the polynomials, we should take into account that points are
added going backwards in time to get the correct signs:

N0(t) = ũn+1 (9)

N1(t) = ũn+1 +
ũn+1 − ũn

h

(
t− tn+1

)
N2(t) = ũn+1 +

ũn+1 − ũn

h

(
t− tn+1

)
+
ũn+1 − 2ũn + ũn−1

2h2
(t− tn)

(
t− tn+1

)
Differentiating these polynomials yields:

5

Nek5000 Course 2021

Page 75



N ′0(t) = 0,

N ′1(t) =
ũn+1 − ũn

h
, (10)

N ′2(t) =
ũn+1 − ũn

h
+ [(t− tn+1) + (t− tn)]

ũn+1 − 2ũn + ũn−1

2h2
.

Out of these, N ′1(tn+1) and N ′2(tn+1) can respectively be used as an approxi-
mation for ũ′,n+1. For a first-order scheme BDF1, we use N1:

N ′1(tn+1) =
ũn+1 − ũn

h
= fn+1 ⇐⇒ ũn+1 = ũn + hfn+1, (11)

which is also commonly referred to as backward Euler.

For BDF2 we make use of N2:

N ′2(tn+1) =
3ũn+1 − 4ũn + ũn−1

2h
= fn+1 ⇐⇒

3

2
ũn+1 = 2ũn − 1

2
ũn−1 + hfn+1.

(12)

The BDF3 scheme is constructed similarly using N3.

However, this is not the end of the story, because if f is non-linear, the result-
ing equations are non-linear as well. What is typically done is some sort of
linearization of f . One possibility is using a Taylor expansion:

f
(
un+1

)
≈ f (ũn) + J (ũn)

(
ũn+1 − ũn

)
, (13)

where J = df/du, but more generally for the case of a system of equations it is
the Jacobian matrix. For details, see Section 3.2 in [3]. There are other options,
but all of them involve either loss of accuracy or the necessity for an iterative
procedure, in which the linear system is solved multiple times to resolve the
non-linearity correctly. Non-linearities are thus difficult to handle with implicit
schemes.

In conclusion, it is interesting to see how the constructed schemes fit into the
general linear multistep template eq. (2). We see that b0 is obtained by dividing
1 by the coefficient in front of ũn+1, whereas bj , j 6= 0 are all equal to zero. On
the other and, the coefficients aj depend on the order of accuracy k.

2.4 Necessary properties of a time integration method

A time-integration scheme can only be expected to approach the true solution
of the model problem (eq. (1)) if it satisfies three fundamental properties.

6

Nek5000 Course 2021

Page 76



I Consistency: A k -step method is consistent of order r if the local trunca-
tion error is O(hr+1). Consistency compels the solution of to satisfy the
difference scheme (2) aside from the small truncation errors that vanish
with step size.

II Convergence: A k -step method is convergent if the estimated solution ũ(t)
approaches the true solution as follows:

lim
h→0

ũn = u(t), (14)

and, similarly, the set of starting values ũ0
i approach the initial condition

in the same limit:

lim
h→0

ũ0
i = u0 (15)

III Stability: A k -step method is stable when small perturbations in the initial
conditions elicit only small changes in the solution (prevents truncation
errors or round-off errors from amplifying.)

The relationship between stability and convergence, hinted at by Courant-
Friedrichs and Lewy (CFL) [2], was brought into an organized form by Lax
and Richtmyer [7] through the well-known Lax equivalence theorem:

“For a well-posed initial-value problem and a consistent discretization scheme,
stability is the necessary and sufficient condition for convergence.”

Consequently, defining the stability region for a numerical discretization is of
paramount importance while evaluating their applicability to deal with the typ-
ical problems in fluid mechanics.

2.5 Linear stability analysis based on the model equation

There is no straight-forward way for analyzing the stability of a non-linear
equation, such as (1). Therefore, the stability of schemes is commonly evalu-
ated using a linearized version of f , which can be obtained via eq. (13). The
considered model equation thus has the following form:

du

dt
= λu(t), u

(
t0
)

= 1, t ∈
(
t0, T

]
, (16)

where λ is a complex constant. Unfortunately, linear stability of a method,
does not necessarily imply its stability when applied to the original non-linear
equation.

In the context of eq. (16), the region of stability can be defined as:

“The set of values of h and of λ for which any perturbation to the solution
introduced at any instant will not be amplified at later times.”

7

Nek5000 Course 2021

Page 77



It is instructive to demonstrate that (16) remains relevant when the method
is applied to a system of equations, meaning that u(t) = u(t) is a vector of
unknowns. In this case, the linearized problem is generally expressed as:

du

dt
= Lu, (17)

where L is a linear operator.

Assuming that L can be diagonalized, eq. (17) can be transformed to the fol-
lowing form:

dû

dt
= Λû. (18)

Here, Z = (z1, ..., zN ) is the matrix of eigenvectors of L, and the diagonal
matrix Λ = diag(λk) holds the eigenvalues of L. Eq. (18) is obtained through
the substitutions: û = Z−1u and Λ = Z−1LZ.

As a result of the applied transformation, eq. (18) has been decomposed into a
set of problems described by eq. (16): u′ = λku. Clearly, the employed scheme
should remain stable for all λk.

In fluid mechanics, the nature of the eigenvalues is well understood. Diffu-
sion contributes a negative real component to λ, while convection contributes
a purely imaginary component. Furthermore, the second-order elliptic operator
that governs diffusion scales with O(N4) for spectral discretizations of degree
N , while the eigenvalues for the convection operator scale as O(N2) [3].

2.6 Region of stability for ABk and BDFk schemes

By applying the linear multistep method eq. (2) to the model problem eq. (16),
the following kth-order homogeneous difference equation with constant coeffi-
cients for u is obtained:

(1− b0λh) ũn+1 =

k∑
j=1

(aj + bjλh) ũn+1−j . (19)

To determine the region of stability, we replace ũ with a new unknown ζ, which is
a complex number. The superscript is then treated as a power rather than time
level. Furthermore, z := λh is introduced. The obtained polynomial equation
admits k solutions in the complex plane, (ζ`)

n
(` = 1, . . . , k):

(1− b0z) ζk` −
k∑
j=1

(aj + bjz) ζ
k−j
` = 0, ζ` = |ζ`| eiφ` , (20)

or,

8

Nek5000 Course 2021

Page 78



ρ (ζ`)− zσ (ζ`) = 0, 1 ≤ ` ≤ k. (21)

The polynomials ρ(ζ) := ζk−
∑k
j=1 ajζ

k−j and σ(ζ) :=
∑k
j=0 bjζ

k−j are referred
to as the characteristic (or generating) polynomials of the multi-step method.

It is evident that for eigenvalues λ in the left half of the complex plane [<(λ) <
0], the numerical solution of the test problem (16) using the linear multi-step
method with time step h must eventually tend to zero. This requires that the
k solutions ζl, 1 ≤ l ≤ k to the characteristic equation (21) satisfy the condition
|ζl| < 1. The roots obviously depend on z, so the job is to find the values of
z that lead to the condition on the roots to be satisfied. Consequently, the
stability region is re-defined as:

“The (open) set of (complex) values of z such that the elements on the domain
boundary correspond to |ζl| < 1.”

In practice, to find the boundary, we let ζ = eiφ and solve for z.

The stability regions of the ABk and BDFk schemes are derived using the
corresponding form of the characteristic equation. More details on this are
available in [3]. These regions, plotted in the real (<) and imaginary (=) axes,
for the factor z = λh are depicted in Fig. 2.

The stability region for the explicit ABk schemes (see Fig. 2a) are located inside
the closed curves. The consistency order of the ABk schemes is improved on in-
creasing k, however this requires a refinement in the time step h to accommodate
the eigenvalues of J in <(λ) < 0.

Recall that the eigenvalues of the convective operator are located on the imag-
inary axis. Thus, among the schemes depicted in Fig. 2a, AB3, which has the
widest region of stability in the purely imaginary =-axis, (the intersection of the
stability curve and the =-axis is located at y = ±0.72362), can be considered as
most suitable for tackling fluid mechanical problems [3].

The stability region for the fully implicit BDFk schemes (i.e. Fig. 2b) are located
outside the closed curves. The BDF1 and BDF2 schemes have a stability region
that includes the entire negative half-plane <(λh) < 0. Thus, in principle,
when using these two implicit methods there are no non-physical growths in the
solutions for any chosen time step h. Such methods are called A-stable and this
is a convenient property in practice. However, it is important to remember that
stability alone does not guarantee accuracy, especially for stiff problems. It is
noticeable with the higher order BDFk schemes (k > 3) that the stability curves
steadily penetrate into =(λh) < 0 with increasing values of k. Therefore, they
are no longer unconditionally stable for hyperbolic fluid mechanical problems.

9

Nek5000 Course 2021

Page 79



Figure 2: Stability regions for kth order schemes (with 1 ≤ k ≤ 4) – a) explicit
Adams-Bashforth (ABk) schemes (intersection with the imaginary axis depicted
by the red box) and b) implicit backward differencing (BDFk) schemes. Note
that the stability region for the ABk schemes are located within the closed
curves while those for the BDFk are located outside the region occupied by the
closed curves. This figure is adapted from Deville et al. [3].

2.7 Stability and choice of time-step

Stability diagrams provide the span of admissible values of λh. These should
be related to the choice of the time step. For fluid dynamical problems, it is
commonly the imaginary eigenvalues of the convective operator that are difficult
to accommodate and, therefore, drive the selection of the time-step.

Considering convection by a known velocity field c(x, t), the convective operator
is c(x, t)·du(x, t)/dx. Using spectral elements (or any other spatial discretization
approach), a discrete form of this operator can be derived, and, ultimately, it
is the egienvalues of the discrete operator that dictate the time step, together
with the choice of the time-integration scheme.

It can be shown that largest eigenvalue scales as c/∆x [3]:

max
k
|λkh| = S ·max

c,∆x

∣∣∣∣ ch∆x

∣∣∣∣ , (22)

where S is an order-unity coefficient. From the r.h.s., the Courant–Friedrichs–Lewy
(CFL) number is defined:

CFL := max
c,∆x

∣∣∣∣ ch∆x

∣∣∣∣ . (23)

The CFL number is easily computable and thus provides a very convenient
estimate of z. The value of the coefficient S is larger than 1 and depends on
the spatial discretization. In the case of the spectral element method, it also
depends on the order of the interpolating polynomials. The value of S as a

10

Nek5000 Course 2021

Page 80



function of the order N is plotted in Fig. 3, and the associated bounds are
1.16 ≤ S ≤ 1.5.

Figure 3: Scale factors S for spectral-element discretizations as a function of
polynomial order N . This figure is adapted from Deville et al. [3].

The CFL number, S, and the stability diagram of the time-integration scheme
readily provide the maximum time step that can be selected. For a time-varying
c(x, t), the time step may be changed accordingly, and this option is available
to users of Nek5000.

As a concrete example, consider Fig. 2a, which shows that the stability diagram
for AB3 cuts the imaginary axis at ±0.72362, implying:

S · CFL ≤ 0.72362. (24)

The importance of satisfying this criterion is illustrated using Fig. 4 (adapted

from [3]), which represents the convection of a Gaussian pulse (u0 := e−ζ
2

, ζ :=
15(x − 0.5)) at unit-speed. This problem is simulated on a periodic domain
[0, 1] using 256 linear finite elements. The solution is advanced using the AB3
scheme at CFL = 0.72 and CFL = 0.770. The initial pulse (bottom) moves to
the right, leaves the domain at x = 1, and reenters at x = 0 [3]. In the figure
it is evident that the solution with CFL = 0.720 is stable.The pulse convects
indefinitely (with error increasing linearly with t). However, for CFL = 0.77,
instabilities appear at time t ≈ 1, shortly after which the solution exhibits ex-
plosive growth (not shown). The unstable mode consists of 2∆x waves — the
most oscillatory waves that can be represented on the grid, and those associated
with the maximum (in modulus) eigenvalue [3]. Thus, the CFL criterion cor-
responding to the chosen discretization should be satisfied while choosing the
respective time-steps.

11

Nek5000 Course 2021

Page 81



Figure 4: AB3 solutions to ut + ux = 0, u(0, t) = u(1, t) on a periodic domain
[0, 1] using 256 linear finite elements. Note the build-up of instabilities in the
solution when the CFL criteria given by eq. (24) is violated. This figure is
adapted from Deville et al. [3].

3 Temporal discretization of the unsteady Navier-
Stokes equations

The Navier-Stokes equations represent the conservation of mass and momen-
tum of a fluid. These generic transport equations include both convective and
diffusive modes of flow transport. Consequently, as stated in Section 2, the
corresponding eigenvalues of the solution contain a negative real component
(diffusive) and a purely imaginary component (convective). Furthermore, the
diffusive term is linear and symmetric, while the convective term is nonlinear
and non-symmetric.

In this section we build on the fundamentals presented above, and consider
time integration practices implemented in Nek5000 targeting the Navier-Stokes.
This includes special treatment of the convective term (Sections 3.1, 3.2, and
3.3), variable time-stepping (Section 3.4), and how time integration fits into the
overall discretization and solution procedure (Sections 3.5 and 3.6).

3.1 Extrapolation of the convective term (EXTk)

Recall that using implicit methods such as BDFk for non-linear equations leads
to a non-linear system, unless some form of linearization is used. For this reason,
explicit treatment of the convective terms is preferable. Another consideration
leading to the same conclusion is the asymmetry of the convective term meaning
that efficient linear solvers specialized for symmetric matrices cannot be used.

Karniadakis et al. [1] proposed using higher order extrapolation (a.k.a. EXTk) of
the convective term. To that end, the Newton polynomial Nk is again put to use.
In particular, the polynomial is built on k known values of the convective term

12

Nek5000 Course 2021

Page 82



at previous time-steps and then evaluated at tn+1 to provide an extrapolated
value. A kth-order polynomial leads to scheme of order k + 1.

Let ψ denote the approximated value of the convective term, for conciseness.
Then using for formula for N1 and N2 (see eq. (58)), schemes EXT2 and EXT3
are derived:

N1(tn+1) = ψn−1 +
ψn − ψn−1

h
(tn+1 − tn−1) = 2ψn − ψn−1

N2(tn+1) = ψn−2 +
ψn−1 − ψn−2

h
(tn+1 − tn−2)+

+
ψn − 2ψn−1 + ψn−2

2h2
(tn+1 − tn−1)(tn+1 − tn−2) =

= 3ψn−1 − 2ψn−2 + 3 · (ψn − 2ψn−1 + ψn−2) = 3ψn − 3ψn−1 + ψn−2.

For convenience and reference—skipping the intermediate steps in the above—
EXT2 and EXT3 are respectively defined as:

ψn+1 = 2ψn − ψn−1 (25)

ψn+1 = 3ψn − 3ψn−1 + ψn−2. (26)

In addition, Nek5000 employs a scheme referred to as EXT2a, which is derived
by introducing a factor α in front of the quadratic term in N2. This can be used
to manipulate the scheme to have better stability, which is discussed below. For
reference, the coefficients of the EXT2a scheme with α = 4/3 are provided:

ψn+1 =
8

3
ψn −

7

3
ψn−1 +

2

3
ψn−2. (27)

Note that in Nek5000 EXTk schemes are not only used for the convection term,
but also for the source terms.

3.2 Stability of the BDFk/EXTk method

In Nek5000, the momentum equation is discretized using a multistep method
based on combination of BDFk treatment of the viscous term and temporal
derivative, and the EXTk for the convective term and source terms. The stabil-
ity of such methods must be studied per se, although, as usual, the convective
term is the main contributor to the limitation of the time step [3].

Considering BDF2/EXT2, and applying it to u′ = λu the following is obtained:

3un+1 − 4un + un−1 = 2λh
(
2un − un−1

)
.

We seek solutions of the form um = (ζ)m, ζ ∈ C and let z = λh :

3ζn+1 − 4ζn + ζn−1 = 2z
(
2ζn − ζn−1

)
=⇒

3ζ2 − 4ζ + 1 = 2z(2ζ − 1).

13

Nek5000 Course 2021

Page 83



To find the region of stability, we set ζ = eiθ, θ ∈ [0, 2π] (i.e. the unit circle),
and solve for z :

z =
3ei2θ − 4eiθ + 1

2 (2eiθ − 1)
.

For BDF3/EXT3 and BDF2/EXT2a the procedure is, of course, similar.

The obtained stability regions are shown in Fig. 2. The regions for ABk schemes
are also shown, for comparison. It is clear that the BDF2/EXT2a (with α =
4/3) combination offers stability matching that of AB3, whereas BDF3/EXT3
are somewhat less stable.

Figure 5: Stability regions for – (a) AB2 and BDF2/EXT2, (b) AB3 and
BDF3/EXT3, and (c) AB3 and BDF2/EXT2a. Note the increased region of the
imaginary =-axis encompassed by the stability diagram for the BDF2/EXT2a
scheme. This figure is adapted from [4].

3.3 The Operator-Integration Factor Scheme (OIFS)

The operator-integration factor scheme (OIFS) offers an alternative way of treat-
ing the time derivative and convective terms. Details may be found in this report
by Fischer [4], and also in [3]. This strategy is briefly described below.

14

Nek5000 Course 2021

Page 84



Considering the convection-diffusion equation:

∂u

∂t
+ c · ∇u =

1

Pe
∇2u+ f, (28)

where c is a known convecting velocity field, f an external force, and Pe is
the Peclet number (defined as the ratio of the rate of advection to the rate
of diffusion), we combine the two terms on the left-hand-side into a material
(Lagrangian) derivative:

Du

Dt
=

1

Pe
∇2u+ f. (29)

The idea is then to apply BDFk directly to (29). For simplicity, we consider
the case of BDF2 with a constant time step:

3un+1 − 4ûn + ûn−1

2h
=

1

Pe
∇2un+1 + fn+1. (30)

Since we are discretizing a Lagrangian derivative, ûn+1−q are lagged both in
space and in time with respect to un+1. In particular, ûn+1−q pertains to the
value of u at some Xn+1−q located on the characteristic passing through the
node where un+1 is sought:

ûn+1−q(x) := u
(
Xn+1−q(x), tn+1−q) .

In principle, it is possible to find Xn+1−q by marching backwards along the char-
acteristic for a time qh. However, this straightforward approach would require
a large amount of interpolation operations, rendering it too computationally
expensive. OIFS offers an alternative to that, but instead introducing a PDE
sub-problem of the following form:

∂û

∂s
+ c · ∇û = 0, s ∈

[
tn+1−q, tn+1

]
(31)

û
(
x, tn+1−q) = u

(
x, tn+1−q) û(x, t) = u(x, t)∀x ∈ ∂Ωc,

Here, δΩc is defined as the part of the boundary having incoming velocity char-
acteristics.

This models the convection of û in a sub-interval [tn+1−q, tn+1]. The trick is
that as a result of the convection, the value of ûn+1−q will end up at the location
of a computational node. This, because we know that the characteristic crosses
it at time tn+1. The necessity for interpolation and explicit search of Xn+1−q

is now avoided.

For a BDFk discretization of (29), equation (3.3) will have to be solved k times,
with the integration interval increasing with q. However, due to the linearity of

15

Nek5000 Course 2021

Page 85



the equation, it is possible to rearrange (3.3) into a system, in which each of the
k equations is only solved on a single

[
tn+1−q, tn+1−q+1

]
subinterval. We refer

the reader to [4] for details.

It remains to be discussed how this is solved numerically. The idea is to use a
multistage method, in particular, a fourth-order Runge-Kutta integrator (com-
monly referred to as RK4 ). These have not been discussed in this document,
but we assume that the reader has some familiarity with RK4 since it is the
subject of basic numerical ODE integration theory. In practice, OIFS allows to
violate the CFL condition and thus a larger time-step. However, for the con-
vection problem (3.3) the CFL condition has to be respected. Whether OIFS
overall offers improved performance compared to BDFk/EXTk is thus unclear,
and can be said to be case-dependent.

3.4 Variable time stepping

So far, all the time marching schemes were introduced assuming a constant time
step h. However, the consistent derivation of all schemes through associated
interpolating polynomials Nk makes it straight-forward to derive corresponding
schemes with a variable time step. This amounts to considering the general
form of the Newton polynomials (57) instead of the equidistant version (58)
used previously.

Let ∆tn = tn+1 − tn. The variable time step AB2, BDF2 and EXT2 schemes
are now derived. The third-order schemes are obtained in a similar fashion. For
AB2, we consider the polynomial

N1(t) = fn +
fn − fn−1

∆tn
(t− tn)

and insert it into

ũn+1 − ũn =

∫ tn+1

tn
N1dt.

Performing the integration leads to the following scheme:

ũn+1 − ũn = ∆tn
(

1 +
1

2

∆tn

∆tn−1

)
fn − 1

2

∆tn

∆tn−1
∆tnfn−1. (32)

For EXT2 we make use of N1 to construct an interpolant through ψn and ψn−1

and evaluate it at tn+1:

ψn+1 = N1(tn+1) = ψn−1 +
ψn − ψn−1

∆tn−1
(tn+1 − tn−1) = (33)

=

(
1 +

∆tn

∆tn−1

)
ψn − ∆tn

∆tn−1
ψn−1. (34)

16

Nek5000 Course 2021

Page 86



For BDF2, we should evaluate the derivative of N3 at tn+1. However, we will
take an entirely different approach, which is more faithful to how the coefficients
are computed in Nek5000. We closely follow the presentation by Nishikiwa in [9],
where one also treats the BDF3 case [9]. We can, in general, consider BDF2 to
be an approximator of the time-derivative based on a linear combination of the
values of the unknown, u, at three points in time:(

du

dt

)n+1

BDF2

≡ α1u
n+1 + α0u

n + α−1u
n−1.

Here, the coefficients αi are considered unknown.

Next, we Taylor-expand the solution around the time-level (n+ 1) to get:

(
du

dt

)n+1

BDF2

≡ α1u
n+1 + α0

(
un+1 − du

dt

∣∣∣∣n+1

∆tn +
1

2

d2u

dt2

∣∣∣∣n+1

(∆tn)
2 · · ·

)

+ α−1

(
un+1 − du

dt

∣∣∣∣n+1 (
∆tn + ∆tn−1

)
+

1

2

d2u

dt2

∣∣∣∣n+1 (
∆tn + ∆tn−1

)2 · · ·)

= (α1 + α0 + α−1)un+1 −
[
α0∆tn + α−1

(
∆tn + ∆tn−1

)] du
dt

∣∣∣∣n+1

+
1

2

[
α0 (∆tn)

2
+ α−1

(
∆tn + ∆tn−1

)2] d2u

dt2

∣∣∣∣n+1

+O
(
∆t3

)
Our goal is to have a locally third-order accurate scheme, meaning(

du

dt

)n+1

BDF2

=
du

dt

∣∣∣∣n+1

+O
(
∆t3

)
.

It is easy to see that this implies the following constraints on the unknown
coefficients αi:

α1 + α0 + α−1 = 0

α0∆tn + α−1

(
∆tn + ∆tn−1

)
= −1 (35)

α0 (∆tn)
2

+ α−1

(
∆tn + ∆tn−1

)2
= 0.

For the case of BDF2 it is easy to solve (35) analytically, see [9]. It is also
straightforward to see that given ∆tn = ∆tn−1 one arrives to the standard
BDF2 coefficients for the constant time-step case.

For a general BDFk, the similarly assembled linear system can be solved using
a direct solver. The latter is done in Nek5000 (see subroutine bdsys), although

17

Nek5000 Course 2021

Page 87



the structure of the system is slightly different. In particular, the matrix coeffi-
cients and the right-hand-side are circularly shifted to the right by one position.
So, the last coefficient column becomes the right-hand-side, the right-hand-side
becomes the first column in the coefficient matrix, etc. Due to this, some ad-
ditional manipulations on the solution are necessary to compute αi. Another
implementational aspect is that the coefficients pertaining to previous time steps
are stored with the opposite sign. This is explained by the fact that the cor-
responding terms are moved to the right-hand-side of the momentum equation,
thus changing the sign.

3.5 Spectral element discretization of the unsteady convection-
diffusion problem

In order to demonstrate the application of these aforementioned explicit and
implicit temporal discretization strategies, the coefficients (or pre-factors) that
have been derived in Sections 2.2, 2.3, 3.4 ,3.1 and 3.3 are directly incorporated
in the spatially discretized equations. These equations are presented here in a
compact form. A more detailed insight into the mathematical details of this
discretization is available in the lecture notes by Fischer [6]. For simplicity, the
discretized equations are derived at a second order.

Considering the re-written form of the convection-diffusion equation (eq. (28))
in 1D and its corresponding initial value form, we have:

∂ũ

∂t
+ c · ∇ũ = ν∇2ũ+ f

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x).

(36)

Here, f is any external forcing function and ν is the kinematic viscosity of the
fluid. Rearranging and evaluating each term in eq. (36) at tn+1:

∂ũ

∂t

∣∣∣∣
tn+1

− ν∇2ũ|tn+1 = (f − c · ∇ũ)tn+1 . (37)

Using the implicit BDF2 scheme for the viscous contributions (ν ·∇2ũ) and the
explicit EXT2 scheme for the rest of the terms we have:

∂ũ

∂t

∣∣∣∣
tn+1

≈ 3un+1 − 4un + un−1

2h

and,

gn+1 ≈ 2gn − gn−1, gk := (f − c · ∇ũ)
k

(38)

18

Nek5000 Course 2021

Page 88



Now re-arranging, the following is obtained:

3un+1 − 4un + un−1

2h
− ν∇2ũ|tn+1 = 2gn − gn−1 =⇒

3

2
un+1 − hν∇2ũ|tn+1 = 2hgn − hgn−1 + 2un − 1

2
un−1

Discretizing eq. (38) with the weighted residuals (WR) method at N Gauss-
Lobatto-Legendre (GLL) quadrature points [6]:

3

2

(
v, un+1

)
N

+ (hν) · aN
(
v, un+1

)
=
(
v, qn+1

)
N
, (39)

where,

qn+1 = 2un − 1

2
un−1 + 2hgn − hgn−1. (40)

Here, v is the ansatz coefficient used in the WR method. Inserting the relevant
basis functions and coefficient vectors in eq. (39):

3

2
vTBun+1 + hνvTAun+1 = vTQTBLq

n+1
L

, ∀v ∈ Rn, (41)

or, in a more compact manner:

Hun+1 = QTBLq
n+1
L

. (42)

Here, H = B + ν∆tA is the discrete Helmholtz operator. Note that Q is a
Boolean matrix that connects the global (ū) and local (uL) node representations
i.e. uL = Qū. Further, B is the mass matrix and A is the global stiffness
matrix [6].

3.6 Extension towards the Navier-Stokes equations

The general procedure applied in the spectral element discretization of the un-
steady convection-diffusion problem above can be extended towards the Navier-
Stokes equations. Consider the incompressible Navier-Stokes equations in the
space Ω:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u,

∇ · u = 0.

(43)

Here, u is the fluid velocity vector, Re is the Reynolds number of the flow and
p is the fluid pressure. As in Section 3.5, the BDF2/EXT2 operator splitting is

19

Nek5000 Course 2021

Page 89



used, where the non-linear terms are treated explicitly and the remaining linear
Stokes problem is treated implicitly, giving:

3un+1 − 4un + un−1

2h
= S

(
un+1

)
+NLn+1, (44)

where, S
(
un+1

)
is a linear symmetric Stokes operator and the non-linearNLn+1

term is given by the extrapolant:

∑
j

αju
n+1−j · ∇un+1−j . (45)

For the EXT2 scheme, α1 = 2 and α2 = −1 (eq. (25)), while for EXT2a,
α1 = 8/3, α2 = −7/3 and α3 = 2/3 (eq. (27)). The Stokes system is solved at
each time step as:

H un+1 −∇pn+1 = fn+1 (46)

∇ · un+1 = 0, (47)

where, the Helmholtz operator (analogous to H in eq. (42)) for k = 2 is given
as:

H :=

(
3

2h
− 1

Re
∇2

)
. (48)

Insertion of the spectral element basis [6] into the Stokes system (i.e. eq. (46)),
yields:

Hun+1 −DT pn+1 = Bfn+1, Dun+1 = 0. (49)

Here, the stiffness matrix, A, is defined in terms of the spectral differentiation
matrix, D [6, 5]. Moreover, H, given as:

H = B
3

2h
−A 1

Re
, (50)

is the discrete analogue of eq. (48). Solving Stokes equation system (49) using
the PN -PN−2 strategy [8] the pressure and velocity are decoupled as:

Eδp = −Dû, un+1 = û + hB−1DT δp, pn+1 = pn + δp, (51)

which in the matrix form (after a single round of block Gaussian elimination)
can be represented as [6, 5]:

20

Nek5000 Course 2021

Page 90



[
H − 2

3hHB
−1DT

0 E

](
un+1

pn+1 − pn
)

=

(
Bf + DTpn

g

)
. (52)

Here, E, given as:

E = −2

3
hDB−1DT, (53)

is the Stokes-Schur complement governing the pressure in the absence of the
viscous term. This is because, in the PN -PN−2 method, the pressure is only
defined on Gauss-Lobatto (GL) points in contrast to the velocity fields which
are defined on Gauss-Lobatto-Legendre (GLL) points so as to remove spurious
pressure modes. The advantage of this splitting procedure is that matrix vec-
tor products involving E can be computed without system solves, since B is
diagonal. Note that the Galerkin approach implies that the governing system
is symmetric and that the matrices H, A, and B are all symmetric positive
definite. This equation system can be solved with a preconditioned conjugate
gradient (PCG) or generalized minimal residual (GMRES) method.

Thus, in summary, the time advancement of the Navier-Stokes equations in-
volves advancing the convective terms through the solution of eq. (46), solving
for the viscous contribution in the construction of g in eq. (52), solving for the
pressure using eqs. (52) and (53) and finally computing the divergence free so-
lution un using eq. (52). H and E are solved in an iterative manner. Usually,
when h/Re is small, H is diagonally dominant and readily amenable to solution
via Jacobi preconditioned conjugate gradients [5].

4 Implementation pointers

Here we provide some pointers to the code implementing time integration in
Nek5000. A call graph of relevant functions can be found in Figure 6, and a
small description of the purpose of these functions is found in Table 1.

One can generally distinguish two sets of relevant functions. One is responsible
for assembling the right-hand side, and is therefore called by makef. The others
are called by settime and are responsible for auxiliary tasks such as determining
a variable time-step, using input parameters from the user, computing the BDFk
coefficients, etc. The majority of the code is relatively straightforward, except
the code for OIFS, which is difficult to understand.

Useful prior knowledge is that the bd and ab are used to store the coefficients
for the BDFk and ABk/EXTk schemes, respectively. The values of the coeffi-
cients for the case of a constant time step are given in Table 4. Note that the ABk
schemes are only used in conjunction with BDF1, which would typically only
be used to start up BDF2/3. However, it is possible to choose BDF1 explicitly
in the .par configuration file. Fore relevant keywords, please refer to the online
documentation currently available at https://nek5000.github.io/NekDoc/.

21

Nek5000 Course 2021

Page 91



Figure 6: Call graph for functions handling time-stepping.

Function Location Purpopse
settime drive2.f Calls several routines below to get the time-step and scheme coefficients.
setdt subs1.f Computes the next time-step.
setordbd navier1.f Sets the order of the BDF scheme for the current time-step.
setbd navier1.f Computes the coefficients for the BDFk scheme.
bdsys navier1.f Sets up the linear system to compute the BDFk coefficients.
setabbd navier1.f Computes the coefficients for the EXTk scheme.
makeabf navier1.f Adds convective term contribution to the right-hand-side.
makebdf navier1.f Adds ∂/∂t term contribution to the right-hand-side.
advchar navier1.f Contribution from characteristics-based time-stepping. Wraps char conv.
char conv convect.f Basically just wraps char conv1.
char conv1 convect.f Computes contribution from the characteristics-based time-stepping.

Table 1: Key functions governing the time-stepping functionality.

5 Appendix. Newton’s polynomial interpola-
tion

The Newton polynomial is an interpolating polynomial passing through a given
set of n+ 1 points (xi, yi), and build on the following basis functions:

n0(x) = 1, ni(x) =
i−1∏
j=0

(x− xj) , (i = 1, · · · , n), (54)

The form of the polynomial is thus

22

Nek5000 Course 2021

Page 92



Torder ABk BDFk EXTk
1 [1 0 0] [1 1 0 0] [1 0 0]
2 [3/2 -1/2 0] [3/2 2 -1/2 0] [2 -1 0]
2a - - [8/3 -7/3 2/3]
3 [23/12 -4/3 5/12] [11/6 3 -3/2 1/3] [3 -3 1]

Table 2: Coefficients for schemes schemes used in Nek5000 under the assumption
of a constant time step.

Nn(x) =
n∑
i=0

cini(x) = c0 +
n∑
i=1

ci

i−1∏
j=0

(x− xj)


= c0 + c1 (x− x0) + c2 (x− x0) (x− x1) + · · ·+ cn

n−1∏
j=0

(x− xj) .

(55)

For this nth degree polynomial to pass all n + 1 points, it needs to satisfy
n+ 1 equations, which can be shown to lead to the following expression for the
coefficients.

ck = y [x0, · · · , xk] =
k∑
j=0

y (xj)∏k
i=0,i6=j (xj − xi)

, (k = 0, · · · , n). (56)

Here, y [x0, · · · , xk] are commonly referred to as divided differences.

It will be useful to have the forms of Nn written out explicitly for n = 0, 1, 2.

N0 = y0

N1 = y0 +
y1 − y0

x1 − x0
(x− x0) (57)

N2 = y0 +
y1 − y0

x1 − x0
+

y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0
(x− x0)(x− x1)

The particular case when xi are equidistant with step h is also useful

N0 = y0

N1 = y0 +
y1 − y0

h
(x− x0) (58)

N2 = y0 +
y1 − y0

h
(x− x0) +

y2 − 2y1 + y0

2h2
(x− x0)(x− x1)

Note how the c1 and c2 are clearly finite-difference approximations of the first
and second derivatives, respectively.

23

Nek5000 Course 2021

Page 93



References

[1] High-order splitting methods for the incompressible navier-stokes equations.
Journal of Computational Physics, 97(2):414–443, 1991.

[2] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengle-
ichungen der mathematischen Physik. Math. Ann., 100:32–74, 1928.

[3] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for
Incompressible Fluid Flow. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, Cambridge, 2002.

[4] Paul F. Fischer. Implementation considerations for the OIFS/characteristics
approach to convection problems.

[5] Paul F Fischer. An overlapping schwarz method for spectral element solution
of the incompressible navier–stokes equations. Journal of Computational
Physics, 133(1):84–101, 1997.

[6] Paul F. Fischer. Lecture notes on spectral element method for flow simula-
tion, February 2016.

[7] P. D. Lax and R. D. Richtmyer. Survey of the stability of linear finite
difference equations. Communications on Pure and Applied Mathematics,
9(2):267–293, 1956.

[8] Yvon Maday and Anthony T. Patera. Spectral element methods for the
incompressible Navier-Stokes equations. State of the Art Surveys in Com-
putational Mechanics. A.K. Noor (Ed.), ASME, New York, 1989.

[9] H. Nishikawa. Derivation of BDF2/BDF3 for variable step size. Technical
note, 2021.

24

Nek5000 Course 2021

Page 94



Pressure preconditioning

Daniele Massaro∗, Donnatella Xavier† and Hamidreza Eivazi‡

July 7, 2021

1 Introduction

Nek5000 is an open source high-order solver for Computational Fluid Dynamics
(CFD). It models incompressible and low Mach-number Navier-Stokes (NS)
equations, but as regards this report the first formulation is considered.

The incompressible assumption for NS equations leads to a divergence free flow,
where the pressure perturbations travel at infinite sound speed. Due to the
elliptic nature of pressure equation, any modification in a given point of our
domain gives an effect in each point of the entire domain instantaneously. The
linear pressure sub-problem can become very ill-conditioned, making its solu-
tion the most expensive phase of the simulation using iterative solvers (around
80% of overall cost). It follows that a robust parallel preconditioning strategy
is pivotal to guarantee good performances. Nek5000 implements a spectral ele-
ment method (SEM) discretization (Deville [1], Patera [10]), and in this context
two possible approaches are presented. The first approach is based on additive
overlapping Schwarz method [5, 3], while the second one uses a hybrid Schwarz-
multigrid method [9, 8].

1.1 Problem formulation

As starting point let consider the incompressible NS equations for a Newtonian
fluid in a non dimensional form. In order to be complete the set of equations 1
has to be combined with proper boundary and initial conditions.

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u + f,

∇ · u = 0
(1)

According to Galerkin approach the equations are multiplied by a test function
and integrated over the domain. In this way the weak form can be derived. As lo-
cal support basis function the Legendre polynomials are considered. In order to
satisfy LBB stability condition PN −PN−2 is used: velocity and pressure spaces

∗KTH Engineering Mechanics, dmassaro@kth.se
†KTH Engineering Mechanics, dgxavier@kth.se
‡University of Tehran, KTH Engineering Mechanics, hamidre@kth.se

1

Nek5000 Course 2021

Page 95

mailto:dmassaro@kth.se
mailto:dgxavier@kth.se
mailto:hamidre@kth.se


are spanned by Lagrangian interpolants on Gauss-Lobatto-Legendre (GLL) and
Gauss-Legendre (GL) respectively. The time integration is performed via semi-
implicit scheme: non linear term explicitly and remaining unsteady Stokes prob-
lem implicitly. Eventually fn incorporates all terms explicitly known at time tn.
The more in depth derivation can be found in [3].

1

Re
(∇v,∇un)GLL +

1

∆t
(v,un)GLL − (∇ · v, pn)GL = (v, fn)GLL,

(q,∇ · un)GL = 0
(2)

This system 2 can be rewritten in the matrix form:

(
H −DT

−D 0

)(
un

pn

)
=

(
fn

0

)
(3)

and according to generalized LU decomposition, which implements Uzawa de-
coupling approximating Q, it reads:(

H − δt
β0

HB−1DT

0 E

)(
un

δp

)
=

(
Bfn + DT pn−1

g

)

where H is the Discrete Helmholtz operator, H =
1

Re
A +

1

∆t
B where A is

the discrete Laplacian and B, the discrete mass matrix respectively, and D is
the discrete divergence operator. The overall algorithm is made by 4 principal
steps:

1. Calculate residual fn

2. Solve Helmholtz operator for intermediate velocity

Hu∗ = fn

3. Project on a divergence-free space solving

Eδp = −Du∗

4. Update pressure and velocity

pn = pn−1 + δp

un = u∗ + DT δp

The report is focused on the solution of pressure equation (step 3), especially
how to precondition properly the matrix E, which is usually very ill conditioned.

E =
δt

β0
DB−1DT (4)

2

Nek5000 Course 2021

Page 96



Figure 1: The flow diagram of the Nek5000 implementation for the pressure
equation solution is here presented.

1.2 Nek5000 flow diagram

Figure 1 shows the overall implemented scheme and the available options to
solve the pressure equation. First of all a pressure solver has to be defined. In
this sense there are three possible choices.

The Preconditioned Conjugate Gradient (PCG) is a Krylov subspace iterative
method which works only for symmetric positive definite operator (SPD). It
uses only two levels Additive Schwarz preconditioner and is selected by setting
(param(42)=1 ) in the .usr file (userdat2). Actually the runtime parameters, as
the ones introduced below, are set by the user directly in the .par file. The flex-
ible Conjugate Gradient (CGFLEX ) is suitable for complex and very deformed
mesh, but works only for Pn−Pn formulation. Differently to PCG and GMRES,
where a geometric multigrid approach is implemented, this is a fully algebraic
multigrid method. In a nutshell: in the geometric approach the sequence of
grids is defined apriori in a geometrically natural way, e.g. the coarse operator
is defined only on the vertices of the initial mesh. The algebraic technique builds
the coarse operator directly from the fine operator, hence the coarse grid matrix
can be any linear combinations of upper level operator. CGFLEX is defined in
the .par file ([PRESSURE)], solver, param(42)=2 ). In the interest of this
discussion the Generalized minimal residual method (GMRES) is the only anal-
ysed. It’s more flexible and the default choice for time dependent NS problem
in Pn−Pn−2 formulation. It is defined in the .par file ([PRESSURE)], solver,
param(42)=0 ).

GMRES is an iterative solver for linear system which looks for a solution in
a Krylov subspace, minimizing the 2-norm of the residual. A two or multi
levels preconditioners are available for this pressure solver. Before describing
these possibilities, let step back and motivate the meaning of preconditioning.
The preconditioner is an accelerating convergence technique extremely useful
for linear system with badly conditioned operator. It consists in the system,

3

Nek5000 Course 2021

Page 97



multiplication by a matrix M−1, i.e. the preconditioner:

Eδp = −Du∗ −→M−1Eδp = −M−1Du∗ (5)

From here on GMRES pressure solver is only considered and the Schwarz pre-
conditioning is applied. The overlapping Schwarz method is described in details
in §2, but here it is briefly introduced. Setting the param(43) two main options
are available: two levels (fine and coarse) or multilevel (a V cycle with up to
three additional levels). The multilevel approach (param(43)=0) is the default
choice, but two-levels is also available for testing or in Adaptive Mesh Refine-
ment (AMR). Both these algorithms have been discussed in detail in §2.1.4.

As equation 6 suggests The preconditioner is built by adding local to global
contribute.

M−1 = RT0 Â
−1
0 R0 +

∑
k

RTk Â
−1
k Rk (6)

In the multilevel case not only the additive technique is available. Indeed defin-
ing the param(41), the hybrid option can be used as well. In the Hybrid Schwarz
preconditioner a multiplicative approach is followed: local and global problems
are coupled by multiplying those terms in the M−1 definition:

M−1 = RT0 Â
−1
0 R0

[∑
k

RTk Â
−1
k Rk

]
(7)

Since the hybrid approach is hard coded and used only by more expert users,
the next section has elaborated only the additive Schwarz.

Eventually the local and global problems are solved. As regards the local prob-
lem, the param(44) defines the basis used to build up the local operator. Spectral
Element Method (SEM) is the default one, but also a Finite Element (FEM)
basis is available, even if only for axisymmetric flows. This last possibility is
coupled with CGFLEX solver, good for very deformed mesh. In the following
discussion only the SEM basis is taken into account.

Regarding the global problem solution, two coarse solvers are available, e.g.
XXT and AMG. Both are described in the last section (see param(40)). The
default choice is XXT, however the initialising pressure solver routine prinit
(in drive2.f) sets a limit of the max element number to 350000.

2 Overlapping Additive Schwarz method

This section discusses the overlapping additive Schwarz preconditioner in some
detail, with an overview of theory, followed by its implementation in Nek5000
solver.
The overlapping Schwarz method is an efficient domain decomposition method,
developed on the principles of Schwarz’s alternating numerical scheme of 1870.
Domain decomposition is, as the name implies, the method of perceiving the

4

Nek5000 Course 2021

Page 98



global domain as a union of simpler subdomains; formulating independent prob-
lems in these separate subdomains and then combining the solution through
iterative or some other method. Domain decomposition methods are therefore,
inherently parallel and have the advantages of both direct and iterative solvers.
Preconditioners based on domain decomposition techniques are a natural choice
for spectral element method discretization because the data in Nek5000, is struc-
tured within an element but is otherwise unstructured [11]. We shall first intro-
duce the essential components that make up the Additive Schwarz method and
then discuss the two-level and multi-level versions of it. Consider the discretized
Poisson problem Au = f where A ∈ Rn×n and f and the solution u ∈ Rn.
Consider the domain partitioned into 2 overlapping subdomains, hence the set
of indices {1, 2, ...n} is partitioned into two sets as: N1 := {u1, u2, · · ·us} and
N2 := {us−o, · · ·un} where o denotes the number of overlapping elements 1. Ac-
cordingly two solutions exist u1 := (uk)k∈N1

:= uN1
and u2 := (uk)k∈N1

:= uN2
.

Two quantities that are necessary for this method, which form the link between
the local subdomains and global subdomain. These are:

• A restriction operator. A matrix, denoted as Ri that restricts a vector
u ∈ RN to a subdomain Ωi for 1 < i < N , where Ri is rectangular Ni×N
Boolean matrix. This restriction of the vector can be expressed by the
product Riu

• The extension operator which is the transpose of RTi which performs the
extension by 0 from RNi to the global domain RN

The solution scheme involves solving iteratively in the i subdomains, the system
um → um+1 from the residuals of the BVP:

um+1
Ni

= umi +A−1i Ri(f −Aum) (8)

where umi = Riu
m and Ai = RiAR

T
i . The iterative Additive Schwarz precon-

ditioner algorithm is the preconditioned fixed point iteration defined by [2]:

um+1 = um +M−1ASMrm where rn := f −Aum (9)

and the preconditioner matrix is a symmetric positive definite matrix given as :

M−1ASM =

n∑
i=1

RTi (RiAR
T
i )Ri (10)

The Additive Schwarz preconditioner discussed so far is still in “one” level. This
one level additive Schwarz method does not allow scalability. The number of
iterations needed for convergence increases linearly with the number of subdo-
mains in one direction [2]. However the addition of a coarse space correction
is the remedy for this. A “two”-level method allows to enrich the preconditioner
by solving a coarse problem whose size is of the order of the number of subdo-
mains. Elaborating further on the need for this “two-level” from a linear algebra
point of view, using the one-level preconditioner M−1ASM would remove the influ-
ence of the very large eigenvalues of the coefficient matrix, which corresponds to
the high frequency modes, but the low frequency modes in the spectrum of the
preconditioned problem remain and lead to a stagnation in the convergence of

1eg. n = 5, o = 2 and with 2 subdomains, N1 := {u1, u2, u3, u4} and N2 := {u2, u3, u4, u5}

5

Nek5000 Course 2021

Page 99



the error. These low frequency eigenmode values represent certain global infor-
mation and needs to be dealt with in an efficient manner. The introduction of a
coarse grid or coarse space correction can be used to couple all the subdomains
at each iteration of the iterative method.

Suppose we have some apriori knowledge of the small eigenvalues of the precon-
ditioned system M−1ASMA used to solve the linear system Au = f . For a Poisson
problem, these slow modes correspond to constant functions that are in the null
space (kernel) of the Laplace operators [2, 12]. Let Z be the rectangular matrix
whose columns correspond to these slow mode eigenvectors. The best way to
incorporate this information algebraically so as to accelerate convergence is by
solving the minimization problem

minβ ‖A(y + Zβ)− f‖A−1 (11)

It corresponds to finding the best correction to an approximate solution y by a
vector Zβ in the vector space spanned by the nc columns of Z [2]. The solution
to this β = (ZTAZ)−1ZT (f −Ay). Multiplying by Z gives the correction term
as Zβ = Z(ZTAZ)−1ZT (f − Ay). If the additive Schwarz method were to be
used, the best correction that belongs to vector space spanned by the columns of
Z would be Zβ = RT0 (R0AR

T
0 )−1R0r where R0 := ZT and residual r = f −Ay.

The two-level additive Schwarz preconditioner is thus defined as

M−1 = RT0 (R0AR
T
0 )−1R0 +

n∑
i=1

RTi (RiAR
T
i )−1Ri (12)

where the Ri’s are the restriction operators to the overlapping subdomains and
R0 = ZT . The local stiffness matrix Âk = RiAR

T
i is derived from a tensor

product of 1D element basis, and the minimal overlapping occurring in nek is
shown in figure 2. The original sub-domain Ωk is extended by two GL points
on both sides. For an internal element homogeneous Dirichlet BCs are set on
the external one, thereby only one degree of freedom is added per side, ζ0 and
ζN respectively.

Figure 2: The minimal overlapping is shown for a 1D internal element. In
the black points ζ−1 and ζN+1 homogeneous Dirichlet boundary conditions are
applied, see [5].

Summarising, the one level Schwarz method required solving only local sub-
problems in parallel, where as in the two level Schwarz method alongwith the
local subproblems, an additional linear system with matrix R0AR

T
0 needs to

6

Nek5000 Course 2021

Page 100



be solved, which is global in nature. This global problem is called the coarse
problem and it is global because it couples all the subdomains at each iteration.
If the number of subdomains in not too large, the cost of the coarse solve is
insignificant compared to the gain, because its matrix is a small square matrix
O(n× n). For coupling the local and global contributes, the Hybrid Schwarz
method multigrid preconditioner [9] was developed. This is a multiplicative
combination of the additive Schwarz smoother at the fine scale and a coarse grid
correction. For 2 levels, the same Hybrid Schwarz multigrid looks as follows:

M−1 = RT0 Â
−1
0 R0

[ n∑
k=1

RTk Â
−1
k Rk

]
(13)

where the following two-level multigrid scheme would arise:

1. u1 =
∑
k R

T
k Â
−1
k Rkf , where f is the righthand vector for Au = f

2. The residual is given as r = f −Au1.

3. e = RT0 Â
−1
0 R0r is the coarse grid error.

4. u = u1 + e is the solution

This method can be extended to general multilevel solver which performs the
full V cycle, with smoothing and coarsening. In fact replacing the r = f , we
obtain the additive Schwarz preconditioner, so multilevel scheme can be applied
at 2 levels as well, with just one level of smoothing at local solve.

2.1 Implementation of Additive Schwarz Preconditioner
in Nek5000

The parameter param(43) controls the selection of the preconditioner, whose
default value is 0 representing two-level additive Schwarz. The additive Schwarz
preconditioner in equation 12 can be rewritten as

M−1 = RT0 Â
−1
0 R0 +

n∑
k=1

RTk Â
−1
k Rk (14)

where Âk = RkAR
T
k , where A would be the spectral element discretization of

the the PDE Au = f on the finest mesh. k = 0 stands for the discretization of
the PDE on the coarse mesh. Thus based on the discussion in previous section,
4 components needed for the additive schwarz preconditioner are:

1. Local Restriction Rk and prolongation RTk matrices with Boolean en-
tries returning only degrees of freedom inside each subdomain. An important
fact to note here is that elements in Nek5000 SEM have no overlap, so Rk is
actually an operator constructing elements with overlap. This is done using
the gather scatter operator QQT in Nek5000, because Q is the binary operator
duplicating basis coefficients in adjoining subdomains. Recall that fL = Qf
is the global to local mapping of the function f and QT fL sums any multiple
contributions to global degree of freedom from their local values. Rk and RTk

7

Nek5000 Course 2021

Page 101



are built on top of the QQT routines

2. Local stiffness matrices Âk. First recall Âk = RkAR
T
k , where A is the

global stiffness matrix and the solution vector in each of the subdomains is re-
lated to the solution of global domain as u = RTk uk for k subdomains. Âk
matrix is constructed in such a way that it can be inversed with Fast Diag-
onalization Method (FDM), see [5], because it is needed to have the inverse
of this matrix (see equation 14) Here in Nek5000, the local stiffness matrices
are constructed by evaluating the tensor products on GLL quadrature points

Akij =
∫ dhi
dx

dhj
dx

. (figure 3). Note that this matrix is never really formed in

Nek5000 but is written in terms of QQT . It is in fact the action of local 1D
operators (small matrix-matrix multiplication) combined with QQT .

Figure 3: Degrees-of-freedom (open circles) for FEM based (left) and tensor-
product based (right) discretizations of local problems. Values at nodes marked
with ⊗ are marked zero by the restriction matrix Rk. Dirichlet boundary con-
ditions are applied on ∂Ω̃k [5].

In Nek5000, the deformation of elements is neglected and regularized surrogates
of the elements are built by averaging the element faces and replacing them
with parallelepipeds. For a regular parallelepiped the local stiffness matrix can
be written in a separable form. For example for a two dimensional rectangle
Lxk × Lyk, the local stiffness matrix would be [9]:

Ak =
Lxk
Lyk

B⊗A +
Lyk
Lxk

B⊗A and A := DTBD (15)

where B is the one dimensional mass matrix composed of GL quadrature weights

and D =
dhj
dx

the derivative matrix. This form has a readily computable inverse

given by fast diagonalization method :

A−1k = Z ⊗ Z
[
Lxk
Lyk

I ⊗ Λ +
Lyk
Lxk

Λ⊗ I
]−1

(ZT ⊗ ZT ) (16)

where Z is the matrix of eigenvectors and Λ the matrix of eigen values satisfying
AZ = BZΛ and ZTBZ = I. The term in brackets in equation 16 is diagonal
and its pseudo inverse in computed by inverting nonzero elements and retaining

8

Nek5000 Course 2021

Page 102



zeros elsewhere. Thus in three dimensions, the inverse of Ak is given as

A−1k = (Z3 ⊗ Z2 ⊗ Z1)D−1(ZT3 ⊗ ZT2 ⊗ ZT1 ), (17)

with D = I ⊗ I ⊗ Λ1 + I ⊗ Λ2 ⊗ I + Λ3 ⊗ I ⊗ I (18)

the subscript on the Z matrix indicates the associated coordinate direction in
the reference element. In nek preconditioning any deformation is neglected and
a regularised surrogates of the element is considered. Averaging dimensions are
taken into account to recover a parallelepiped shape. This might give a quite
bad approximation for very deformed elements. Since acting at preconditioning
level and allowing great computational efficiency, thanks to fast diagonalization,
this approximation is acceptable.

3. Coarse grid stiffness matrix Â0 : At the coarse level, the matrix is full
and hence each coarse grid solve requires an all-to-all communication, as every
entry of the distributed input has a nontrivial impact on every output value.
In Nek5000, Â0 is constructed by defining local SEM based Neumann operators
that perform projection of local stiffness matrices Ak evaluated on the GLL
quadrature points on the set of coarse base functions bi representing linear fi-
nite element base on GLL grid. The coarse base functions are defined in Ω̂ as a
tensor product of 1D functions b̂01(r) = 0.5∗ (r+ 1) and b̂10(r) = 0.5∗ (1− r)for
r ∈ [−1, 1]. , each of them corresponds to the single elements vertex for which
the function’s value is 1 [11]. The local contribution to Â0 is given by bTi Akbj
and full Â0 is finally assembled by local-to-global mapping summing contribu-
tions to global degree of freedom from their local counterparts. Â0 is actually
formed in Nek5000.

4. Restriction matrix R0 and its transpose, the prolongation operator
RT0 for the coarse grid. RT0 is the operator that interpolates coarse grid solu-
tion onto the tensor product array of GL points in the reference element. The
prolongation operator is thus simply a bilinear or trilinear interpolant from the
coarse grid vertices to the GL points in the reference element and hence can be
cast as a sequence of efficient matrix-matrix products. R0 = QT0Q

T
p I

T
p where Ip

represents local interpolation from subdomain vertices to the Gauss points, QTp
represents the direct stiffness summation of vertex values within each processor
and QT0 represents the interprocessor direct stiffness summation step [5].

2.1.1 Pressure preconditioner algorithm:

The pressure preconditioner routine is in uzawa gmres. Either of the two pre-
conditioning methods can be called here depending on param(43): two-level (
uzprec ; navier1.f) additive or the multilevel ( hsmg solve; hsmg.f) Schwarz algo-
rithm. The second method could be implemented as additive or hybrid. First,
we discuss the two-level preconditioner algorithm as it is in Nek5000. uzprec (see
Algorithm 1)is a general routine providing preconditioners for different type of
operators implicit, steady and explicit. It starts with interpolating operator
parameters h1 and h2 from velocity to pressure mesh. Next it selects proper
operator action. The unsteady explicit case is relevant to us and here, the code

9

Nek5000 Course 2021

Page 103



Algorithm 1 Pressure Preconditioner M−1Eδp = −M−1Du∗

1: procedure uzprec(rpcg, rcg, h1m1, h2m1, intype, wp)
2: call map12(...) . interpolate h1, h2 on press. mesh
3: if intype = 0 then
4: steady case; not relevant
5: else if intype = −1 then
6: implicit case; not relevant
7: else if intype = 1 then
8: if ifnals then
9: version not in use

10: else
11: call eprec2(rpcg, rcg)
12: end if
13: else
14: call copy(rpcg, rcg) . not in use
15: end if
16: call ortho(rcpg) . remove mean; comm.
17: end procedure

executes uzprec2 (navier3.f), as ifanls is by default set to .false., and finishes
with removing mean from the solution.

On the other hand, uzprec2 calls directly dd solver (navier3.f), which performs
local ( local solves fdm ; fasts.f) and global ( crs solve l2 ; navier8.f) solves in equa-
tion 14 and at the end sums their scaled results (see Algorithm 2).

Algorithm 2 Additive Schwarz two-level M−1 = RT0 Â
−1
0 R0 +

n∑
k=1

RTk Â
−1
k Rk

1: procedure dd solver(u, v)
2: call local solves fdm(u, v) . local Schwarz operator
3: call crs solve l2(uc, v) . global operator
4: alpha = 10. . scaling factor
5: call add2s2(u, uc, alpha, ntot) . local + global solution
6: end procedure

2.1.2 Local solver

Recall that the local stiffness matrix in equation 14 is assembled from tensor
products and can be easily invertible. The fast diagonalization method used
for the local solver, in Nek5000 is implemented in local solves fdm . It applies
fast diagonalistaion method to the element interior appended by the face val-
ues of the face-neighbouring elements neglecting all edge or vertex neighbors.
This operation assumes as well rectangular element neglecting element defor-
mations. To append a given element with its neighbours face values the routine
starts by copying pressure element (N − 1)dim data into the middle of veloc-
ity sized element (N + 1)dim leaving face, edge and vertex values blank. Next
it extends interior values to the bigger element faces (dface ext; fasts.f), sums

10

Nek5000 Course 2021

Page 104



Algorithm 3 Local Solves Âk = RkAR
T
k in

n∑
k=1

RTk Â
−1
k Rk

1: procedure local solves fdm(u, v)
2: call rzero(v1, ...) . zero work array
3: v1(ix+ 1, iy + 1, iz + iz1, e) = v(ix, iy, iz, e) . fill element interior
4: call dface ext(v1) . face ← interior sum
5: call dssum(v1, ...) . face value exchange; comm.
6: call dface add1si(v1,−1) . face ← interior subtract
7: call fastdm1(v1, ...) . fast diagonalisation
8: call s face to int(v1,−1) . interior ← face subtract
9: call dssum(v1, ...) . face value exchange; comm.

10: call s face to int(v1,−1) . interior ← face sum
11: call do weight op(v1) . non-symmetric weighting
12: u(ix, iy, iz, e) = v1(ix+ 1, iy + 1, iz + iz1, e) . extract data
13: end procedure

face values with neighbours (dssum; dssum.f) and finally subtracts own con-
tribution (dface add1si; fasts.f). In such prepared elements ((N + 1)dim size) a
solution is calculated with fast diagonalisation method (fastdm1; fasts.f) per-
forming local matrix-matrix and vector-vector multiplications. This is followed
by a redistribution of the solution, which is similar to appending step, however
this time interior not face values are modified. For GMRES iterative solver
(param(42) = 0) additional non-symmetric weights are applied by do weight op;
(fasts.f; notice in this routine array index start from 0). The routine ends with
extracting (N − 1)dim date from Ndim sized elements.

Algorithm 4 Fast Diagonalization for the Local Solves A−1k = (Z3 ⊗ Z2 ⊗
Z1)D−1(ZT3 ⊗ ZT2 ⊗ ZT1 )

1: procedure fastdm1(r, df, sr, ss, st, w1, w2)
2: call tensr3(...) . matrix-matrix
3: call col2(..) . vector-vector
4: call tensr3(...) . matrix-matrix
5: end procedure

2.1.3 Global solver

Finally the global (coarse grid) problem in equation 14 is solved in crs solve l2

(navier8.f) and consists of three steps: mapping element interior to the vertices
(R0), solving coarse grid problem on reduced number of degrees of freedom
(Â−10 ) and mapping solution to element interior (RT0 )

Restriction and prolongation operations are performed by spectral in-
terpolation between pressure mesh (GL points) and vertices of velocity mesh
(GLL points) using maph1 to l2t, maph1 to l2 and specmpn from navier8.f. The
coarse grid problem Â−10 is not directly related to SEM formulation and will be
discussed in a separate section.

11

Nek5000 Course 2021

Page 105



Algorithm 5 Coarse Grid Solver RT0 Â
−1
0 R0

1: procedure crs solve l2(uf, vf)
2: call map f to c l2 bilin(uf, vf, w) . R0

3: fgslib crs solve(xxth(ifield), uc, uf) . Â−10

4: call map c to f l2 bilin(uf, uc, w) . RTo
5: end procedure

2.1.4 Multi-level preconditioner

Unlike two-level method this preconditioner is devoted to solving unsteady ex-
plicit problems only, but on the other hand it could be used in a form of hybrid
Schwarz-multigird method as well [11]. Hybrid option is turned off by default,
so we will not discuss it here. However, the implementation in Nek5000, involves
an additive implementation and not a product as in equation 13 The main dif-
ference between these two additive methods are the restriction and prolongation
operators for global problem in equation 14.
hsmg solve starts with calculation of average density rhoavg, which is required

Algorithm 6 Hybrid Schwarz MultiGrid solver :

M−1 = RT0 Â
−1
0 R0 +

[
n∑
k=1

RTk Â
−1
k Rk

]
at each refinement level

1: procedure hsmg solve(e, r)
2: rhoavg = glsc2(...)/volvm1 . relevant for hybrid only; comm.
3: l = mg lmax . level number
4: call local solves fdm(e, r) . local solution
5: hybrid-multigrid section . omitted
6: mg work2(i) = r(i) . initialise residual
7: for l = mg lmax− 1, 2,−1 do . level loop
8: call hsmg rstr(...) . restriction; comm.
9: call hsmg schwarz(...) . Schwarz solve; comm.

10: call hsmg schwarz wt(...) . weights multiplication
11: end for
12: call hsmg rstr no dsdum(...) . restriction
13: hsmg do wt(...) . weights multiplication
14: hsmg coarse solve(...) . coarse grid solve
15: hsmg do wt(...) . weights multiplication
16: for l = 2,mg lmax− 1 do . level loop
17: end for
18:

19: hybrid-multigrid section . omitted
20: e(i) = e(i) + copt2 ∗mg work2(i) . local + global solution
21: call ortho(e) . remove mean; comm.
22: end procedure

by hybrid solver only and could be omitted to avoid unnecessary communi-
cation. Next a local problem in equation 14 is solved in the similar way to
two-level method by call to local solves fdm (fasts.f). The global step starts with
copy of the residual r to a multigrid work array mg work . At each level

12

Nek5000 Course 2021

Page 106



three operations are performed: restriction (hsmg rstr; hsmg.f), solution of lo-
cal problem at given level (hsmg schwarz;hsmg.f) and final weights multiplication
(hsmg schwarz wt; hsmg.f).

The restriction operator performs following actions: multiplication of the el-
ement faces by weights (hsmg do wt; hsmg.f), interpolation to lower resolution
grid (hsmg tnsr; hsmg.f) using matrix-matrix multiplication and finally sum face
values using communication (hsmg dssum; hsmg.f). Last routine is similar to
original dssum, but operates at given level. Solution of a local problem at given

Algorithm 7 Hybrid Schwarz MultiGrid Restriction operator

1: procedure hsmg rstr(uc, uf, l)
2: call hsmg do wt(...) . weights multiplication
3: call hsmg tnsr(...) . interpolation
4: call hsmg dssum(...) . face sum; comm.
5: end procedure

level done by hsmg schwarzis analogical to action of local solves fdm , but contains
additional steps. It starts with masking Dirichlet b.c. using weight multi-
plication routine hsmg do wt and next embeds the data in a bigger array with
blank faces (hsmg do wt; hsmg.f). Next the data is appended with neighbour’s
interior values using hsmg extrude and hsmg schwarz dssum. The difference with
local solves fdm is the row/collumn number to be copied. Note that there are 2
communication routines hsmg dssum and hsmg schwarz dssum. They are required
as elements size differs by 2. Next local solve in element with fast diagonalistion
method is performed with hsmg fdm. This step is almost identical with it’s two-
level counterpart, however the result is stored in different array part. From this
point we have to distinguish input and solution arrays. Following operations (8-
11 in the routine scheme) give the same result as steps (8-10) in local solves fdm

routine (although with more subroutine calls and additional data copy), but act
on different columns/rows. The routine hsmg schwarz ends with data extraction
from a bigger element (hsmg schwarz toreg3d), face summation (hsmg dssum), and
masking Dirichlet b.c. (hsmg do wt).

Next operation in hsmg solve is restriction to the coarsest level done by hsmg rstr no dssum

. It is identical with hsmg rstr except the final exchange of face values (no call to
hsmg dssum). This restriction is followed by weights multiplication (hsmg do wt),
coarse grid solve hsmg coarse solve and second weights multiplication (hsmg do wt).

3 Coarse problem

As it is mentioned in §1, the preconditioner combines local problems RTk Â
−1
k Rk

and a coarse grid problem RT0 Â
−1
0 R0, see equation 6. In this section, we focus

on the solution of the coarse grid operator, Â0, which corresponds to a Laplace
operator defined on the element vertices only. Because of its low number of
degrees of freedom and global extent, the scalability of the coarse grid problem
is mostly limited by communication and latency. We note that the term “coarse
grid” here refers to the fact that Â0 is defined on the vertices of the spectral
elements only. Two choices are available in Nek5000 to solve this problem and

13

Nek5000 Course 2021

Page 107



Algorithm 8 Hybrid Schwarz MultiGrid solve procedure

1: procedure hsmg schwarz(e, r, l)
2: hsmg do wt(...) . masking
3: call hsmg schwarz toext3d(..) . extend array
4: call hsmg extrude(...) . face input ← interior input sum
5: call hsmg schwarz dssum(...) . face value exchange; comm.
6: call hsmg extrude(...) . face input ← interior input subtract
7: call hsmg fdm . local solve
8: call hsmg extrude(...) . face input ← face result sum
9: call hsmg schwarz dssum(...) . face value exchange; comm.

10: call hsmg extrude(...) . face result ← face input subtract
11: call hsmg extrude(...) . interior result ← face result sum
12: call hsmg schwarz toreg3d(..) . extract result array
13: call hsmg dssum(...) . face value exchange; comm.
14: hsmg do wt(...) . masking
15: end procedure

can be chosen using param(40). The first one is a direct, sparse basis projection
method, called XXT [13]. The second option uses an algebraic multigrid (AMG)
method, which is more efficient for massively parallel (more than 10,000 cores)
large simulations (more than 100,000 elements) [4, 6]. Table 1 presents a brief
comparison between the XXT and the AMG coarse grid solvers. In the following,
we discuss these two methods in more detail.

Table 1: Comparison of available coarse grid solvers in NEK5000

XXT AMG

Direct Iterative
Slow for large cases Favored for large cases

(max element number 350000)
Rapid setup Complex setup

3.1 Coarse grid solvers

3.1.1 XXT

The XXT method is a fast direct solver for parallel solution of “coarse grid”
problems, Ax = b, such as arise when domain decomposition or multigrid meth-
ods are applied to elliptic partial differential equations in d space dimensions.
The approach is based upon a Cholesky factorization of the inverse of A into
XXT with a convenient refactoring of the underlying matrix to maximize the
sparsity pattern of XT . If A is n × n and the number of processors is P , the
algorithm requires O(nγ logP ) time for communication and O(n1+γ/P ) time for
computation, where γ ≡ d−1

d . The method is particularly suited to leading-edge
multicomputer systems having thousands of processors. It achieves minimal
message startup costs and substantially reduced message volume and arithmetic
complexity compared to competing methods. The XXT method is based upon
creating a sparse A-conjugate basis for Rn, to be denoted by the columns of the

14

Nek5000 Course 2021

Page 108



matrix
Xn = (x1, x2, · · · , xn) (19)

and it leads to a sparse (not necessarily triangular) factorization of the full
matrix XXT ≡ A−1.

3.1.2 Sparse basis projection method in XXT

The projection approach in the XXT method incorporates a matrix of n basis
vectors, X ≡ Xn, which is as sparse as possible and which yields significantly
reduced computational and communication complexities. Here, we describe the
implementation of the method and discuss communication considerations. We
consider a

√
n×
√
n grid problem. Let the unit vectors êi and êj denote the ith

and jth column of the n×n identity matrix. Let Nj , the neighborhood of j, be
the set of row indices corresponding to non-zeros in column j of A. Then

êTi Aêj = 0 ∀i /∈ Nj (20)

This situation is illustrated in figure 4a for the case where A arises from a 9-
point discretization. From this figure it is clear that at least n/max|Nj | of the
unit vectors are A-conjugate to one another, where |Nj | denotes the cardinality
of Nj . The generation of a sparse basis for X starts with finding a maximal (or
near-maximal) set of k1 A-conjugate unit vectors. The first k1 columns of X will
have only one nonzero entry. Additional entries in X are generated via Gram-
Schmidt orthogonalization. Let Xk = (Xk−1, xk) denote the n× k matrix with
columns (x1, x2 . . . , xk), and let V = (v1, v2, . . . , vn) be an appropriate column
permutation of the identity matrix. Then the procedure

1: for k = 1, . . . , n do
2: w := vk −Xk−1X

T
k−1Avk

3: xk := w/||w||A
4: Xk := (Xk−1xk)
5: end for

ensures that X = Xn is the desired factor of A−1. An efficient procedure for
selecting the permutation matrix, V , can be developed by defining separators
which recursively divide the domain (or graph) associated with A into nearly
equal subdomains. Figure 4b shows the first such separator for a

√
n×
√
n grid.

Since the stencil for Aêj does not cross the separator, it is clear that every unit
vector êi associated with the left half of the domain in figure 4b is A-conjugate
to every unit vector êj associated with the right half. If V is arranged such
that vectors associated with the left half of the domain are ordered first, vectors
associated with the right half second, and vectors associated with separator last,
then application of Gram-Schmidt orthogonalization will generate a matrix X
with worst-case fill depicted by figure 4c (X is shown here with the rows ordered
according to the same permutation used for the columns of V ). This procedure
can be repeated to order the vectors within each subdomain, giving rise to the
structure shown in figure 4d. To complete the construction we recur until no
more separators can be found. The computational complexity of each solve is
proportional to the amount of nonzero fill in the factor X. For the

√
n ×
√
n

grid it can be observed in figure 4d that the number of non-zeros in each row is

15

Nek5000 Course 2021

Page 109



Figure 4: (a) geometric support (shaded) of orthogonal vectors êi and Aêj . (b)
support of separator set. (c) zero/fill structure for X resulting from ordering
the separator set last. (d) zero/fill structure after second round of recursion.

bounded by the sequence

√
n+

√
n

2
+

√
n

2
+

√
n

4
+

√
n

4
+ · · · < 3

√
n

implying a total bound on the amount of fill in X of 3n
√
n. Since we can evenly

distribute the work among processors this leads to a computational complexity
of O(n

3
2 /P ). Similar arguments in three-dimensions lead to a computational

complexity of O(n
5
3 /P ). Both the two and three-dimensional cases provide a

clear gain over the O(n2/P ) cost incurred by the full inverse approach.

3.1.3 Algebraic multigrid (AMG)

Here we briefly outline the basic principles behind the Algebraic Multigrid
(AMG) method. Let consider a system of linear algebraic equations in the
form Au = f , where A is an n× n matrix. Multigrid methods are based on the
recursive use of a two-grid scheme, which combines: (1) relaxation, or smooth-
ing iteration, which is a simple iterative method such as Jacobi or Gauss-Seidel,
and (2) coarse grid correction for solving the residual equation on a coarser
grid. Transfer between grids is described with transfer operators P (prolonga-
tion or interpolation) and R (restriction). A setup phase of a generic algebraic
multigrid (AMG) algorithm may be described as follows:

• Start with a system matrix A1 = A.

16

Nek5000 Course 2021

Page 110



• While the matrix Ai is too big to be solved directly:

1. Introduce prolongation operator Pi, and restriction operator Ri.

2. Construct coarse system using Galerkin operator: Ai+1 = RiAiPi.

• Construct a direct solver for the coarsest system AL.

Note that in order to construct the next level in the AMG hierarchy, we only
need to define transfer operators P and R. Also, the restriction operator is
often chosen to be a transpose of the prolongation operator: R = PT . Having
constructed the AMG hierarchy, we can use it to solve the system as follows:

• Start at the finest level with initial approximation u1 = u0.

• Iterate until convergence (V-cycle):

At each level of the grid hierarchy, finest-to-coarsest:

1. Apply smoothing iterations (pre-relaxation) to the current solution
ui = Si(Ai, fi, ui).

2. Find residual ei = fi−Aiui and restrict it to the RHS on the coarser
level: fi+1 = Riei.

3. Solve the coarsest system directly: uL = A−1L fL.

At each level of the grid hierarchy, coarsest-to-finest:

1. Update the current solution with the interpolated solution from the
coarser level: ui = ui + Piui+1.

2. Apply smoothing iterations (post-relaxation) to the updated solu-
tion: ui = Si(Ai, fi, ui).

So, in order to fully define an AMG method, we need to choose transfer operators
P and R, and smoother S.

In the particular case of Nek5000, the AMG solver performs a single V-cycle and
a fixed number of Chebyshev iterations, computed during the setup, is applied
during the smoothing part. This method has the big advantage to avoid the
inner product, thus reducing communication, at the expense of requiring some
knowledge about the eigenvalues of the operator. More information about the
theoretical background for the setup can be found in [7].

References

[1] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for
Incompressible Fluid Flow. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, Cambridge, 2002.

[2] V. Dolean, Pierre Jolivet, and F. Nataf. An introduction to domain de-
composition methods - algorithms, theory, and parallel implementation.
2015.

17

Nek5000 Course 2021

Page 111



[3] P. Fischer. An overlapping schwarz method for spectral element solution
of the incompressible navier stokes equations. Journal of Computational
Physics, 133:84–101, 1997.

[4] P Fischer, J Lottes, D Pointer, and A Siegel. Petascale algorithms for
reactor hydrodynamics. Journal of Physics: Conference Series, 125:012076,
jul 2008.

[5] P. Fischer, N. Miller, , and H. Tufo. An overlapping schwarz method for
spectral element simulation of three-dimensional incompressible flow. In
P. Bjorstad and M. Luskin, editors, Parallel Solution of Partial Differen-
tial Equations, volume 120 of The IMA Volumes in Mathematics and its
Applications, pages 159–180, 2000.

[6] J Lottes. Independent quality measures for symmetric algebraic multigrid
components. Argonne National Laboratory, Mathematics & Computer Sci-
ence Division, 2005.

[7] James Lottes. Towards robust algebraic multigrid methods for nonsymmet-
ric problems. Springer Theses, 2017.

[8] P. Fischer Lottes J. W. Hybrid multigrid/schwarz algorithms for the spec-
tral element method. Journal of Scientific Computing, 24(1):45–78, 2005.

[9] Lottes J. W. P. Fischer. Hybrid schwarz-multigrid methods for the spectral
element method: Extensions to navier-stokes. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[10] A. T. Patera. A spectral element method for fluid dynamics: Laminar flow
in a channel expansion. J. Comput. Phys., 54(3):468 – 488, 1984.

[11] A. Peplinski, N. Offermans, P. F. Fischer, and P. Schlatter. Non-conforming
elements in nek5000: Pressure preconditioning and parallel performance. In
Spectral and High Order Methods for Partial Differential Equations ICOSA-
HOM 2018, pages 599–609. Springer International Publishing, 2020.

[12] JM Tang, R Nabben, C Vuik, and YA Erlangga. Comparison of two-
level preconditioners derived from deflation, domain decomposition and
multigrid methods. Journal of Scientific Computing, 39(3):340–370, 2009.

[13] H.M Tufo and P.F Fischer. Fast parallel direct solvers for coarse grid
problems. Journal of Parallel and Distributed Computing, 61(2):151–177,
2001.

18

Nek5000 Course 2021

Page 112



Direct Stiffness Summation

Alexandros Katsinos∗, Dimitrios Papageorgiou† and Georgios Tsekouras‡

July 6, 2021

1 Contents

1. Direct Stiffness Summation

2. Element Alignment

3. Gather-Scatter library

4. Networks

5. Parallel Computing

6. Code Implementation

2 Direct Stiffness Summation

Direct stiffness summation (DSS) is a noninvertible, local to local transforma-
tion that amounts to summing shared interface variables to enforce continuity
by redistributing them to their original locations, leaving the interior nodes
unchanged.

In Nek5000 each process owns nel elements ND nodes which are locally
numbered and stored in the local vectors uL

DSS (Fig. 1) involves the conversion of the local to global numbering
(gather), the performance of a summation operation to enforce continuity be-
tween the aligned elements and the backward global-to-local transformation
(scatter). Hence, it is totally a local-to-local process (subroutine dssum).

2.1 Scatter

Scatter is a global to local operation performed after the summation of the
neighboring elements has been performed ensuring the continuity:

uL = Qu

are Q is the connectivity matrix,u the global vector and uL the local vector.

∗AUTh Engineering Laboratory of Applied Thermodynamics, katsinos@meng.auth.gr
†AUTh Engineering Laboratory of Applied Thermodynamics, dpapageor@meng.auth.gr
‡AUTh Engineering Laboratory of Applied Thermodynamics, gctsekour@meng.auth.gr

1

Nek5000 Course 2021

Page 113

mailto:katsinos@meng.auth.gr
mailto:dpapageor@meng.auth.gr
mailto:gctsekour@meng.auth.gr


Figure 1: dss

In Fig. 1 two neighbouring elements with a shared interface are represented.
The shared interface consists of three nodes, named as u3,u6,u9 in the global
system. These nodes belong to both elements, hence their multiplicity number
is two. As we move towards each element’s the local system, via the scatter
operation (left to right operation in Fig.1), the nodes are renamed as u12,0, u12,1,
u12,2 in the left element respectively and u20,0, u20,1, u20,2 in the right element (look
in section for the naming convention), and are assigned with the global values.

In Fig. 2 the connectivity matrix of the aforementioned mesh is formed. As

Figure 2: Connectivity matrix

it is expected u3 equals both u12,0 and u20,0 as it is placed at the interface. Its
multiplicity number can be estimated from the number of the non-zero elements
in the respective column.

In practise the matrix Q is never constructed (matrix-free formulation). The
actions of Q and QT are implemented via indirect addressing, as it is illustrated

2

Nek5000 Course 2021

Page 114



at the below pseudocodes.

Algorithm 1 The scatter kernel uL = Qu

1: procedure Scatter(uL)
2: for e = 1, 2 . . . , E do
3: for i, j, k = 1, 2 . . . , n do
4: ι̂ = global index(i, j, k, e)
5: ueijk = uι̂
6: end for
7: end for
8: end procedure

2.2 Gather

Gather is the local to global operation

v = QTuL

that sums the entries of the local nodes that refer to the same global node.
Since each element is solved independently from its neighboring the results at
the interfaces differ. With the gather operation a single value (the sum) is stored
to the global element ensuring the continuity.

A correction of the shared nodal values is performed afterwards, taking into
account the multiplicity number (this operation is not implemented in the dssum
subroutine).

Algorithm 2 The gather kernel u = QTuL

1: procedure Scatter(uL)
2: for e = 1, 2 . . . , E do
3: for i, j, k = 1, 2 . . . , n do
4: ι̂← loctglb(i, j, k, e)
5: uι̂ ← uι̂ + ueijk
6: end for
7: end for
8: end procedure

3 Parallel Computing

Parallel computers provide a means for combining P individual processors to
work in concert on a common task. There are two possibilities here:

1. Each processor executes the same instruction on different data, corre-
sponding to the single instruction, multiple-data (SIMD) model

2. Each processor is allowed to operate asynchronously, following its own
instruction set, corresponding to the multiple-instruction, multiple-data
(MIMD) model

3

Nek5000 Course 2021

Page 115



Another issue is whether the memory should be shared or distributed among
the processors.

1. In the shared-memory model, each processor has access to all the data.

2. In the distributed-memory model, each processor has access to its own
data. In this case data from other processors must be obtained by alter-
native means.

Nek5000 uses the single-program, multiple-data (SPMD) model in which
each processor independently executes a copy of the same program and a loose
synchronization among the processors is enforced emulating this way the SIMD
programming model while preserving the flexibility of the MIMD approach. The
SPMD model is predicated on each processor having a private (or local) address
space, implying that a given variable or array entry can have different values
on different processors. Data transfers between address spaces (processors) are
made through subroutine calls which we will see in the next slide. One ad-
vantage of message passing is that synchronization is implicit in the message
transfer; data are sent only when ready (we will see an example later on). This
communication is performed using the Message Passing Interface (MPI).

The basic functions of the MPI implementation are:

1. call mpi comm rank(mpi comm world,MYID ,ierr): tells the calling
processor its node identification (MYID := p).

2. call mpi comm size(mpi comm world,NPROCS,ierr): tells the number
of processors participating in the current simulation (NPROCS := P).

3. call mpi send(X,n,mpi byte,id,mtag,mpi comm world,ierr): sends the
contents of the vector X to processor idε{0, ..., P − 1}, N is the amount of
data in bytes, and the data are identified with an integer tag (mtag) that
allows the receiving processor to distinguish this message from others that
it might receive.

4. call mpi recv(Y,n,mpi byte,id,mtag,mpi comm world,stat,ierr): direct
incoming data to a specific variable or array location: receives incoming
data from node id having tag mtag and places it in Y. The mpi comm
world argument is a handle that allows MPI to distinguish between calls
made by the user’s program and those made by library routines that might
potentially send messages with the same integer tags. The ierr argument
is an error condition that normally returns zero.

A common application of parallel processing in Nek5000 is the MPI imple-
mentation of a vector reduction process. In Eq. 1 the scalar reduction operation
in a single processor is presented:

s =
n∑
i=1

xi (1)

where n = lx · ly · lz · E, where E is the total number of elements.

4

Nek5000 Course 2021

Page 116



In parallel computation the vector reduction is implemented as:

s =

p∑
i=1

s(P ), s(P ) =

p∑
i=1

s(P ), x =

p−1⋃
p=0

x(P ) (2)

where E(P ) is the number of elements in the P process.
As it is can be observed the total vector is split into (P) vectors, which are

as many as the number of processes. In the SPMD model each vector comprises
different contents than the other vectors. Afterwards, the reduction of each local
vector takes place and finally the total output is formed from the (P) different
values. The Algorithm 3 illustrates the MPI implementation of vector reduction,
where the vector x is distributed across P processors. The mpi allreduce call
performs the sum across all processors and returns the final result. At this point
a loose implicit synchronization is performed as each processor is providing its
result (s) to the allreduce function and waits for this process to be executed
to every single processor, calculating the total output. After this point the
calculated value is distributed synchronously in each processor so that the code
execution can continue. Thus, all processors have the same global sum value at
the end of the call. In the mpiallreduce function the third argument determines
the length of the vector to be summed across processors. In this case, there is
only one input (s) and output (glsum). The fourth argument tells MPI the size
and type of data being transmitted, and the fifth determines which reduction
operation to perform.

Algorithm 3 Vector reduction

1: procedure glsum(s)
2: real*8 function glsum(x,n)
3: real*8 x(n),s
4: include ’mpif.h’
5: s=0
6: for i = 1, n do
7: s = s + x(i)
8: end for
9: call mpi allreduce(s,glsum,1, mpi double precision,

10: & mpi sum,mpi comm world,ierr)
11: end procedure

4 Element alignment

When it comes to the challenge of element alignment, the information between
the elements should be transferred correctly and this is ensured through a global
numbering process of the nodes.

4.1 Methodology of global numbering

In this section a methodology, on how the global numbering is done in NEK, is
established. The methodology is based on a 2d mesh that consists of 4 elements.

The steps that are followed, are described below:

5

Nek5000 Course 2021

Page 117



1. Assign hypercube ordering of vertices. Numbering can start either from
the bottom left corner or upper left corner, and just continuity on the
numbering is needed. All vertices along the first row are scanned and the
same procedure is continued until all rows are scanned. Here, I have to say
that the global vertex number is an input to the whole procedure and it is
generated during a pre-processing phase by genmap or genconn programs.
V19 of Nek5000 does not provide global vertex during the initialisation
(It obtains it from a file), but there are plans to add it in next release. In
Figure 3, the result is presented.

Figure 3: Assign hypercube ordering of vertices

2. Sort edges, by bounding vertices. Each edge is defined by two vertices.
When sorting the edges, we go from lower vertex numbers to higher. That
means that edge 1 will consist of vertex numbers 1 and 2. After that edge
2 will consist of vertices of 1 and 4, edge from vertices 2 and 3 and so on,
until every single one is sorted.

3. Numbering every SEM node on each edge. After completing sorting, num-
bering every Spectral Element Method node on each edge is done. The
nodes are numbered again in the direction from the lower to the higher
vertex number. In Figure 4, the result is presented.

4. Numbering of the interior points (if needed). The final step will be the
numbering of the interior points, which will only happen, if the flag ifcenter
in the arguments of the setvert2D subroutine is turned to true. However,
in most cases the interior points are not numbered, as information is only
shared for the aligned nodes.

6

Nek5000 Course 2021

Page 118



Figure 4: Numbering SEM nodes on each edge

5 Gather-Scatter Library

After completing element alignment, the gather scatter library is ready to be
used. Its basic uses are:

1. Gather-Scatter operation

2. Either gather or scatter operation only (depending on mapping)

3. Computation of min/max value of nodes

4. Performing any kind of specific communication between nodes (proper
mapping)

5. Count elements sharing each node

6. Matrix-vector products for row- and column-partitioned matrices. This
point is related to a coarse grid solver for pressure preconditioning.

7. Generate consistent masks for external domain boundaries, that are used
for external boundary conditions

8. Correction of internal faces in fix geom, in order to reduce the complexity
of the geometry

5.1 Initialization and Setup

In order to use gs library, initialization and setup of a handle, based on local-
to-global mapping, are needed. This handle is a structure that contains the
information about how do the communication. After its setup, this handle can
be used for every gs operation on corresponding data. So the main idea needed

7

Nek5000 Course 2021

Page 119



to be implemented is the creation of local-to-global mapping. The aim of the
mapping is to allow gs lib to create topology for sending data between processes
and apply gs op.

5.2 Basic Functions of gs lib

In this section, some basic functions of the gs lib are presented. Generally,
these operations can be done both in C, but also in Fortran, where the calls
are similar, but the library there has more limited options. Starting with the
initialization of gs lib, In C, the prototype to call the setup is the following:

struct gs data ∗ gs setup (const slong *id, uint n, const struct comm ∗ comm,
int unique, gs method method, int verbose)

In Fortran the format is much simpler and it follows the formula given below:

subroutine gs setup (gs handle, id, n, comm, mp)

After the setup is completed, the gather scatter operation is performed.
Again here, there are two types of formats. In C, the corresponding function is
given by the formula below:

void gs (void *u, gs dom dom, gs op op, unsigned transpose, struct gs data
*gsh, buffer *buf)

In Fortran, the formula is shown here:

subroutine gs op (gs handle, u, dom, op, transpose)

For more information, about the inputs and the outputs of the functions,
as well as, an implementation example, see the study of Nicolas Offermans
(Reference [3]).

6 Networks

An important part of communication are the networks, as data here are dis-
tributed based on hypercube topology. The basic numerical operation that
takes place is the matrix-vector multiplication is defined by Equation 3:

yi =
∑
j

Tijxj (3)

,where Tij is the connectivity matrix. As it is already mentioned, a very im-
portant aspect of direct stiffness summation is the reduction of communication
cost. For this reason, the information along the shortest path is needed to be
transferred in a consistent way. So based on the values of the elements of the
connectivity matrix, the network can be either regular or irregular.

8

Nek5000 Course 2021

Page 120



6.1 Regular Networks

When all the elements are non-zero, the network is called regular and that
means it is fully interconnected. One of the most common algorithms that are
used for a regular network is the index algorithm. The index algorithm orders
the communication action according to the channel number c, having chosen
the shortest paths for all packets. In this figure, we can see the time evolution
of the cube memory during the index algorithm. We first advance all packets
one step through channels c =0, then through channels c = 1 etc. In order to
perform the summation, the components in each node have to be ordered to a
horizontal vector. We see that finally the initial package is ordered vertically
downward and as long as it goes in this direction, the packet stays in the current
intermediate node.

6.2 Irregular Networks

However, in the most cases, the network is either characterized by sparse or
medium range connectivity. It is convenient to consider sparse and intermediate
connectivity as the special case of the full connectivity with some Tij elements
equal zero to address the problem of optimal summation in this case. In this
case, instead of the index algorithm, the crystal router algorithm is formulated,
which follows the index logics, but only the non-zero elements of the connectivity
matrix are moving. Specifically, the “travel with ticket” analogy scheme is
followed, which indicates that each packet is routed through the hypercube
together with the destination node number. In Figure 5, a problem, that is
related to general purpose all-to-all communication, is presented. It can be
easily observed that the communication is bad, as the processors send messages
to multiple ranks at the same time.

Figure 5: Communication Complexity

So this network is characterized by great complexity and communication
cost, and we need to order the message in order to minimize the communication

9

Nek5000 Course 2021

Page 121



Figure 6: Crystal Router Flow Chart

cost. For this reason, we are introducing the methodology that the crystal
router algorithm follows. In Figure 5, the flow chart chart of crystal router
is described. Initially, a barrier in the middle is set and messages across this
barrier are sent. After sending the messages, the partial summations are made.
After completing the summations, a barrier at a different dimension is added
and the same procedure is repeated.

7 Flow Chart

Direct stiffness summation takes place with the help of several subroutines inside
the code. The general flow chart is presented in the Figure 7 below.

The routine responsible for the direct stiffness summation is setup_topo

which is located in the connect1.f file. Its responsibilities include determining
the connectivity of the element structure, verifying the right-handedness of the
elements, defining the multiplicity of the elements and setting up the direct
stiffness summation arrays.

For initiating the direct stiffness summation, firstly it is necessary to set up
the element-processor mapping which is the domain partitioning and shortly
after to establish the global numbering. As far as direct stiffness summation
is concerned, the focus is on the establishment of the global numbering of the
nodes, and particularly on the setupds routine which lies on the dssum file,
which is where direct stiffness summation begins to take form.

In the setupds routine, the global numbering is achieved through the call
of the set_vert routine. The set_vert routine is supplied by the vertices
of the elements which are already globally numbered by the preprocessor and
according to the dimension of the problem, begins to globally number the edges
or the faces of the elements.

After the global numbering is complete, the program returns to the setupds

10

Nek5000 Course 2021

Page 122



Figure 7: Flow chart

and continues to the fgs_lib_setup routine. This routine is essentially a
mapped C to Fortran, which is invoked from the gs library. Its responsibil-
ity is to create a handle for the solution field, which is the information required
on how to achieve the communication between the processors and the elements.
Here is where the the type of communication is determined automatically, e.g.
crystal router or pairwise communication, as the library makes some tests and
chooses the methods which performs the best for the particular setup of our
problem. The handle then is passed to the dssum routine, whereas now that
the communication way is well established, the gather scatter operations can be
achieved. These operations are again done through mapped C routines via the
gslib. After the selected matrix manipulations are performed, the final result
can be given back to the program to continue its course.

7.1 set vert

The set_vert routine is the main routine handling the global numbering of the
nodes. It is located in the navier8.f file.

subroutine s e t v e r t ( glo num , ngv , nx , nel , vertex , i f c e n t e r )
c
c Given g l oba l array , vertex , po in t ing to hex v e r t i c e s , s e t up
c a new array o f g l oba l po i n t e r s f o r an nxˆ ldim s e t o f e lements

.
c

include ’ SIZE ’
include ’INPUT ’

c
integer ∗8 glo num (1) , ngv
integer ver tex (1 ) , nx
log ica l i f c e n t e r

i f ( i f 3 d ) then
ca l l s e tv e r t 3d ( glo num , ngv , nx , nel , vertex , i f c e n t e r )

else

11

Nek5000 Course 2021

Page 123



ca l l s e tv e r t 2d ( glo num , ngv , nx , nel , vertex , i f c e n t e r )
endif

c Check f o r s i n g l e−element p e r i o d i c i t y ’p ’ bc
nz = 1
i f ( i f 3 d ) nz = nx
ca l l check p bc ( glo num , nx , nx , nz , ne l )

i f ( n io . eq . 0 ) write ( 6 ,∗ ) ’ c a l l u s r s e t v e r t ’
ca l l u s r s e t v e r t ( glo num , nel , nx , nx , nz )
i f ( n io . eq . 0 ) write (6 , ’ (A, / ) ’ ) ’ done : : u s r s e t v e r t ’

return
end

Listing 1: set vert routine

Depending on the problem dimensions, an IF structure selects between the 2D or
3D version of the routine, setvert2d and setvert3d accordingly. The output
of the set_vert routine is the global numbering of all GLL nodes along the
edges of each element of the domain.

7.2 setvert2d

The setvert2d is the 2D version of the set_vert routine and will be examined
here for the sake of simplicity.

As inputs arguments there are nx which is the polynomial order of the inter-
polation scheme plus one, nel which is the number of local elements and vertex

array, which for the 2D case consists of 4 integers which define the location of
each vertex. These numbers represent the coordinates of the nodes of the edges
that share the particular vertex. Lastly, there is ifcenter which is a logical
switch. By default it is set to false. This means that the set_vert routine
won’t number the points inside the elements, (it will number only the points on
its exterior on the edges). The numbering of the inner points is not necessary
for most of implementations of gather-scatter.

The output arguments are glo_num array which will be consisting of a list of
the global domain numbers of the points that the current processor is handling
and ngv which will inform of how many of the points that were numbered are
distinct.

In the beginning, the number of unique vertices is calculated by finding
the higher number contained in the vertex array for the given processor. The
vertices are numbered from the preprocessing. Some vertices will share common
indices. The higher index contained in the vertex array is the number of unique
vertices that has already been calculated. Next, those vertices are put in the
glo_num. Even if the vertices do already possess a global number, they must be
arranged in the glo_num array as well as the remaining nodes.

ny = nx
nz = 1
nxyz = nx∗ny∗nz

c
key (1 )=1
key (2 )=2
key (3 )=3

c

12

Nek5000 Course 2021

Page 124



c Count number o f unique v e r t i c e s
nlv = 2∗∗ ldim
ngvv = iglmax ( vertex , nlv ∗ ne l )
ngv = ngvv

c
c Assign hypercube orde r ing o f v e r t i c e s .

do e=1, ne l
do j =0,1
do i =0,1

c Local to g l oba l node number ( ver tex )
i l = 1 + (nx−1)∗ i + nx∗(nx−1)∗ j
i l e = i l + nx∗ny∗( e−1)
glo num ( i l e ) = ver tex ( i , j , e )

enddo
enddo

enddo
i f ( nx . eq . 2 ) return

Listing 2: setvert2d routine, Part 1

Next thing is to find the global number of the interior points of the edges.

c Assign edge l a b e l s by bounding v e r t i c e s .
do e=1, ne l

do j =0,1
do i =0,1

edge ( i , j , 1 , e ) = ver tex ( i , j , e ) ! r−edge
edge ( j , i , 2 , e ) = ver tex ( i , j , e ) ! s−edge

enddo
enddo

enddo

c Sort edges by bounding v e r t i c e s .
do i =0 ,4∗ nel−1

i f ( edge (0 , i , 1 , 1 ) . gt . edge (1 , i , 1 , 1 ) ) then
kswap = edge (0 , i , 1 , 1 )
edge (0 , i , 1 , 1 ) = edge (1 , i , 1 , 1 )
edge (1 , i , 1 , 1 ) = kswap

endif
e tup l e (3 , i +1) = edge (0 , i , 1 , 1 )
e tup l e (4 , i +1) = edge (1 , i , 1 , 1 )

enddo

c Assign a number (rank ) to each unique edge
m = 4
n = 4∗ ne l
nmax = 4∗ l e l t ∗ nsa f e ! nsa fe f o r c r y s t a l rou ter f a c t o r o f

s a f e t y

ca l l gbtup le rank ( etuple ,m, n , nmax , cr h , nid , np , ind )
do i =1 ,4∗ ne l

enum( i , 1 ) = etup l e (3 , i )
enddo
n un ique edges = iglmax (enum,4∗ ne l )

Listing 3: setvert2d routine, Part 2

This is done by firstly defining the edges with the global number of their
corresponding vertices. After listing all the edges, those that are unique must
be distinguished. In order to do so, they are sorted out by their indices. As
it was mentioned before, the edges are characterized by two numbers. Firstly,

13

Nek5000 Course 2021

Page 125



the indices of each edge are swapped if necessary so that the smallest index in
the first position of the array and the biggest index in the second. Then they
are sorted out according to the first index, and the edges with the same first
index, are sorted by their second index. After we sorting is finished,those edges
that share the same numbers means that they are the same edge so they are
not unique.

Lastly, after the numbering of all the points on the edges is done, there is
the option of numbering the points in the interior of the elements. By default,
this option is deactivated as their numbering is not necessary for the upcoming
calculations in most cases. However, in case there is such a need, this can be
done here, as long as the ifcenter logical switch is turned to True.

7.3 fgslib gs setup

The global numbering of all the points handled by the processor was achieved
by the set_vert routine. This information is contained in the glo_num array.
After returning to the main routine setupds, the next routine that is invoked
is the fglib_gs_setup routine. The particular characteristing of this routines
as well as some others which share a similar name, is that they come from the
gslib, a compilation of code which exists on the 3rd_Party/gslib, destina-
tion of Nek5000. These routines are written in C language and are responsible
for most of the communication between the processors along with the actual
implementation of Gather – Scatter.

7.4 Fortran - C gslib Interface

In order to be able to call them in the main program of Nek5000, a Fortran
Interface must be firstly defined. This interface will allow the necessary C rou-
tines whose name begin mostly with gs to be mapped in Fortran. To distinguish
the mapped Fortran routine from their C language counterpart, an f is added
in their prefix.

#de f i n e f g s s e t u p p i c k FORTRANNAME( gs s e tup p i ck ,GS SETUP PICK)
#de f i n e f g s s e t up FORTRANNAME( gs s e tup ,GS SETUP )
#de f i n e f g s FORTRANNAME( gs op ,GS OP )
#de f i n e f g s v e c FORTRANNAME( gs op vec ,GS OP VEC )
#de f i n e fgs many FORTRANNAME( gs op many ,GS OP MANY )
#de f i n e f i g s FORTRANNAME( i g s op , IGS OP )
#de f i n e f i g s v e c FORTRANNAME( i g s op v e c ,IGS OP VEC )
#de f i n e f igs many FORTRANNAME( igs op many ,IGS OP MANY )
#de f i n e f g s wa i t FORTRANNAME( gs op wa i t ,GS OP WAIT )
#de f i n e f g s f i e l d s FORTRANNAME( g s o p f i e l d s ,GS OP FIELDS )
#de f i n e f g s f r e e FORTRANNAME( g s f r e e ,GS FREE )
#de f i n e f g s un ique FORTRANNAME( gs un ique ,GS UNIQUE )

Listing 4: Fortran - C gslib interface

Thus after the mapping is defined, in setupds routine,fgslib_gs_setup is
called, which is the routine responsible for creating the handle needed for the
communication of the Gather Scatter operations.

14

Nek5000 Course 2021

Page 126



7.5 dssum

After the creation of gs_handle and the establisment of the mpi communication,
dssum can be initiated. The direct stiffness summation is done through the call
of the fgslib_gs_op.

7.6 fgslib gs op

Another basic C to Fortran routine is fgslib_gs_op. This routine needs the
particular handle that we have recently created to begin gather scatter opera-
tions on the matrices. Here is where the summation takes place and updates the
values of local elements through this global operation and returns the updated
values to their local place back again.

The gs_op subroutine takes the corresponding handle for each solution field
and performs the selected operation for the communication and direct stiffness
summation.

subroutine dsop (u , op , nx , ny , nz )
include ’ SIZE ’
include ’PARALLEL ’
include ’INPUT ’
include ’TSTEP ’
include ’CTIMER’

real u (1)
character∗3 op
character∗10 s1 , s2

c
c o gs r ecogn i z ed ope ra t i on s :
c
c o ”+” ==> add i t i on .
c o ”∗” ==> mu l t i p l i c a t i o n .
c o ”M” ==> maximum.
c o ”m” ==> minimum .
c o ”A” ==> ( f abs ( x )>f abs ( y ) ) ? ( x ) : ( y ) , ident =0.0 .
c o ”a” ==> ( f abs ( x )<f abs ( y ) ) ? ( x ) : ( y ) , ident=

MAXDBL
c o ”e” ==> ( ( x )==0.0) ? (y ) : ( x ) , ident =0.0 .
c
c o note : a binary function pointer f l a v o r e x i s t s .
c
c o gs l e v e l :
c
c o l e v e l=0 ==> pure t r e e
c o l e v e l>=num nodes−1 ==> pure pa i rw i s e
c o l e v e l = 1 , . . . num nodes−2 ==> mix t r e e / pa i rw i s e .
c

i f l d t = i f i e l d
c i f ( i f l d t . eq . 0 ) i f l d t = 1

i f ( i f l d t . eq . i f ldmhd ) i f l d t = 1

c i f ( n io . eq . 0 )
c $ write ( 6 ,∗ ) i s t ep , ’ dsop : ’ , op , i f i e l d , i f l d t , g s h f l d ( i f l d t )

i f ( i f s y n c ) ca l l nekgsync ( )

i f ( op . eq . ’+ ’ ) ca l l f g s l i b g s o p ( g s h f l d ( i f l d t ) ,u , 1 , 1 , 0 )

Listing 5: dsop routine

15

Nek5000 Course 2021

Page 127



The performed Gather Scatter operation can be either addition or any operation
that the user thinks is necessary for the solution of his problem.

References

[1] G. C. Fox, W. Furmanski, ”Hypercube Algorithms for Neural Network Sim-
ulation The Crystal Accumulator and the Crystal Router”, California Insti-
tute of Technology Pasadena, CA 91125, February 1988

[2] M. O. Deville, P. F. Fischer, E. H. Mund, High-Order Methods for Incom-
pressible Fluid Flow, Cambridge University Press, 2002

[3] Nicolas Offermans, ”Gather-scatter library in Nek5000”, Documentation of
the gs library developed by James Lottes, November 2012

16

Nek5000 Course 2021

Page 128



Solver stabilization

Marco Atzori∗, Shahab Mirzareza † and
Arivazhagan Geetha Balasubramanian ‡

June 29, 2021

1 Introduction

In this report, we briefly describe stabilization techniques that are relevant for
the spectral-element code Nek5000. If we consider the example of a simple
partial differential equation (PDE), discretized as follows{

un+1
N = A(∆x,∆t)unN

IC :u0
N

, (1)

stabilization is needed in general because the numerical discretization can result
in an amplification factor ||A(∆x,∆t)|| larger than 1. In this case, numerical
errors will progressively grow, causing the solution to be nonphysical. The mate-
rial in the report is summarized in Figure 1. In Section 2, we describe staggered
grid and bubble functions, which are methods to avoid spurious modes in the
solution of the Navier-Stokes equation that are due to coupling between velocity
and pressure. In Section 3 and 4, we describe explicit filtering and relaxation-
base filtering, respectively, which are two different approaches to remove energy
from the highest modes in spectral and spectral-element methods. In Section 5,
we discuss why over-integration or dealiasing is beneficial in the discretization
of non-linear terms.

∗KTH Engineering Mechanics, atzori@kth.se
†KTH Engineering Mechanics, shahabmi@kth.se
‡KTH Engineering Mechanics, argb@kth.se

Figure 1: Overview of the stabilization techniques considered in the report.

1

Nek5000 Course 2021

Page 129

mailto:atzori@kth.se
mailto:shahabmi@kth.se
mailto:argb@kth.se


2 Staggered grid and bubble functions

Using the same grid for pressure and velocity in the solution of the incompress-
ible Navier-Stokes equation can result in spurious coupling modes. Since this
phenomenon is well-known in computational fluid dynamics (CFD) and also
observable in finite-different and finite-volume methods, we only discuss very
briefly how to counteract it in Nek5000. A first possible approach is to use two
different grids to represent pressure and velocity. In a spectral-element code, a
natural way to implement this approach is to use different polynomial orders,
which leads to the so-called PN −PN−2 formulation. In this formulation, veloc-
ity and pressure are expressed in terms of polynomials of order PN and PN−2,
respectively, which can use either the same quadrature (collocated SEM) or a
different (shifted) one (staggered SEM). Note that a “PN − PN−1 formulation”
is not feasible when multiple elements are present because it does not satisfy
the inf-sup condition [2].

A second possible approach to prevent the growth of the spurious modes is
using the same grid for pressure and velocity but instead modifying the basis
functions to restrict the solution space. This approach is denoted by PN − PN ,
because polynomials of the same order are used for velocity and pressure. The
space of the solution is modified adding so-called “bubble functions”, Xb

N =
Xn ⊕BN , so that the velocity can be expanded as:

u(x) =
N∑
0

uiφi(x) +
N∑
0

ub,ibi(x) . (2)

Note that, in this approach for the given basis functions b(x), the coefficients ub,i
can be evaluated directly. However, as a general approach, the linear system of
equations is rearranged so that only ui are computed. The presence of the bubble
functions leads to an additional term in the continuity equation to dampen the
spurious modes in the solution of the full set of equations.

In Nek5000, both the PNPN−2 and PNPN methods are implemented. In
the first case, Gauss-Lobatto-Legendre (GLL) points and Gauss-Lobatto (GL)
points are used for velocity and pressure, respectively. In the second case, GLL
points are used for velocity and pressure.

We refer to Sections 3.6, 4.5, and 5.6 of the textbook by Deville et al. [2] for
more details on these topics.

3 Explicit filtering

The key idea in explicit filtering is to suppress the spurious modes at the end
of each time step. In the method introduced by Fischer and Mullen [3], instead
of adding a dissipation term directly to the Navier-stokes equation, a low-pass
filter function built in the modal space is used. A solution u in physical space
can be expanded using the modal bases as,

u(x) =
N∑
k=0

ûkφk(ξ) , (3)

where, ûk are the spectral coefficients and φk are the polynomial basis func-
tions (e.g. Boyd-transformed basis, Legendre polynomials, and etc). In the

2

Nek5000 Course 2021

Page 130



interpolation-based technique introduced by Fischer and Mullen [3], the spec-
tral representation of the solution is replaced with a filtered solution such that
the spectral coefficients are scaled by a filter transfer function σ. As a result,
the filtered solution becomes,

ū = F̂ (u) =
N∑
k=0

σkûkφk(ξ) , (4)

where, the filter-transfer function σ as outlined in [2] is defined as,

σk =

1− α
(
k−kc
N−kc

)2

, k > kc

1, k ≤ kc
. (5)

The filter-transfer function is characterized by:

• amplitude α,

• cut-off mode kc.

(a)
0 2 4 6 8 10

k

0.0

0.2

0.4

0.6

0.8

1.0

k

= 0.3

kc = 8
kc = 7
kc = 6
kc = 5
kc = 4
kc = 3

(b)
0 2 4 6 8 10

k

0.0

0.2

0.4

0.6

0.8

1.0

k

kc = 4

= 0.1
= 0.3
= 0.5
= 1.0

Figure 2: Variation of the filter-transfer function with respect to (a) cut-off
mode (b) filter strength

The variation of the filter-transfer function is shown in Figure 2. Typically,
a filter strength α of 0.05 to 0.3 is chosen to yield smoother results [2].

3.1 Example: Stokes problem

The filtering procedure applied to an unsteady Stokes problem is briefly ex-
plained here. The intermediate unfiltered solution is obtained as,

Hũ−DT pn+1 = Bfn ,

Dũ = 0 ,
(6)

where, H is the discrete equivalent of the Helmholtz operator given by,

H =
1

Re
A +

1

∆t
B ,

and, ũ is the intermediate unfiltered solution, −A is the discrete Laplacian,
B is the mass matrix, D is the discrete divergence operator, fn is the explicit
treatment of non-linear terms. Now, the solution at tn+1 becomes,

un+1 = Fαũ . (7)

3

Nek5000 Course 2021

Page 131



Once the divergence-free solution is calculated, the filtering is performed on the
divergence-free solution to obtain the solution at tn+1. Here, the filtering oper-
ator with a particular filter strength α is given by, Fα. One of the requirements
of the filter function would be to avoid the loss of C0 continuity and that the
values at the element boundaries are preserved after the application of the filter,
which would make the filtering operation to be local to each spectral-element.

3.2 Advantages

Apart from the simplicity of the method, when the low-pass filter is applied,
the inter-element (C0) continuity is lost and this can be recovered by using
appropriate basis which would avoid the need for element to element information
transfer and hence, this method is efficient. The interpolation-based technique
as introduced in the next section will ensure that the inter-element continuity
is preserved when filtering operation is performed on the basis provided by the
Boyd transform (discussed in § 3.3.3). The interpolation error ‖ũ−ΠN−1ũ‖
tends to 0 as N →∞ at an exponential rate and hence, spectral convergence is
not majorly affected.

3.3 Interpolation-based filtering technique: framework

To understand the effect of interpolation-based filtering procedure, a polynomial
uN ∈ PN is considered. The polynomial can be expanded as,

uN (x) =
N∑
k=0

ukπN,k(x) , (8)

where uk are the values of the solution in the nodes {ξN,k} associated to Gauss-
Lobatto-Legendre (GLL) quadrature rule, and πN,k are the Lagrangian inter-
polation polynomials. The nodes are provided by,

ξ(k) =


−1, k = 0

L
′

N (x) = 0, 1 ≤ k ≤ N − 1

1, k = N

,

where, LN (x) corresponds to the Legendre polynomials of degree N . Defining
the matrix operators for a polynomial degree, N , and order of the scheme, M),(

IMN
)
i,j

= πN,j (ξM,i) ∈ R(M+1)×(N+1), 0 ≤ i ≤M, 0 ≤ j ≤ N (9)

Here, the matrix operator INM corresponds to Lagrangian polynomial of degree
N in M+1 GLL nodes. The pseudo-projector operator is defined as the product
of the matrix operators as,

ΠN−1 = INN−1I
N−1
N ∈ R(N+1)×(N+1) (10)

If the pseudo-projector is applied to uN , it provides Lagrangian interpolated
polynomials of degree N − 1 on the GLL grid ξN . This Lagrangian interpo-
lation of polynomial uN with the degree N − 1 automatically eliminates the
high-frequency content, thus adding some numerical dissipation and improving
the stability [2]. The reason for pseudo-projection eliminating high frequency
content is due to the interlacing property of Legendre polynomials.

4

Nek5000 Course 2021

Page 132



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.04

0.02

0.00

0.02

0.04
L9(x) = 0
L10(x) = 0

Figure 3: Interlacing property of the Legendre polynomials

3.3.1 Interlacing

The zeros of the Legendre polynomials are real and distinct and lie within the
interval of (−1, 1). The theorem for interlacing of zeros of orthogonal polynomi-
als (as stated in the notes by Krestin [4]) is that, “If {pn(x)}∞n=0 is a sequence
of orthogonal polynomial on an interval (a, b) with respect to the weight function
w(x), then the zeros of pn(x) and pn+1(x) separate each other.”

So, if ξN,k and ξN+1,k denote the zeros of the Legendre polynomials LN and
LN+1 respectively, then in each sub-interval formed by LN we have exactly one
zero of LN+1 as shown in Figure 3. i.e., −1 < ξN+1,1 < ξN,1 < ξN+1,2 < ξN,2 <
.. < ξN+1,N < ξN,N < ξN+1,N+1 < 1. Hence, when the pseudo-projection is
performed from degree N+1 to degree N , there is an effect in the high frequency
component.

3.3.2 Effect of pseudo-projection

To provide an understanding on the effect of the pseudo-projection, the differ-
ence between the actual and pseudo-projected polynomial is considered.

v(ξ) = u(ξ)−ΠN−1u(ξ) . (11)

For a polynomial u ∈ PN , we have v ∈ PN . Using the relationship between the
Legendre polynomials and their derivatives we obtain,

v(ξ) = ũN
(
1− ξ2

)
L
′

N−1(ξ)

= û [LN (ξ)− LN−2(ξ)]

= ûφN (ξ) ,

(12)

where, û is a constant and φ is a basis-function. So, basically the effect of
pseudo-projection is in the last mode provided by the basis functions φ.

3.3.3 Boyd’s transform

The basis functions as discussed in the previous section are provided by the dif-
ference between two Legendre polynomials. The new basis suggested by Boyd [1]

5

Nek5000 Course 2021

Page 133



is,

φk =


1−ξ

2 , k = 0
1+ξ

2 , k = 1

Lk − Lk−2, k > 1

. (13)

Though the filtering procedure is simple, it does not satisfy the boundary condi-
tion of the solution, if the explicit filtering operation is performed in the original
basis. The solution to this problem is to apply the filtering in the transformed
basis provided by Boyd such that, uN (±1) = ūN (±1).

3.3.4 Filter construction

For a polynomial u ∈ PN , the expansion in modal basis given by the Boyd
transform is,

ui = u(ξN,i) =
N∑
k=0

ûkφk(ξN,i), i = 1, 2, .., N (14)

For the interpolation-based filtering, the one-dimensional filter is given by,

F̂α = αΠN−1 + (1− α)INN (15)

where, ΠN−1 is the pseudo-projection operator to PN−1 and INN is the identity
matrix. From equation (15) using a filter strength α, only a fraction of the mode
can be filtered. If α = 1, then it would correspond to full projection onto PN−1.

For a general explicit filter construction using a filter transfer function α,
a transformation matrix, (Z)i,k = φk(ξN,i), is defined. The modal to physical
transformation can be performed as: u = Zû. An arbitrary 1D filter can be
constructed that scales ûk for k > 1 as,

F̂Σ = ZΣZ−1 , (16)

where, diag(Σ) contains the filter transfer function σk for k > 1 and σ0 = σ1 = 1.
In higher space dimensions, the filter function is given as the tensor-product of
the filter function in 1D.

F = F̂ ⊗ F̂ ⊗ F̂

3.4 Limitations

The limitations of the explicit filtering operation as highlighted by Deville et
al. [2] are that,

• It is time-dependent,

• It is non-dissipative, and

• It violates the divergence-free condition.

The last two points are discussed in detail.

6

Nek5000 Course 2021

Page 134



Figure 4: Dissipative and non-dissipative characteristics of filtering for a poly-
nomial of order 10. Here, r = ûN−2

ûN
. Source: Negi et al., (2017) [7]

3.4.1 Non-dissipative nature of explicit filtering

Because of the Boyd transform, the filtering operation is strictly non-dissipative
and maybe a source of energy in certain situations. To understand the dissipa-
tive characteristics of the filter, if only a fraction of α is filtered in the last mode
φN , the mode φN−2 needs to be modified to preserve the boundary conditions.
The difference in the energy between the filtered and the unfiltered fields in this
case is given by,

∆E = ‖uN‖2 − ‖ū‖2

= û2

[(
û2
N−2

û2
N

−
(
ûN−2

ûN
+ α

)2
)
φ2
N−2 +

(
1− (1− α)

2
)
φ2
N

]
. (17)

The value of ∆E/û2
N is plotted as a function of the filter strength α and

ûN−2/ûN as shown in Figure 4. From Figure 4, it is observed that in the
large portion of the represented area, the filter acts as an energy source and
introduces energy into the solution rather than acting as a sink by dissipating
the energy.

3.4.2 Violation of the divergence-free condition

The violation of the divergence-free condition due to explicit filtering operation
is basically because of the fact that filter and the spatial derivative operators do
not commute. Since, the explicit filtering is performed on the divergence-free
field, the filtered field is not divergence free.

A plot in time for the violation of divergence-free condition is shown in Figure
5. In this case, a doubly periodic domain negates the errors due to the boundary
terms. Also, since the non-linear term is calculated using over-integration to
preserve skew-symmetry of the advection term, the sources of instability can be
either from characteristic time-stepping scheme or the violation of divergence
free condition. From the Figure 5, it is observed that in the beginning there is
less difference between the filtered and un-filtered case. This is because, there
is less energy at the highest mode during the start of the simulation and as it

7

Nek5000 Course 2021

Page 135



Figure 5: Violation of divergence-free condition in a double shear layer case in
2D domain. Here, the simulation was performed with 256 spectral grids with
16 Legendre polynomials. The tolerance for divergence-free condition is 10−10.
Source: Negi et al., (2017) [7]

proceeds, there is a significant energy in the smaller scales and the difference
increases. This divergence error can be severe for marginally-resolved cases.

4 Relaxation-based filtering

As shown in the results of explicit filtering, there are some drawbacks associ-
ated with it. In such a scenario, alternative methods like relaxation-term based
filtering can be considered in a way that they remedy potential drawbacks of
the explicit filtering, while preserving its advantages, namely efficiency and sim-
plicity [7].

Considering explicit filtering applied to a dynamical system equation, the
following equations are obtained:

∂u

∂t
+ F (u) = 0 , (18)

un+1 = un − F (un)∆t+O(∆t2) , (19)

un+1 = G(u∗) , (20)

where F (u) and G are evolution and low-pass filter operators, respectively. By
performing an implicit time-relaxation filtering on the evolution equation, we
get:

∂u

∂t
+ F (u) = −XH(u) , (21)

which can be integrated in time as,

u∗ = un − F (un)∆t+O(∆t2) , (22)

un+1 = u∗ −XH(u∗)∆t+O(∆t2) . (23)

8

Nek5000 Course 2021

Page 136



By considering X = 1
δt , the latter is written as:

un+1 = G(u∗) . (24)

The relaxation-term in the above equations can be interpreted as a low-pass filter
operation G performed every 1

Xδt time-steps. Thus the “explicit filter-based
stabilization” is equivalent to “relaxation-term-based stabilization”, which is
referred to as “RT stabilization” [9].

RT filter can be applied to the Navier-Stokes equations by a simple addition
of a relaxation-term to the right-hand-side as:

∂u

∂t
+ u.∇u = −∇p

ρ
+ ν∇2u−XH(u) , (25)

, and
∇.u = 0 . (26)

Here H(u) is a high-pass-filtered velocity field. The parameter X in RT filters
can be used as a weighting parameter similar to the filter weight α defined in
equation (15).

4.1 Relaxation-based filter parameters

In the context of spectral-elements, high-pass filter H for the relaxation-based
stabilization can be expanded as:

H(uN ) =

N∑
k=0

γkakLk , (27)

where Lk and ak are Legendre polynomials used as basis functions and spectral
coefficients for the finite series expansion of the solution respectively. γk is the
filter transfer function defined as:

γ(k) =

{
0, k ≤ kc
( k−kcN−kc )

2
k > kc

, (28)

where kc is the cutoff mode and N is the polynomial order.

4.2 Effect of relaxation-based filtering on the eigenvalues
of the system

Applying an RT filtering causes the eigenvalues to shift towards the negative real
plane. Therefore, dissipation is added to the system. As an illustration as shown
in [7] an unstable system following the spectral-element framework was built
in MATLAB and the linear advection operator was stabilized by a relaxation
term. While the RT filter clearly has a stabilizing effect on the system, it can
also be destabilizing for a certain range of parameters. For a particular temporal
discretization such as the BDF-EXT-3 [2], the region of stability may cover a
finite region of the negative plane. For a system with eigenvalues such that λδt
falls outside the stability region of the time-stepping scheme, the stabilization
procedure itself becomes numerically unstable and the time-step size needs to
be reduced in order to render the simulation numerically stable again [7].

9

Nek5000 Course 2021

Page 137



4.3 Cutoff ratio versus cutoff mode

In both of the explicit and RT filtering approaches, the cutoff mode kc appears.
However, as an input to the *.par files in Nek5000 simulations, one can set a
value for the cutoff ratio, λ and filter weight. The filter cutoff ratio is then
converted to the filter cutoff mode using the following relations:

λ∗ = max(nint((N + 1))(1− λ))− 1.0) , (29)

and,
kc = int(N − int(λ∗)− 1) . (30)

where, N is the polynomial order, int(.) converts an input number to integer,
and nint(.) converts an input to the nearest integer number. In Figure 4.3,
γi is plotted versus mode number [8].

Figure 6: Normalized amplitude γi of the hpfrt filter versus mode number for
N = 7 (a) and N = 11 (b), taken from [8].

As the plots show, For a given N , different values of λ within a certain range
yield the same integer value for kc

4.4 Implementation

Types of the filtering used in Nek5000 are none, explicit, hpfrt which can be
chosen in *.par file. Filtering weight and filter cutoff ratio which are known as
p103 and p101 can also be specified in the *.par file as shown in Listing 1

f i l t e r i n g=hp f r t ! none , e x p l i c i t , h p f r t
f i l t e rWe i gh t=10 ! f i l t e r weight
f i l t e rCu t o f f R a t i o =0.9 ! f i l t e r cut o f f r a t i o

Listing 1: Filter settings specified in the *.par file

Filter type, filter weight and filter cutoff ratio can then be read by reader-par.f
as shown in Listings 2, 3, 4.

i f ( index ( c−out , ’NONE’ ) . eq . 1 ) then
f l t e rType=0
goto 101

else i f ( index ( c−out , ’EXPLICIT ’ ) . eq . 1 ) then
f l t e rType=1
ca l l l t r u e ( i f f i l t e r , s ize ( i f f i l t e r ) )

else i f ( index ( c−out , ’ HPFRT’ ) . eq . 1 ) then
f l t e rType=2

10

Nek5000 Course 2021

Page 138



ca l l l t r u e ( i f f i l t e r , s ize ( i f f i l t e r ) )
else
write ( 6 ,∗ ) ’ va lue : ’ , c−out
write ( 6 ,∗ ) ’ i s i n v a l i d f o r g ene ra l : f i l t e r i n g ! ’
goto 999

endif

Listing 2: Filter type in reader-par.f
ca l l f i n i p a r s e r −getDbl (d−out , ’ g ene ra l : f i l t e rWe i gh t ’ , i f nd )
i f ( i f nd . eq . 1 ) then
param (103)=d−out

else
write ( 6 ,∗ ) ’ g ene ra l : f i l t e rWe i gh t ’
write ( 6 ,∗ ) ’ i s r equ i r ed f o r gene ra l : f i l t e r i n g ’
goto 999

endif

Listing 3: Filter weight in reader-par.f

ca l l f i n i p a r s e r −getDbl (d−out , ’ g ene ra l : f i l t e rMode s ’ , i f nd )
i f ( i f nd . eq . 1 ) then
param (101)=int (d−out )−1
i f ( int ( param (101) ) . eq . 0) f i l t e rTyp e=0

else
ca l l f i n i p a r s e r −getDbl

$ (d−out , ’ g ene ra l : f i l t e rCu t o f fR a t i o ’ , i f nd )
i f ( i f nd . eq . 1) then
dtmp=anint ( lx1 ∗(1.0−d−out ) )
param (101)=max(dtmp−1 ,0 .0)
i f (abs(1.0−d−out ) . l t . 0 . 0 1 ) f i l t e rTyp e=0

else
write ( 6 ,∗ ) ’ g ene ra l : f i l t e rCu t o f f R a t i o or f i l t e rMode s ’
write ( 6 ,∗ ) ’ i s r equ i r ed f o r gene ra l : f i l t e r i n g ! ’

goto 999
endif

Listing 4: Filter cut off ratio in reader-par.f

If explicit filtering is chosen to be implemented, the Boyd transform and fil-
ter transfer function are performed in the subroutine Navier.f are shown in
Listings 5 and 6.

do j =1, nx
z=zpts ( j )
ca l l l egendre−poly ( Lj , z , n )
k j=kj+1
pht ( k j )=Lj (2 )
do k=3,nx

kj=kj+1
pht ( k j )= Lj (k ) − Lj (k−2)

enddo
enddo

Listing 5: Implementation of the Boyd transform in Navier5.f
do k=k0+1, nx

kk=k+nx∗(k−1)
amp=wght ∗(k−k0 ) ∗(k−k0 ) /( kut∗kut )
diag ( kk )=1.−amp

enddo

Listing 6: Implementation of explicit filter transfer function in Navier5.f

11

Nek5000 Course 2021

Page 139



If hpfrt is chosen, there will be no need for the Boyd transform as Legendre
polynomials are directly used. Filter transfer function for hpfrt is performed in
the subroutine hpf-trns-fcn and shown in Listing 7

k0=nx−kut ! kut=add i t i ona l modes
do k=k0+1,nx

kk= k+nx∗(k−1)
amp=((k−k0 ) ∗(k−k0 ) +0.) /( kut∗kut+0.)
diag ( kk )=1.−amp

enddo

Listing 7: Implementation of hpfrt transfer function in Navier5.f

5 Over-integration

In spectral and spectral-element methods, the spectral and physical represen-
tations of the solution are both used to carry out different operations. In par-
ticular, derivatives are computed in spectral space and multiplications, which
would be convolutions in spectral space, are computed in physical space. We
intend with “over-integration” to select a larger set of quadrature points in
physical space to represent the variables that will be multiplied, compared with
the number of points needed to represent each variable individually.

In a numerical code such as Nek5000, where the velocity is expressed in terms
of a nodal base of Legendre polynomials, no transformation is in principle needed
between the two representations but performing a point-wise multiplication in
physical space still requires to expand the number of quadrature points.

In the present section, we will summarise the results of Kirby and Karni-
adakis [5] and Malm et al. [6], who explained how over-integration is beneficial
in different scenarios, and we describe its implementation in Nek5000, version
19.

5.1 Over-integration as dealiasing

Kirby and Karniadakis [5] discussed how aliasing error can cause numerical
errors if over-integration is not employed to evaluate in polynomial multiplica-
tions.

In the case of Gauss-Lobatto-Legendre quadrature, Q quadrature points (and
associated weights) allow to integrate exactly polynomials u(ξ) ∈ P2Q−3. In-
verting this relation allows to estimate the number of quadrature points needed
to integrate polynomials of a given order, in particular:

u(ξ) ∈ PN requires Q = (N + 3)/2 ,

u(ξ) ∈ P2N requires Q = (2N + 3)/2 ,

u(ξ) ∈ P3N requires Q = (3N + 3)/2 .

(31)

In Galerkin methods, we have inner products of polynomial of the same degree
and, given that u(ξ) ∈ PN has at most M = N + 1 modal coefficients, it follows
that:

[u(ξ)]2 ∈ P2N requires Q = M + 1/2 = M + 1 ,

[u(ξ)]3 ∈ P3N requires Q = 3M/2 .
(32)

12

Nek5000 Course 2021

Page 140



Note that [u(ξ)]2 ∈ P2N and [u(ξ)]3 ∈ P3N correspond to linear terms (products
of two polynomials) and the advection term (product of three polynomials),
respectively.

Kirby and Karniadakis [5] firstly considered a test case for the advection
term, using the following procedure:

1. One element in [−1, 1] with M = 16 modes is created.

2. All modal coefficients are set equal to 1 (this condition corresponds to a
case with very low resolution).

3. Evaluate the modal form on Q quadrature points.

4. Pointwise square the values at quadrature points.

5. Apply derivative matrix (rank Q×Q).

6. Compute modal coefficients with Gaussian integration.

In this test case, the only parameter is the number of quadrature points Q,
and the procedure is repeated increasing Q from M + 1 = 17 (the required
values for the linear terms) to 25 (Q = 3M/2 = 24 is the required values for
the advection term). Comparing the results of the different tests with that of
the highest number of quadrature points, Q = 25, shows the occurrence of the
aliasing error up to Q = 24, confirming that the cause of this kind of error is
the increase of the polynomial order in the multiplication.

A second example considered in Ref. [5] is the Burgers equation,

∂u

∂t
+

1

2

∂u2

∂x
= ν

∂2u

∂x2
, (33)

integrated with M = 16 in a one-dimensional domain with 5 spectral elements.
The initial condition in this test case exhibits a steep gradient in the central
element, which therefore has high values for all most modal coefficients. In this
example, the aliasing error caused numerical instability for low viscosity values,
when the natural dissipation is not sufficient to avoid disturbance growth. For
high values of the viscosity, the solution is stable, but the aliasing error still
causes an higher discrepancy with the analytical solution when over-integration
is not used.

Kirby and Karniadakis [5] also considered two different sets of simulations
of incompressible flow: laminar-to-turbulent transition in a triangular duct and
under-resolved simulations of a turbulent channel flow. The duct simulations
show good agreement between results obtain with over-integration and with an
higher polynomial order but without over-integration, showing that the alias-
ing error is less severe when a very high resolution is used and the highest
modes contain a small amount of energy. The under-resolved simulations of the
turbulent channel flow show that both over-integration and spectral vanishing
viscosity (SVV) have similar effects, stabilizing the solution, as the aliasing error
eventually results in injecting energy in the system.

13

Nek5000 Course 2021

Page 141



5.2 Advection problem and geometrical transformation

Although the results by Kirby and Karniadakis [5] illustrate how aliasing errors
can lead to instabilities, an increase of the polynomial order can also occur in
operations for which aliasing is not possible. Starting from previous observa-
tions that stability issues also arise in linear scalar transport equation and that
stabilization is sometimes not needed when the skew-symmetric form of the con-
vective term is used, Malm et al. [6] investigated different scenarios where a
numerical errors can be avoided using over-integration.

In the model problem of the advection-diffusion equation,

∂ui
∂t

+ cj
∂ui
∂xj

= ν
∂2ui
∂xj∂xj

, (34)

if the convective field c is divergence-free (i.e. ∂ci/∂xi = 0), the advection term
can be expressed in three different forms:

cj
∂ui
∂xj

=
∂cjui
∂xj

=
1

2

(
cj
∂ui
∂xj

+
∂cjui
∂xj

)
(35)

denoted “convective”, “conservative”, and “skew-symmetric” forms, respectively.
Although these forms are equivalent from an analytical perspective, this is not
necessarily the case for the corresponding discretized operator. In particular,
the skew-symmetric form is less prone to numerical instabilities than the con-
vective or the conservative forms. This fact strongly suggests that instabilities
are due to a lost of skew-symmetry when discretization is applied.

In a Galerkin method, the problem is solved in the weak form, writing the
advection-diffusion equation as:

d

dt
(v, u) + (v, c · ∇u) = −ν(∇v,∇u) , ∀v ∈ H1

0 , (36)

and finding a function u ∈ XN for which the equation is satisfied ∀v ∈ H1
0 ,

where H1
0 is the space of the test functions and XN ⊂ H1

0 . In this expression,
(. . . , . . . ) denotes a bilinear form defined in H1

0 . Solution and test functions are
expressed in terms of a base Φ1(x), . . . ,Φ2(x), so that:

u(x) =
∑
i

uiΦi(x) v(x) =
∑
i

viΦi(x) , (37)

and the semi-discretized equation is an ordinary differential equation of the
form:

B
du

dt
+ Cu = −νAu (38)

Where the three matrices A, B, and C, are defined as:

Aij = (∇Φi,∇Φj) , Bij = (Φi,Φj) and Cij = (Φi, c · ∇Φj) (39)

are the stiffness, mass, and convective matrices, respectively. The stifness and
mass matrices are symmetric and positive-definite. Applying integration by
parts, it can be shown that:

Cij = −
∫

Ω

Φj c · ∇Φi dV −
∫

Ω

ΦiΦj ∇ · cdA+

∫
∂Ω

ΦiΦj c · n̂dA . (40)

14

Nek5000 Course 2021

Page 142



parameter ( lx1=9) ! GLL po in t s per element a long each d i r e c t i on
parameter ( lxd=14) ! GL po in t s f o r over−i n t e g r a t i on ( d e a l i a s i n g )
parameter ( lx2=lx1 −2) ! GLL po in t s f o r pressure ( l x 1 or lx1 −2)

Listing 8: Array dimensions for PNPN−2 with dealiasing.

1.000000 p99 d e a l i a s i n g : i f <0 d i s ab l e

Listing 9: Parameter p99 set in a *.rea file.

The second last and the last integrals in this example, vanish because c is
divergence-free and due to the boundary conditions, showing that the convective
matrix is skew-symmetric i.e. Cij = −Cji. The stability of the solution is
particularly interesting in the limit ν → 0+, which describes a situation when
features of the solution becoming progressively smaller and eventually finer than
the grid spacing. In this limit, the semi-descretized advection-diffusion equation
becomes:

du

dt
= −B−1C u . (41)

If the convective matrix is skew-symmetric, all eigenvalues of the system are
purely imaginary, and the solution will be absolutely stable for a small enough
time steps.

The fact that the stability of the solution is linked to the skew-symmetry of
the convective matrix explains that instability can be a consequence of numerical
errors resulting in the lost of skew-symmetry and, on the other hand, that
removing the source of these errors and recovering the skew-symmetry is an
effective way of stabilizing the solution.

Malm et al. [6] showed different instances when numerical errors due to
insufficient quadrant can occur in the advection-convective equation. In the
test case of the convected-cone problem, over-integration is not needed for a
vortical convective field (i.e. c = (−y, x)) but it is beneficial for a stagnation
field (i.e. c = (−x, y)). Another source of quadrature errors can be the Jacobian
that needs to be included when deformed elements are considered. In general,
over-integration is not required when Cij is skew-symmetric independently of
the quadrature, which can be proved for certain transformations or convective
field.

When the Navier-Stokes equation is considered, the same considerations ap-
ply, but it is important to consider that the divergence-free condition is imposed
only up to a certain tolerance, making over-integration not enough to assure the
skew-symmetry of the convective matrix.

5.3 Implementation

To enable over-integration in Nek5000 requires that a) arrays of the proper size
are allocated, and b) that parameter p99 has a value larger than 0. Different
values of p99 can be used in different cases. The array sizes are determined
before compilation in the SIZE file of each case, as reported in Listing 8 from
/Nek5000/examples/cone/cone016/SIZE. In this example, lx1 and lx2 are the
array sizes of velocity and pressure, respectively, and lxd is the size of the array
used for over-integration. Parameter p99 can be set either directly, as shown in
/Nek5000/examples/cone/cone016/base.rea (Listing 9), or using a the appropri-

15

Nek5000 Course 2021

Page 143



d e a l i a s i n g = yes

Listing 10: Parameter p99 set in a .par file.

i f ( param (99) . gt .−1 .and . ( lxd . l t . l x1 . or . lyd . l t . l y1 . or .
& l zd . l t . l z 1 ) ) then

i f ( nid . eq . 0 ) write ( 6 ,∗ )
& ’ABORT: Dea l i a s i ng space too smal l ; Check lxd , lyd , l zd in SIZE ’

ca l l e x i t t
endif

Listing 11: Lines 1153-1158 in core/reader par.f

ate keyword in a *.par file, as shown in /Nek5000/examples/cone/phill/phill.rea
(Listing 10). Note, however, that the default value of p99 is already larger than
0.

Before the first time step, if over-integration is enabled, the array dimensions
are checked in core/reader par.f (Listing 11). During the simulation, the sub-
routines where over-integration is performed are called at each evaluation of the
convective term. In case of p99 equal to 4, which is the default value for a sim-
ulation of incompressible flow this corresponds to Listing 12, in core/navier1.f,
and the subroutine is convect new.

e l s e i f ( param (99) . eq . 4 ) then
i f ( i f p e r t ) then
ca l l convect new ( conv , f i , . fa l se . , vx , vy , vz , . fa l se . )

else
ca l l convect new ( conv , f i , . fa l se . , vxd , vyd , vzd , . true . )

endif

Listing 12: Lines 3198-3203 in core/navier1.f

The subroutine convect new is implemented in core/convect.f. Listing 13 shows
two selected parts of convect new, corresponding to the interpolation from the
coarse grid to a fine grid before the multiplication, and the interpolation from
the fine grid to the coarse grid after the multiplication.

subroutine convect new (bdu , u , i f u f , cx , cy , cz , i f c f )
[ . . . ]

ca l l i n t p r s t d ( fx , cx ( i c ) , lx1 , lxd , i f 3d , 0 ) ! 0 −−> forward
ca l l i n t p r s t d ( fy , cy ( i c ) , lx1 , lxd , i f 3d , 0 ) ! 0 −−> forward
i f ( i f 3 d ) ca l l i n t p r s t d ( fz , cz ( i c ) , lx1 , lxd , i f 3d , 0 ) ! 0 −−>
forward

[ . . . ]
ca l l i n t p r s t d (bdu( ib ) , uf , lx1 , lxd , i f 3d , 1 ) ! Pro jec t back to
coarse

Listing 13: Lines 638-720 in core/convect.f

Note as the interpolations in both direction are computed using the subroutine
intp rstd with two values of the last argument.

16

Nek5000 Course 2021

Page 144



References

[1] John P Boyd. Two comments on filtering (artificial viscosity) for chebyshev
and legendre spectral and spectral element methods: preserving boundary
conditions and interpretation of the filter as a diffusion. Journal of Compu-
tational Physics, 143(1):283–288, 1998.

[2] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for
Incompressible Fluid Flow. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, Cambridge, 2002.

[3] Paul Fischer and Julia Mullen. Filter-based stabilization of spectral element
methods. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics,
332(3):265–270, 2001.

[4] Krestin Jordaan. Lecture notes in properties of orthogonal polynomials,
2017.

[5] Johan Malm, Philipp Schlatter, Paul F Fischer, and Dan S Henningson.
De-aliasing on non-uniform grids: algorithms and applications. Journal of
Computational Physics, 191:249–264, 2003.

[6] Johan Malm, Philipp Schlatter, Paul F Fischer, and Dan S Henningson.
Stabilization of the spectral element method in convection dominated flows
by recovery of skew-symmetry. Journal of Scientific Computing, 57(2):254–
277, 2013.

[7] Prabal Negi, Philipp Schlatter, and Dan Henningson. A re-examination of
filter-based stabilization for spectral-element methods, 2017.

[8] Saleh Rezaeiravesh, Ricardo Vinuesa, and Philipp Schlatter. On numeri-
cal uncertainties in scale-resolving simulations of canonical wall turbulence.
Computers Fluids, 227:105024, 2021.

[9] Stolz S. Kleiser Schlatter, P. Les of transitionalflows using the approxi-
mate deconvolution model. International Journal of Heat and Fluid Flow,
25(3):549–558, 2003.

17

Nek5000 Course 2021

Page 145



Group 10: Work Balancing in Nek5000

Ronith Stanly ∗, and Fermin Mallor †

June 24, 2021

1 Parallel computing

1.1 Motivation

Consider one has a serial code that can be run on one processor in a normal
laptop. Now if one has to either make the code run faster, or if one has to solve a
much larger problem in the same amount of time (or in fact, have a combination
of both), the ideal solution is to have a much larger, single processor (and hence
which has shared memory), so that the same serial code can be run faster for
the bigger problem size. However, building such a machine that scales to such
extremes is technologically and economically unfeasible.

Hence, the solution is to connect several of the individual processors (that we ini-
tially have) using a network and interconnects, to make a big machine. However,
a new problem arises here: since the new, big machine is made as a combina-
tion of smaller processors with individual memory (and hence the big machine
is a distributed memory system), here one has to ensure a way to communicate
between processors by sending and receiving messages across the network. This
is how parallel computing is done.

1.2 Issues

As we make bigger and bigger machines, we need to do more communications
between processors to exchange information and to perform the parallel simula-
tion. Hence one has to make sure that the system scales well for a fixed problem
size (strong scaling), as well as for a scaled problem (weak scaling); and to en-
sure that the communication overhead does not become the bottleneck of the
simulation.

One factor to consider in this context is 1Amdhal’s law , which states that the
speed-up of a code is limited by the percentage of serial section of the code. For
instance, if a serial code takes 20 hours to run on one processor and it has one
part of the code which takes 1 hour to run which cannot be parallelized (serial

∗KTH Engineering Mechanics, ronith@kth.se
†KTH Engineering Mechanics, mallor@kth.se
1https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/

1

Nek5000 Course 2021

Page 146

mailto:ronith@kth.se
mailto:mallor@kthe.se


Figure 1: Lumi Supercomputer

section) and even if the code that takes the remaining 19 hours of execution
time can be parallelized, then regardless of how many processors are devoted to
a parallelized execution of this program, the minimum execution time cannot
be less than that critical one hour. Hence, the theoretical speedup is limited to
at most 20 times (when N = ∞, speedup = 1/s = 20). As such, the paralleliza-
tion efficiency decreases as the amount of resources increases. For this reason,
parallel computing with many processors is useful only for highly parallelized
programs.

Hence to utilize large parallel systems efficiently, the best solution is to ensure
the code has good strong scaling. Another way is to increase the problem size
with increasing number of processors (weak scaling).

1.3 Benefits

There are several benefits of having an efficiently parallelized code to run on a
parallel computer. The obvious one is that it allows one to have a much reduced
time to solution. Some other advantages are that it enables one to have highly
resolved numerical simulations by permitting to have a large number of grid
points. This allows us to understand more physical insights from a simulation.
It also enables us to solve more detailed mathematical models, rather than
having simplified ones.

2 Graph Partitioning

In order to run a simulation on multiple processors, we have to efficiently map
the unstructured grid onto different processors (as shown in Fig, 3) in such a
way that each processor gets an almost equal amount of work while minimizing
the amount of communication between them. Such a map is found by solving a
graph partitioning problem.

2

Nek5000 Course 2021

Page 147



Figure 2: Highly resolved simulation of an airfoil from [2]

3

Nek5000 Course 2021

Page 148



Figure 3: An unstructured grid around an airfoil mapped onto different pro-
cessors as shown by the different colours [4]

Figure 4: (a) A 2D unstructured grid (b) The graph of the grid showing
vertices in yellow and its associated edges (representing communication between
vertices) [4]

Before we go deeper into the graph partitioning problem, it is important to
understand what a graph is and to know some terms related to it. In order to
compute a mapping of a mesh onto a set of processors via graph partitioning, it
is first necessary to construct the graph that models the structure of the com-
putation, as shown in Fig. 4. In general, computation of a scientific simulation
can be performed on the mesh nodes, the mesh elements, or both of these. If the
computation is mainly performed on the mesh nodes then this graph is straight-
forward to construct. A vertex (V ) exists for each mesh node, and an edge (E)
exists on the graph for each edge between the nodes. If the partitioning is com-
puted such that each subdomain has the same number of vertices, then each
processor will have an equal amount of work during parallel processing. The
total volume of communications incurred during this parallel processing can be
estimated by counting the number of edges that connect vertices in different
subdomains. Therefore, a partitioning should be computed that minimizes this
metric (which is referred to as the edge-cut).

For complicated problems involving multi-physics, adaptive mesh refinement

4

Nek5000 Course 2021

Page 149



and so on, it is possible to define weights on edges and vertices depending on
the local complexity. For instance, in a combustion simulation, if a particular
species is formed at a certain part of the grid and more reactions start happen-
ing there, the vertices and edges can be given higher weights there in order to
partition the graph more efficiently.

Given a weighted, undirected graph G = (V ;E) for which each vertex and edge
has an associated weight, the k-way graph partitioning problem is to split the
vertices of V into k (for k processors) disjoint subsets (or subdomains) such
that each subdomain has roughly an equal amount of vertex weight (balance
constraint), while minimizing the sum of the weights of the edges whose incident
vertices belong to different subdomains [4].

2.1 Types of Graph Partitioning

The graph partitioning problem is an NP-complete problem, which means that
it is difficult to compute an optimal partition in a reasonable amount of time.
However, different approximation methods exit. Some of them are:

1. Geometric techniques

2. Combinatorial techniques

(a) KL/FM Algorithm

3. Multilevel schemes

(a) Multi-level k-way Partitioning (parMETIS)

4. Spectral methods

(a) Recursive Spectral Bisection (parRSB)

5. Combined schemes

Of the methods mentioned above, the ones coloured in blue are available in
Nek5000 and will be mentioned in detail in subsequent sections.

3 Partitioning schemes in Nek5000

The multi-level k-way partitioning method is available in Nek5000 through a
third-party library called parMETIS, whereas the Recursive Spectral Bisection
method is present within a module called parRSB.

3.1 ParMETIS

The multi-level k-way partitioning method present in Nek5000 is a combination
of a multi-level scheme and a modified KL/FM algorithm. Hence the multi-
level k-way partitioning method will be explained by first going through what
a multi-level scheme is, followed by describing the KL/FM algorithm and then
specifying what modifications are made to the KL/FM algorithm to obtain the
multi-level k-way partitioning method present in Nek5000 (through parMETIS).

5

Nek5000 Course 2021

Page 150



Figure 5: The three phases of the multilevel graph partitioning paradigm.
During the coarsening phase, the size of the graph is successively decreased by
bundling together nodes and edges to have smaller number of them. During
the initial partitioning phase, a bisection is computed, During the uncoarsening
and refinement phase, the bisection is successively refined as it is projected to
the larger graphs. G0 is the input graph, which is the finest graph. Gi+1 is the
next level coarser graph of Gi. G4 is the coarsest graph. [4]

6

Nek5000 Course 2021

Page 151



Figure 6: A random matching of a graph along with the coarsened graph in
(a). The same graph is matched (and coarsened) with the heavy-edge heuristic
in (b). The heavy-edge matching minimizes the exposed edge weight. [4]

3.1.1 Multi-level Scheme

The multi-level scheme of graph partitioning consists of three levels, as shown
in Fig.5:

1. Graph Coarsening
A series of graphs are constructed by collapsing together selected vertices
of the input graph in order to form a related coarser graph. There are
several methods to do this, random matching and heavy-edge matching,
as shown in Fig.6, are two of them. Random matching collapses together
a random set of edges, no two of which (edges) are incident on the same
vertex. The coarsening in Fig. 6 can be understood if you eliminate the
red edges and stack the other edges and nodes. Heavy-edge matching
selects edges with higher weights.

2. Initial Partitioning
Computation of the initial bisection is performed on the coarsest (and
hence smallest or the one with least number of edges and vertices) of
these graphs, and so is very fast.

3. Multi-level refinement
Partition refinement is performed on each level of the graph, from the

7

Nek5000 Course 2021

Page 152



coarsest to the finest (i.e., original graph) using a KL/FM-type algorithm,
which is described in the next section.

3.1.2 KL/FM Algorithm

Closely related to the graph partitioning problem is that of partition re-
finement. Given a graph with a sub-optimal partitioning, the problem
is to improve the partition quality while maintaining the balance con-
straint. Essentially, this differs from the graph partitioning problem only
in that it requires an initial partitioning of the graph. The Kernighan-Lin
/ Fiduccia-Mattheyses (KL/FM) algorithm refines the initial bisection.
The KL/FM algorithm consists of a small number of passes through the
vertices. During each pass, the algorithm moves one vertex at a time be-
tween two sub-domains. To track the order in which vertices are moved,
two priority queues (one for each domain) are created. Prior to each pass,
the gain of every vertex is computed (i.e., the amount by which the edge-
cut will decrease if the vertex changes subdomains). Then it is placed in
the queue and ordered based on gain. If the top vertex (i.e., the one with
the highest gain) in only one of the priority queues is able to switch sub-
domains while still maintaining the balance constraint, then that vertex is
moved to the other subdomain. If the top vertices of both of the priority
queues can be moved while maintaining the balance, then the vertex that
has the highest gain among these is moved Ties are broken by selecting
the vertex that will most improve the balance. When a vertex is moved,
it is removed from the priority queue and the gains of its adjacent vertices
are updated. The pass ends when neither priority queue has a vertex that
can be moved. At this point, the highest quality bisection that was found
during the pass is restored.

The algorithm explained above can be illustrated using an example as
shown in figures 7 and 8: KL/FM-type algorithms are able to escape from
some types of local minima because they explore moves that temporarily
increase the edge-cut. Figure 7 illustrates this process. Figure 7(a) shows
a bisection of a graph with an edge-cut of six. Here, the weights of the ver-
tices and edges are one. There are twenty vertices in the graph. Therefore,
a perfectly balanced bisection will have subdomain weights of ten. How-
ever, in this case we allow the subdomains to be up to 10% imbalanced.
Therefore, subdomains of weight eleven are acceptable. Figure 7(b) shows
the gain of each vertex. Since all of the gains are negative, moving any
vertex will result in the edge-cut increasing. Therefore, the bisection is
in a local minima. However, the algorithm will still select one of the ver-
tices with the highest gain and move it. The white vertex is selected.
Figure 7(c) shows the new bisection as well as the updated vertex gains.
There are now two positive gain vertices. However, neither of these can
be moved at this time. The black vertex has just moved, and so it is inel-
igible to move again until the end of the pass. The other vertex with +1
gain is unable to move as this will violate the balance constraint. Instead,
one of the highest negative-gain vertices (shown in white) from the left
subdomain is selected. Figure 7(d) shows the results of this move. Now

8

Nek5000 Course 2021

Page 153



Figure 7: A bisection of a graph refined by a KL/FM algorithm. The white
vertices indicate those selected to be moved. In (a) the partitioning is in a local
minima. In (b) the algorithm explores moves that increase the edge-cut. In (c)
and (d) the edge-cut is increased, but now there are edge-cut reducing moves
to be made [4]

there are two positive gain vertices that are able to move and two that
are ineligible to move. The white vertex is selected. Figure 8 shows the
results of continued refinement. By Figure 8(d), the bisection has reached
another minima with an edge-cut of two. The refinement algorithm has
succeeded in climbing out of the original local minima and reducing the
edge-cut from six to two [4].

3.1.3 Multi-level k-way partitioning (parMETIS)

As mentioned before, the multi-level k-way partitioning method available in
Nek5000 through parMETIS is a combination of a multilevel scheme and a
modification of the KL/FM algorithm. The modification of the KL/FM algo-
rithm that is done is that the graph is first coarsened down to a small number
of vertices, a k-way partitioning of this much smaller graph is computed, as
shown in Fig. 9, (instead of the bisection which was done in the basic KL/FM
method), and then this partitioning is projected back toward the original graph
(finer graph) by successively refining the partitioning at each intermediate level.
For refinement, there are k(k-1) queues to consider instead of 2. Hence a vari-
ation of KL/FM algorithm is used for refinement, where only the boundary
vertices are visited and moved based on reducing edge-cuts and maintaining
balance constraint [3].

9

Nek5000 Course 2021

Page 154



Figure 8: The KL/FM algorithm from Figure 7 is continued here. Edge-
cut reducing moves are shown from (a) through (d). By (d), the refinement
algorithm has reached a local minima [4]

Figure 9: The various phases of the multilevel k-way partitioning algorithm.
During the coarsening phase, the size of the graph is successively decreased;
during the initial partitioning phase, a k-way partitioning of the smaller graph is
computed (a 6-way partitioning in this example); and during the uncoarsening
phase, the partitioning is successively refined as it is projected to the larger
graphs [3]

10

Nek5000 Course 2021

Page 155



3.2 ParRSB

Unlike ParMETIS, ParRSB uses no geometric information for the mesh parti-
tioning. ParRSB is based on an algorithm known as recursive spectral bisection,
in which a purely mathematical representation of the graph (mesh) is used for
the partitioning process, which is formulated as a (relaxed) optimization of a
quadratic function. In the following lines, the theory behind spectral partition-
ing will be explained (following a similar explanation to that given by Elsner in
chapter 3.3 of reference [1]).

Consider the partition of a graph G = (V ;E) into two subdomains V1 and V2.
One can distinguish the vertices belonging to each of them by using a discrete
approach:

xi =

{
−1, if vi ∈ V2
1, if vi ∈ V1

(1)

The edge cut number (which serves as a proxy for the communication load) can
be computed as:

f(x) =
1

4

∑
(i,j)∈E

(xi − xj)2 =
1

4

( ∑
(i,j)∈E

(xi + xj)
2 −

∑
(i,j)∈E

2xixj

)
(2)

After the decomposition, both sums can be expressed as a diagonal and an
off-diagonal matrix, respectively:∑

(i,j)∈E

(xi + xj)
2 = xTDx; −

∑
(i,j)∈E

2xixj = xTAx (3)

Here, the diagonal matrix D is known as the degree matrix, and it models
the degree of connectivity of each vertex, and the off-diagonal matrix A is the
adjacency matrix, modelling the connections between vertices (edges). Essen-
tially, the mesh is represented as a lumped mass system, in which the vertices
correspond to the masses and the edges to the couplings (similar to a mass-
spring system). Both matrices can be combined back into what is known as the
Laplacian of the graph, L = D − A. The graph partitioning problem can be
formulated as:

minimize
1

4
xTLx

subject to x ∈ ±1,

xT e = 0.

(4)

where e is the unit vector.
However, this is a NP-complete problem. In order to circumvent this issue, the
problem is relaxed by replacing the discrete variable x by a real vector z with
the same Euclidean length as x. By doing so, one can find a lower bound for
the original minimization problem.

minimize
1

4
zTLz

subject to zT z = n,

zT e = 0.

(5)

11

Nek5000 Course 2021

Page 156



where n is the number of elements.
The Laplacian matrix is a positive, semidefinite matrix, which means that

it has real-valued, non-negative eigenvalues (λi) with real-valued, orthogonal
eigenvectors (qi). Following the Perron-Frobenius theorem, the second eigen-
value will be non-zero if the graph is connected. This eigenvalue (λ2) is also
known as the algebraic connectivity and q2, the Fiedler vector. Bisecting the
median of q2 minimizes the cut edges while balancing the load.

Algorithm 1 The recursive spectral bisection

1: procedure Bisect(G(V,E))
2: for e = 1, 2 . . . , log2(nel) do
3: Compute Laplacian of graph
4: Compute λ2 and q2 using Lanczos algorithm
5: compute median (mp) of q2
6: Choose V1 := {vi ∈ V |qi < mq}, V2 := {vi ∈ V |qi > mq}
7: end for
8: end procedure

4 Implementation in Nek5000

In Nek5000, both partitioning methods (ParMETIS and ParRSB) are included
as external libraries, and as such they can be found under the /3rd party direc-
tory of the main code. In order to select the partitioner before runtime, a flag
(either METIS or RSB) is used during compiling. Moreover, the partitioner
chosen is set in the .par file under the [MESH] section. The partitioner will
be called during initialization or during run-time if adaptive mesh refinement
(AMR) is used.

Inside the /core folder, the partitioner.c routine takes care of the calls to the
partitioner libraries. This routine is called from the map2.f at initialization (or
from amr part.f when AMR is performed). The main functions inside parti-
tioner.c are the following:

• fpartMesh: Calls either parMETIS or parRSB in order to perform the
load-balancing.

• redistributeData: redistributes the elements to the correct processors af-
ter partitioning is finished.

• printPartStat: prints load-balancing results and stats to the log file.

After the partitioner redistributes the element data to each processor, each
processor can access locally its own elements through the lglel array. Globally,
the gllel array assigns a global element to its local correspondent. and gllnid
assigns a global element to its processor.

5 Conclusions

As computational power increases and machines become larger, load-balancing
becomes a critical issue for parallel computing. Correct load-balancing allows to

12

Nek5000 Course 2021

Page 157



reduce serial bottlenecks in scientific codes, improving greatly their efficiency. In
order to perform load-balancing in scientific computation, the domain (mesh) is
subdivided into N processors using different partitioning algorithms (geometric,
spectral, multi-level,...).

In Nek5000, two different partitioners (included as 3rd party libraries) are avail-
able for load balancing: parMETIS and parRSB. The former is based on the
multi-level k-way partitioning algorithm, and the later on the recursive spectral
bisection algorithm. Overall, the main differences come from the fact that the
k-way method uses geometric information (and allows for weighting of the edges
and nodes), whereas the spectral method is based on a purely mathematical rep-
resentation of the graph. Overall, both methods give good-quality partitions,
but for homogeoneous, well connected problems, as those in Nek5000, spectral
bisection (RSB) creates higher-quality and better-connected partitions.

References

[1] Ulrich Elsner. Graph partitioning - a survey. Technische Universität Chem-
nitz, 1997.

[2] S.M. Hosseini, R. Vinuesa, P. Schlatter, A. Hanifi, and D.S. Henningson.
Direct numerical simulation of the flow around a wing section at moderate
reynolds number. International Journal of Heat and Fluid Flow, 61:117–128,
2016. SI TSFP9 special issue.

[3] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for
irregular graphs. Journal of Parallel and Distributed Computing, 48(1):96–
129, 1998.

[4] K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high per-
formance scientific simulations. 2000.

13

Nek5000 Course 2021

Page 158



Nek5000 Group 11

Harrison Nobis∗, Jose Faúndez† and Thales Fava‡

June 24, 2021

1 Introduction

In some of the derivations used in this chapter we will make use of the elliptic
problem that reads

−∇ · [p(x)∇u(x)] + q(x)u(x) = f(x) in Ω. (1)

The weak formulation of (1) is given by: Find u ∈ V0 such that

A(u, v) = F(v) ∀v ∈ V0, (2)

where

V0 := {v ∈ H1(Ω); v = 0 on ∂ΩD}, (3)

A(u, v) :=

∫
Ω

[p(x)∇u · ∇v + q(x)uv] dx, (4)

F(u, v) :=

∫
Ω

f(x)v(x)dx. (5)

2 Boundary Conditions

2.1 Homogeneous essential boundary conditions

To begin our discussion of boundary conditions we refer to the elliptic problem
(1) with q = 0, subject to homogeneous Dirichlet and Neumann boundary
conditions

u = 0 on ∂ΩD, ∇u · n = 0 on ∂ΩN .

Multiplying equation (1) by the test function v ∈ H1(Ω), integrating over Ω
and integrating by parts yields∫

Ω

p∇v · ∇u dV −
∫
∂Ω

vp∇u · n dS =

∫
Ω

vf dV. (6)

∗KTH Engineering Mechanics, nobis@mech.kth.se
†KTH Engineering Mechanics, josfa@mech.kth.se
‡KTH Engineering Mechanics, fava@mech.kth.se

1

Nek5000 Course 2021

Page 159

nobis@mech.kth.se
josfa@mech.kth.se
fava@mech.kth.se


Here we notice the additional boundary term arising from integration by parts
and make two new definitions for classes of boundary conditions, which cancel
these boundary terms in different ways:

1. Essential BCs: Referring to boundary conditions which are imposed explic-
itly, and are an essential requirement to obtain a unique solution. Here
they are satisfied by restricting the elements of the admissible functions.
Since u is absent in the boundary term of equation (6), it is the Dirich-
let conditions which are treated in this way, resulting in u and v being
restricted to V0 = {v ∈ H1(Ω); v = 0 on ∂ΩD}.

2. Natural BCs: Referring to the boundaries which are incorporated implic-
itly and are assumed to cancel the boundary term, which is why they are
commonly referred to as do nothing boundary conditions. These bound-
ary conditions are automatically satisfied in the limit when the approx-
imate solution converges to the real solution. It can be seen that the
Neumann condition falls into this category, however it should be made
clear, that it is the integral over the boundary which is assumed to be
zero,

∫
∂ΩN

vp∇u · n dS = 0, and that this does not necessarily imply that
∇u · n = 0 is satisfied point wise on the boundary ΩN , which is why they
are also commonly referred to as weak boundary conditions.

Finally, the weak formulation of equation (1) after integrating by parts reads:
Find u ∈ V0 ∫

Ω

p∇v · ∇u dV =

∫
Ω

vf dV, ∀v ∈ V0, (7)

or
A(u, v) = F(v) ∀v ∈ V0. (8)

Note here that the boundary term has cancelled on ∂ΩD through the restriction
of V0, and has been cancelled to implicitly enforce the Neumann condition on
∂ΩN .

2.2 Discretized homogeneous essential boundary condi-
tions

Moving attention now to a discretized setting, we have that u ∈ VN and v ∈ VN
now refer to vectors of basis coefficients and H̄ and M are the discrete Helmholtz
operator and discrete mass matrix respectively in the homogeneous Neumann
problem. If u and v are to satisfy the homogeneous essential boundary condi-
tions, u(x) = v(x) = 0 on ∂ΩD, this condition must be incorporated before the
weighted residual problem (8). To do so implies restricting the index range ı̂
and i of ui and vı̂, such that we exclude the index corresponding to essential
boundary conditions.

Here we denote the restricted coefficients as ũ = Ru, which in turn implies
u = RT ũ, where R is N × (N + 1)d restriction which can be thought of as an
identity with columns of zeros scattered throughout in locations corresponding
to nodal points on ∂ΩD (note: N ≤ (N + 1)d refers to the number of points
in Ω \ ∂ΩD) One could express R in higher dimensions with tensor products,
R = R1 ⊗ · · · ⊗Rd however in practice, R is never actually formed, as it is only

2

Nek5000 Course 2021

Page 160



the action of R required.

Applying the above restrictions to (8), yields the linear system:

Hũ = RMf,

u = RT ũ,
(9)

with
H := RH̄RT .

A final remark can be made that H is symmetric positive definite and can hence
be solved with PCG.

2.3 Inhomogeneous boundary conditions

Inhomogeneous essential boundary conditions can be handled by splitting the
solution u := uh + ub, into two components, where uh satisfies homogeneous
boundary conditions and and ub is any function in VN . Applying this split to
equation (9) yields

Hũh = RMf −RH̄ũb,
u = RT ũh + ũb.

(10)

Before addressing Inhomogeneous Neumann conditions it is useful to examine
the mixed Dirichlet/Neumann condition known as the Robin condition

∇u · n + αu = β on ∂ΩR. (11)

Returning to the weak form described by equation (6) the boundary term can
now be treated as∫

Ω

p∇v · ∇u dV −
∫
∂Ω

vp∇u · n dS =

∫
Ω

vf dV,

⇒
∫

Ω

p∇v · ∇u dV −
∫
∂ΩR

vp(β − αu) dS. =

∫
Ω

vf dV,

⇒
∫

Ω

p∇v · ∇u dV +

∫
∂ΩR

vpαu dS =

∫
Ω

vf dV +

∫
∂ΩR

vpβ dS,

(12)

Where the boundaries on ∂ΩD and ∂ΩN have cancelled for the same reasons as
section 2.1 and equation (11) has been substituted on ∂ΩR. The treatment of
such a boundary condition can be performed in a discrete setting by following a
similar procedure to (10), now with a slight modification to H̄ . Finally it can
be seen that inhomogeneous Neumann conditions follow from (12) by taking
α = 0.

2.4 Spectral-Element Operators

When referring to the spectral element discretization involving multiple elements
it is more illustrative to replace the restriction matrix R with either the mask
M orML; where the former is applied globally and the latter is applied locally,
effectively restricting u ∈ VN to VN,0 := VN∩H1

0 . For example, the following two

3

Nek5000 Course 2021

Page 161



equations demonstrate how the stiffness matrix can be masked either globally or
locally. However this procedure applies equally to any other matrix or operator.

K =MQTKLQM,

or

K = QTMLKLMLQ.

(13)

It should be noted that in section 2.2, the restriction operation R reduces the
size of the operators, and hence the size of the resulting linear system (9). By
employing masks, this is not the case, and in fact strictly speaking the masked
form of K is no longer invertable. However, if solved with iterative techniques
this is not a problem so long as the underlying basis vectors on ∂ΩD are always
zero.

Returning to the elliptic problem formulated in equation (10), with inhomoge-
neous boundary conditions, if we use the global mask M, we arrive at

MQTHLQMu0 =MQT (MLfL −HLub,l),

HL := KL + qML.
(14)

Here we note that ub must be continuous, however any projection such as ub :=
M−1Σ′MLub,L can be used to ensure this. Observing the form of equation (14)

it can be seen that H =MQTHLQM is still symmetric. In practice, it is better
to a formulation utilizing the local maskML, in which case the resulting system
is of the form

MLΣ′HLu0,L =MLΣ′(MLfL −HLub,L). (15)

This form is advantageous because tensor product operations can be performed
without additional scatter operations. Furthermore, using Σ′ reduces commu-
nication overhead.

2.5 Natural outflow boundary conditions

To conclude the discussion of boundary conditions we move away from the
simplified elliptic problem discussed in sections 2.1 - 2.4 and address the incom-
pressible Navier stokes equations

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u + f ,

∇ · u = 0.
(16)

Following a similar procedure to section 2.1, multiplying by a test function
v ∈ H1(Ω)d, integrating in Ω, and integrating the viscous and pressure terms
by parts one can arrive at∫

Ω

v ·
(
∂u

∂t
+ u · ∇u− f

)
dV =∫

Ω

(∇ · v)p dV − 1

Re

∫
Ω

∇v · ∇u dV +

∮
∂Ω

v ·
(
−p+

1

Re
∇u
)
· n dS. (17)

4

Nek5000 Course 2021

Page 162



It can be seen from the additional boundary term that the natural outflow
boundary condition is given by

− pn +
1

Re
(n · ∇u) = 0 on ΓO. (18)

This outflow condition is subtly problematic for two reasons. First, while this
is formally one condition, we find that in practice it effectively sets p = 0 and
∂u
∂n = 0, implying the mean pressure at each outlet is zero. While this is not
problematic for just one outflow, since the pressure can always be shifted by a
scalar, it can yeild non-physical solutions for multiple outflows, particularly in
non-symmetric domains such as that in Fig. 1.

Figure 1: Scematic or a double pipe[7].

A second consideration is the growth of kinetic energy into the domain from
the outflow boundary condition (18). By multiplying equation (16) by u, and
integrating over Ω, an energy estimate can be obtained (see Bostrom et al [2]
for a full derivation)

1

2

d

dt
||u||2L2(Ω) = − 1

Re
||∇u||2L2(Ω) +

∮
∂Ω

u ·
(
−p+

1

Re
∇u− 1

2
|u|2
)
· n. (19)

For high Reynolds numbers it can be seen that the energy decay is dependent
entirely on the boundary terms. In the case of Dirichlet boundaries the total en-
ergy change is controlled, however for outflow conditions the following stability
constraint applies

u ·
(
−p+

1

Re
∇u− 1

2
|u|2

)
· n ≤ 0 on ∂ΩO,

−1

2
|u|2(u · n) ≤ 0 on ∂ΩO,

(20)

where the first two terms have been cancelled from the natural boundary con-
dition. Crucially, this implies

Re→∞ =⇒

{
1
2
d
dt ||u||

2
L2(Ω) ≤ 0 u · n|∂ΩO

≥ 0,
1
2
d
dt ||u||

2
L2(Ω) < 0 u · n|∂ΩO

< 0.
(21)

There exists several methods to overcome the stability issues of the outflow
condition. Perhaps the simplest is the inclusion of a sponge region. Dong et
al. [4], address this by adding the condition u ·

(
−p+ 1

Re∇u−
1
2 |u|

2
)
· n = 0 if

there is an energy influx on ∂ΩO (see examples/turbJet).

5

Nek5000 Course 2021

Page 163



Furthermore, convective outflow conditions exist which replace the outflow
boundary condition with a Dirichlet condition which attempts to predict the
value of the velocity in the outflow region. This requires making an assumption
about the convection speed, the choice of which is not trivial, especially for flows
containing vorticies. (See Bostrom et al [2] for further details)

3 Mesh

3.1 Deformed Geometries

In 3D cases, around 90% of the operations come from a matrix-matrix product,
so the implementation of this operation have to be highly optimized. The effi-
ciency of Nek5000, and of high-order methods in general, comes from the choice
of computationally convenient basis functions, basis coefficients that are also
grid points allowing a diagonal mass matrix and low-cost operator, and espe-
cially the matrix-free fast tensor-product which reduces the work from O(nN3)
to O(nN). However, care must be taken when dealing with deformed geome-
tries, where some extra computations have to be made and some further ap-
proximations are employed with respect to its parallelepipeds counterpart.

Figure 2: Example of deformed domain Ω and its transformation to reference
domain Ω̂. Figure from [3].

In this section we consider the general case where the domain Ω is deformed,
as the one shown in Fig. 2, treating rectangular parallelepiped geometries, with
arbitrary orientation, as a particular case. A common practice in SEM is to
represent the geometry in terms of the same polynomial basis used for the
solution, that is for each element Ω we have the isoparametric map

x(r, s, t) =
N∑
i=0

N∑
j=0

N∑
k=0

xijkπi(r)πj(s)πk(t), (22)

and therefore it exists an invertible map x(r) from the physical deformed
domain to the reference domain Ω̂(r) with the Jacobian

J(r) = det


∂x1

∂r1
· · · ∂x1

∂rd
...

...
∂xd

∂r1
· · · ∂xd

∂rd

 . (23)

6

Nek5000 Course 2021

Page 164



Assuming the case of constant coefficient p(x) and q = 0 for the elliptic
problem, the inner product (5) takes the form

A(u, v) =

∫
Ω

[p∇u · ∇v] dx =
d∑
k=1

∫
Ω

p
∂u

∂xk

∂v

∂xk
dx. (24)

To compute the integral in the reference space Ω̂, we evaluate the partial
derivatives according to the the chain rule

A(u, v) =
d∑
k=1

∫
Ω̂

p

(
d∑
i=1

∂v

∂ri

∂ri
∂xk

) d∑
j=1

∂u

∂rj

∂rj
∂xk

 J(r)dr. (25)

Clearly, J(r) and ∂ri/∂xk are constant for our particular rectangular paral-
lelepiped case. Therefore, they would come out of the integral. This is not the
situation for deformed elements, in which case we assemble them within a set
of functions

Gij(r) :=
d∑
k=1

∂ri
∂xk

∂rj
∂xk

J(r), (26)

where for rectangular parallelepipeds,Gij(r) = 0 for i 6= j and constant
otherwise. We can then evaluate the integral in (25) by using the numerical
quadrature

A(u, v) =

d∑
i=1

d∑
j=1

∑
klm

[
∂v

∂ri
pGij

∂u

∂rj

]
(ξk,ξl,ξm)

ρkρlρk. (27)

By combining the coefficient p, geometric term Gij , and quadrature weights
into a set of d2 diagonal matrices Gij

G =

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (28)

(Gij)k̂k̂ := [pGij ](ξk,ξl,ξm) ρkρlρm, (29)

with k̂ := 1 + k+ (N + 1)l+ (N + 1)2m. The derivatives in (27) can be written
as

∂u

∂r1

∣∣∣∣
klm

=
N∑
p=0

D̂kpuplm = (I ⊗ I ⊗ D̂)︸ ︷︷ ︸
D1

u, (30)

∂u

∂r2

∣∣∣∣
klm

=
N∑
p=0

D̂lpukpm = (I ⊗ D̂ ⊗ I)︸ ︷︷ ︸
D2

u, (31)

∂u

∂r3

∣∣∣∣
klm

=
N∑
p=0

D̂mpuklp = (D̂ ⊗ I ⊗ I)︸ ︷︷ ︸
D3

u, (32)

7

Nek5000 Course 2021

Page 165



with D̂ the one-dimensional derivative matrix. Combining the derivatives
operators Di and geometric operators Gij we end up with the compact form for
the energy inner product (25)

A(u, v) = vT

 D1

D2

D3

T  G11 G12 G13

G21 G22 G23

G31 G32 G33

 D1

D2

D3

u, (33)

= v DTGD︸ ︷︷ ︸
K̄

u. (34)

The size of the full stiffness matrix is (N + 1)3 × (N + 1)3, however we
have that Gij = Gji which reduces the leading-order storage to 6(N + 1)3.
The operator form in (34) also reduces the work required for a matrix-vector
product. If we apply the K̄ to a vector u, we start by the tensor-product-based
derivative evaluations

ûj = Dju→ 3× 2(N + 1)4, (35)

followed by the multiplication with the geometric factors

ũi =
∑
j

Gijûj → 9× (N + 1)3, (36)

to finally sum across the tranposed derivative operator

K̄u =
∑
i

DT
i ũi → 3× 2(N + 1)4, (37)

yielding to a total of 12(N + 1)4 + 9(N + 1)3 operations, which is significantly
less than the 2(N + 1)6 operations required if the stiffness matrix is computed
and stored explicitly.

For deformed elements, the mass matrix can be extended to

Mî̂i = J(ξi, ξj , ξk)ρiρjρk, î = 1 + i+ (N + 1)j + (N + 1)2k. (38)

And for cases with q(x) nonzero, the Helmoltz operator is created by aug-
menting the stiffness matrix K̄ with the diagonal matrix with the nodal values
q(x(ξi, ξj , ξk))

H̄ := K̄ +QM. (39)

Surface integrals should also be defined for curved elements. They are im-
portant in the definition of the boundary conditions, for example, as well as for
obtaining integrated quantities of interest. Consider that in the physical do-
main, a given surface is given by xR(r, s) = x(r, s, 1). We omit the superscript
R in the following equations. Infinitesimal displacement vectors over the surface
in the physical domain (εr and εs) can be obtained from

εr =
∂x

∂r
dr =

(
∂x

∂r
,
∂y

∂r
,
∂z

∂r

)T
dr, (40)

εs =
∂x

∂s
ds =

(
∂x

∂s
,
∂y

∂s
,
∂z

∂s

)T
ds. (41)

8

Nek5000 Course 2021

Page 166



The area dS of the quadrilateral formed by εr and εs is just the norm of the
cross product between these vectors, i.e.,

dS = ||εr × εs|| =
∥∥∥∥∂x∂r × ∂x

∂s

∥∥∥∥ dr ds. (42)

Note that the term with the norm is the surface Jacobian J̃ , i.e.,

J̃ij =

∥∥∥∥∂x∂r × ∂x

∂s

∥∥∥∥
ij

, (43)

which is defined for every index i and j of the mesh over the surface. The
unitary outward normal vector n̂ij is given by

n̂ij =
1

J̃ij

(
∂x

∂r
× ∂x

∂s

)
ij

. (44)

If one wants to perform the two surface integrals of the Robin boundary
condition (Eq. (12)), one have to add to the diagonal entries of K̄ the values
J̃Rijρiρjαp

R
ij , and to the r.h.s., J̃Rijρiρjβp

R
ij .

The use of deformed elements induces some errors which are often referred
as “variational crimes”, due to the fact that some assumptions in the variational
problem are violated. Considering the discrete approximation of the weak for-
mulation for the elliptic problem that consists in finding u ∈ VN such that

A(u, v) = F(v) ∀v ∈ VN , (45)

where VN ⊂ V , with VN being the finite dimension approximation of the infinite
dimensional space V . V is a subspace of the Sobolov space H1

0 that satisfies
the Dirichlet boundary conditions. We outline two situations in which some
assumptions are violated:

1. As explained before, the use of deformed elements requires a variable Ja-
cobian and geometric factors that remains inside the integral. This in-
creases the order of the polinomiyal to integrate, which in turns degrades
the accuracy of the quadrature, replacing A(u, v) and F(v) by some ap-
proximation. An example of the lost in accuracy given by the integration
over deformed geometries can be found in [15]. To overcome this issue, one
could also increase the order of the integration rule, with the added cost of
increasing the number of operations. This trade-off between accuracy of
the quadrature and reduced number of operations was investigated by [9],
who concluded that it was better to recover accuracy by simply increasing
N . This conclusion is based on the fact that high-order methods tend to
diminish the severity of this “variational crime”.

2. For the case of elements with deformed boundaries, the mesh generated by
the isoparametric map only approximates the actual domain and therefore
the homogeneous boundary conditions cannot be satisfied exactly by the
members of VN , yielding to the situation where VN 6⊂ V . For simple ge-
ometries one could use a different mapping that represents the boundaries
exactly. However, this would not be general nor useful from a computa-
tional point of view.

9

Nek5000 Course 2021

Page 167



3.2 Generation of deformed geometries

When discrtizating the domain, the set of values xijk in the isoparametric map
in equation (22) should satisfy two conditions

1. Have a smooth distribution x(r) in the interior of Ω̂ so the integrands are
accurately evaluated.

2. Satisfy the prescribed boundary conditions xijk = x̃(ξi, ξj , ξk)|∂Ω̂

In Nek5000 this is implemented by a blending technique derived by [6], which
is based on the Boolean sum of interpolation operators. The type of operators
we focus on are of the form

Irf(r) =
m∑
î=0

πm
î

(r)f(rî, s, t), (46)

Isf(r) =
n∑
ĵ=0

πn
ĵ

(s)f(r, sĵ , t), (47)

Itf(r) =
l∑

k̂=0

πl
k̂
(t)f(r, s, tk̂), (48)

where f is a continuous function and the operators Ir, Is, and It are denoted
Lagrange interpolation operators. In order for the projection to be linear along
the r∗-direction, we set m = n = l = 1. Then, the projection Ir∗f(r) interpo-
lates f along the r∗ direction and coincides with f at r∗ = ±1. The bivariate
interpolation is then given by the tensor product

IrIsf =
1∑
î=0

1∑
ĵ=0

π1
î
(r)π1

ĵ
(s)f(rîN , sîN ). (49)

By introducing the Boolean sum Iri ⊕ Irj (i 6= j)

Iri ⊕ Irj := Iri + Irj − IriIrj , (50)

where finally the following relationships can be shown

x(r) = (Ir ⊕ Is)x̃(r) (in IR2), (51)

x(r) = (Ir ⊕ Is ⊕ It)x̃(r) (in IR3). (52)

These expressions allow us to construct x from the boundary values x̃, which
are reproduced exactly. By expanding the Boolean sum, we can obtain a se-
quence of approximations, where ,in each step, information of successively higher
dimension is included. For a 2D case this reads

(Ir ⊕ Is)x̃(r) = IrIsx̃ + Ir(x̃− IrIsx̃) + Is(x̃− IrIsx̃). (53)

The first term in the right hand side corresponds to the bilinear interpolant
of the vertex only, whereas the second and third terms correspond to the linear
interpolation of the s-edges along r and the linear interpolation of the r-edges
along s, respectively.

10

Nek5000 Course 2021

Page 168



x̃ v = IrIsx̃ e = v + Ir(x̃− v) + Is(x̃− v)

Figure 3: Gordon-Hall 2D.

Figure 4: Gordon-Hall 3D [3].

Examples of the application of the sequence of approximation for 2D and
3D elements are shown in Fig. 3 and Fig. 4, respectively.

The implementation in Nek5000 can be found in the file navier5.f under
the subroutines gh_face_extend_3d and gh_face_extend_2d, which are called
during the generation of the tri- or bilinear mesh in the xyzquad subroutine and
fix_geom.

3.3 Description of the mesh files

In the following sections, we discuss some of the functions and files described in
Fig. 5, which portrays the mesh generation process for Nek5000.

The ASCII .rea file contains the parameters defining the simulation, infor-
mation about the mesh (vertices of the elements before the collocation of GLL
points), and location of the boundary conditions. This file contains a list of run

11

Nek5000 Course 2021

Page 169



genbox

ICEM

Gmsh

Pointwise

.rea file .re2 file

cnvrt.py

cgns2nek

exo2nek

gmsh2nek

...

reatore2

2D
n2to3

3D

meshtools.py

genmap .ma2 file

Nek5000

nekmerge

prenek

Figure 5: Diagram showing the mesh generation process for Nek5000.

parameters (p01, p02,...). However, these parameters are currently set elsewhere
(.par, .usr, and SIZE files), leaving this section of the file non-functional. In
the sequence, the mesh and location of the boundary conditions are defined in
the .rea file. Notice that as the size of the meshes used in Nek5000 has grown
over time, the functional part of the .rea file was transferred to the binary .re2

file, which is what Nek5000 actually reads. However, since the latter is often
generated from the former, through the use a converter such as the reatore2

routine, it is still useful to describe the .rea file.
The beginning of the mesh definition section contains the parameters NEL,

NDIM, and NELV, which are respectively the total number of elements (considering
the solid and fluid elements), the number of dimensions of the problem, and the
number of fluid elements. Solid elements may occur in problems of conjugate
heat transfer. In the line starting by the string ELEMENT, the first value is the
element number. In the following, the .rea contains the x and y (and z in 3D)
coordinates of the nodes of the elements. The nodes are numbered from 1 to 4
in 2D and from 1 to 8 in 3D as portrayed in Fig. 6.

Figure 6: Numbering of the nodes of the elements [1].

A comparison between the 2D and 3D definition of the nodes of the elements
in the .rea file is shown in Figs. 7 and 8. One can observe that the 2D file

12

Nek5000 Course 2021

Page 170



presents only x and y points, whereas the 3D one also has the z component.
The numbers in the figures indicate the node to which that coordinate pertains.
In the case of the 3D file, the nodes from 5 to 8 lie on the face opposed to the
one defined by the nodes from 1 to 4.

Figure 7: Definition of the nodes of the elements in the .rea file in 2D.

Figure 8: Definition of the nodes of the elements in the .rea file in 3D.

Curved edges of elements are defined in a special section of the .rea file.
Figure 9 presents an excerpt of such section. The first value (IEDGE) indicates
the edge number (1 to 4 in 2D and 1 to 12 in 3D). The second value (IEL) is
the element number. In the current case, IEDGE is 4 and IEL is 18. The edge
numbering convection is presented in Fig. 10. The second value is the element
number. The meaning of the values in the 3rd to 7th positions of this line will
depend on the type of edge, which is defined by the character in the 8th position
of the line. The character 'm' indicates that the curved edge is reconstructed
quadratically. In this case, the x, y, and z coordinates of the midpoint of the edge
need to be given at the 3rd, 4th, and 5th positions of the line. The character
'C' indicates that the curved edge is a circular arc. It requires the radius of
the circle to be given at the 3rd position of the line. Finally, the character 's'
means that the edge lies on a sphere, which requires providing its radius at the
3rd position and its center at the 4th, 5th, and 6th positions of this line.

Figure 9: Definition of the curved elements in the .rea file.

Lastly, the .rea file also contains the type of boundary conditions that each
face of the element has. Figure 11 presents an extract from this section. The
1st character ('E') is the type of boundary condition. It can take values of 'E'
for internal faces, 'P' for periodic faces, 'SYM' for symmetric faces, 'O' ('o') for
outflow faces with zero (nonzero) pressure, 'W' for wall boundary condition, 'V'

13

Nek5000 Course 2021

Page 171



Figure 10: Definition of the edge numbering in the .rea file [1].

('v') for constant (user-specified) Dirichlet velocity boundary condition, among
other possibilities. The 2nd value in the line (1) is the element number. The
3rd value (1) is the face number. The face number can be 1 in 2D and from 1
to 6 in 3D. More details about the face numbering can be seen in Fig. 12. The
4th and 5th values are the element connectivity and face connectivity.

Figure 11: Definition of boundary conditions in the .rea file.

Figure 12: Definition of the face numbering in the .rea file [1].

In the following, the genmap routine is used to convert the .rea (.re2) file
to the ASCII .map (binary .ma2) file, which contains information about the
connectivity of the elements. In summary, Nek5000 requires, among other files,
the .rea and .map files in older versions and the .re2 and .ma2 files in newer
versions.

14

Nek5000 Course 2021

Page 172



3.4 Mesh Related Functions

There are several functions that allow the user to manipulate the mesh. This
can be done either before or during the Nek5000 run. Firstly, we consider the
functions that are used in the set-up of the simulation. The functions reatore2
and genmap pertain to this class but were already discussed in the previous
section.

genbox is a routine that allows the user to generate rectangular meshes in
2D or 3D, and it requires a .box file. An extract from this file is presented
in Fig. 13. The 1st and 2nd lines are the dimension of the generated mesh (2
or 3) and the number of fields, respectively. The latter can be more than 1 in
problems involving velocity and temperature fields, for example. The first line
after the string box specifies the number of elements in the x (22), y (16), and z
(19) directions. The negative signs before these numbers indicate that genbox

should generate the distribution of points based on the initial and final positions
for each direction together with the ratio of growth of the mesh spacing in that
direction. The following three lines indicate the initial and final positions in
the x, y, and z directions of the domain and the aforementioned ratio. From
the figure, we notice that the mesh in x should start at 0 and finish at 2, being
uniformly space (ratio of 1), while in the y direction, it should start at 0 and
finish at 1 with a ratio of growth of the elements of 1.15. Finally, the last line
of the .box file provides the boundary conditions for the 1st and 2nd borders
in the x direction ('v' and 'O'), the 1st and 2nd borders in the y direction ('W'
and 'v'), and the 1st and 2nd borders in the z direction ('P' and 'P').

Figure 13: Extract from the .box file.

However, in order to generate more complex meshes, such as one over curved
airfoils, one may need to generate it outside the scope of Nek5000 and convert
it to .rea or .re2. Suitable programs to generate the mesh include GAMBIT,
Pointwise, Gmsh, and ICEM. In the Nek5000/tools section, there are several
converters to .rea or .re2: exo2nek for EXODUS II (.exo) files, cgns2nek for
.cgns files, gmsh2nek for .gmsh files. In the case of the conversion from .msh

format generated by ICEM to .rea, one needs to resort to an external converter
such as the one available in [12]. For example, consider the case of a C mesh
over an airfoil (2D) saved in the airfoil.msh file. The end of this file is shown
in Fig. 14. The airfoil surface is defined by the curves AFLE (leading edge), AFU
(upper part), AFL (lower part), and AFTE (trailing edge). The C boundary is
described by the curves INLET, FFU, and FFL. The outlet boundary is given by
OUTLET. The zone numbers of each one of these curves are given in the second
column of the .msh file.

Figure 15 shows the application of the mesh converter in a python3 envi-
ronment. The 1st input parameter to the converter is the name of the .msh file.
In the curves section, it is necessary to provide the zone number of each one

15

Nek5000 Course 2021

Page 173



Figure 14: Extract from the .msh file.

of the curved edges of the mesh. In this case, the zone numbers of the curves
describing the airfoil are provided together with the character 'm', for a second-
order reconstruction of these edges. The edges non specified in this section are
treated as linear ones. In the bcs section, the zone numbers should be provided
along with a character describing the type of the boundary condition of each
of these zones. For example, the curve INLET, whose zone number is 13, has a
velocity Dirichlet boundary condition specified by 'v'.

Figure 15: Running the converter from .msh to .rea.

Another useful function is the n2to3. This routine allows for obtaining 3D
meshes from 2D ones by extrusion. A call of n2to3 leads to the request of
parameters shown in Fig. 16. The 1st parameter is the name of the 2D .rea

file without the suffix. The 2nd one is the name of the 3D file obtained from the
extrusion. The 3rd parameter is 0 for the generation of a .rea file and 1 for a
.re2. The 4th parameter is the number of elements in the extruded direction;
Nek5000 requires a minimum level of 3 elements. The 5th and 6th parameters
are the minimum and maximum coordinates in the extruded direction. The 7th
parameter describes how the elements are distributed in the extruded direction,
and it allows either uniform or non-uniform spacing of the elements. The 8th
parameter should be set to yes only in the case of simulations in Computational
Electromagnetics (CEM). The last parameter is the boundary condition that
should be applied at the two endings of the extruded mesh.

Figure 16: Running the mesh extruder n2to3.

16

Nek5000 Course 2021

Page 174



However, the n2to3 function only allows orthogonal extrusions, and one
cannot refine locally at some regions of the mesh. In order to overcome these
limitations, one may use the meshtools.py suite [8]. Figure 17 shows the types
of extrusions that can be obtained. The left-most mesh is the 2D grid over an
airfoil. The 2nd mesh shows the non-orthogonal extrusion of the 1st mesh in
order to obtain a tapered wing. The 3rd picture shows the cylindrical mesh over
a wind turbine. The last frame shows a cut of the previous mesh, portraying
the local grid refinement.

Figure 17: From left to right: 2D airfoil mesh; tapered-wing mesh (non-
orthogonal extrusion); wind-turbine mesh; local grid refinement.

Now we consider the functions for the manipulation of the mesh during the
Nek5000 run. These functions are defined inside the .usr file. The first one is
the usrdat function that is called before the GLL points are laid in the mesh.
It can be used, for example, for altering the position of the vertices of the
elements, such as scaling a box mesh with unitary length ([0, 1]2) to a box mesh
with length 2π ([0, 2π]2). An extract from this function is shown in Fig. 18.

Figure 18: Extract from the usrdat function.

The usrdat2 function is called after the GLL points are laid in the mesh.
It can be used to modify the spectral grid and to generate more complex mesh
geometries than those that can be obtained with genbox. For example, starting
with a rectangular mesh [0, 9]× [0, 3] obtained with genbox, the x and y coor-
dinates of the GLL points can be modified in the usrdat2 function in order to
obtain a periodic hill, as shown by the code in Fig. 19. Another use of usrdat2
is to smooth the spectral mesh, as will be discussed later in this document.
One should notice that all geometric entities and SEM operators need to be

17

Nek5000 Course 2021

Page 175



regenerated after the modification of the mesh in usrdat2.

Figure 19: Extract from the usrdat2 function.

3.5 Mesh Smoothing

The main goal of mesh smoothing is to increase the computational efficiency,
which translates into savings in CPU hours. In Nek5000 this is implemented us-
ing the algorithm developed by [11], where the principal two savings are related
to the increase in the maximum allowable time-step size and the reduction in
the number of pressure iterations.

The most computationally expensive step in the solution of the incompress-
ible Navier-Stokes equations is solving the pressure Poisson equation, which
in Nek5000 is performed with the generalized minimum residual (GMRES)
method. The convergence of the solution is controlled by the iterative con-
dition number κiter, which is the ratio between the maximum and minimum
eigenvalues of the preconditioned pressure Poisson operator.

Mesh smoothing in Nek5000 is performed through the initial application of
an intra-element Laplace smoothing, which consists of updating the position
of the nodes with the average of the position of the neighbouring nodes. This
is followed by an optimization stage, which consists of the minimization of an
objective function whose main part is the sum of the square of ||J ||F ||J−1||F
(condition number of J) over all nodes of all elements, where J is the Jacobian of
the mapping, and F denotes the Frobenius norm. A weight function is defined
to control how much each node should be displaced during the Laplace and
optimization smoothing. In general, one would want to have a value close to zero
near the boundaries in order to preserve the refinement in important regions such
as the boundary layer. The two weight functions available are the exponential
and tanh, whose plots as a function of the distance from the boundary are shown
in Fig. 20 in the left and right, respectively.

The main difference between the exponential and tanh weight functions is
that the latter allows for a region of nodes unaffected by smoothing near the
boundaries (the tanh weight function can attain values very close to 0 for a

18

Nek5000 Course 2021

Page 176



Figure 20: Exponential and tanh weight functions of the smoother [11].

distance from the boundary 6= 0). Moreover, the exponential function grows
faster, which may not be desirable in order to keep the near-boundary resolution.
The rise in β leads to slower growth of the weight function for both functions.
The tanh function has an extra tuning parameter α, whose rise leads to slower
near-boundary growth and faster free-stream increase.

Figure 21 shows a call of the mesh smoother for a C mesh over an airfoil.
This is done inside the usrdat2 function in the .usr file. nbc is set to 3, since
we want to keep the resolution around the three boundaries of the mesh (airfoil
surface, inlet, and outlet). These boundaries have three boundary conditions
('w', 'v', and 'O'), which are specified in dcbc. idftyp is the specification of
the weight function (0 for exponential and 1 for tanh). The parameters alpha

and beta of these functions are also specified. nouter, nlap, and nopt are the
number of iterations of the outer loop (Laplacian + optimizer), the number
of iterations of the Laplacian smoother, and the number of iterations of the
optimization smoother. For stability, the minimum values for those parameters
are 20, 20, and 40, respectively [11]. idftyp = 1 (only option available) specifies
that the objective function is based on the Jacobian.

Figure 21: Running the mesh smoother.

Figure 22 shows the meshes of a turbine blade (top) and internal combustion

19

Nek5000 Course 2021

Page 177



engine (bottom). The left figures present the meshes before smoothing, and the
right ones after smoothing. It is clear that the smoothed meshes present a more
gradual transition between elements and less sharp edge junctions. Moreover,
the higher resolution near the walls is preserved by the smoother.

Figure 22: Results from the application of the mesh smoother. Top and bottom
are the meshes of a turbine blade and ICE. Left and right are meshes before
and after smoothing [10].

The smoother may allow a reduction in the number of iterations of the
pressure solver of 4-47%, iterative condition number of 7-76%, and overall run
time of 1.5-33% [11]. The worst results refer to the oscillatory flow around a 3D
cylinder, and the best, to the flow around a 2D half-cylinder. To sum up, the
mesh smoother allows savings in computational time while keeping the quality
at key places such as boundary layers.

3.6 Mesh Quality

Meshing is one of the most time-consuming parts of the simulation setup. One
needs to pay close attention to some parameters when generating a mesh for
Nek5000. In the next, we will consider the case of a well-resolved LES simulation
of an airfoil [14, 13] for a more concrete example of the parameters that one
should consider when setting up a mesh and the order of magnitude of such
parameters. In no case, the following text intends to be a one-size-fits-all recipe
for mesh design. Further analyses are required for designing a mesh for cases
different from the presented here.

The first thing that should be considered is whether the mesh has the appro-
priate resolution for capturing the flow physics. We first consider the near-wall
resolution. For that, the following parameters are defined:

20

Nek5000 Course 2021

Page 178



∆y+
wall =

∆ywall

ν
√
τw/ρ

, ∆x+
wall =

∆xwall

ν
√
τw/ρ

, ∆z+
wall =

∆zwall

ν
√
τw/ρ

, (54)

where ∆ywall is the distance in the normal direction from the wall to the first
GLL point, ∆xwall and ∆zwall are the distances between two consecutive GLL
points in the streamwise and spanwise directions, ν is the kinematic viscosity,
τw is the wall stress, and ρ is the density.

One would want to resolve the boundary layer over the airfoil. For that, it
is often required ∆y+

wall < 1. Moreover, one would have to specify the growth
of ∆y moving away from the wall. This requires a mesh law, e.g., geometric
or exponential, and the ratio of growth of the spacing between two consecutive
elements, e.g., 1.15. It is also interesting to limit the maximum ∆y+, e.g.,
∆y+

max = 20, otherwise the aspect ratio ∆y/∆x may become too high. Notice
that, since τw tends to be higher in the turbulent region, the physical spacing
∆ywall would have to be reduced so that ∆y+

wall < 1.
A suitable value for ∆x+

wall should also be selected, which could be a value
around 20. Notice that the pressure side may allow a larger value of ∆x+

wall

since it often presents laminar flow. In the spanwise direction, the correct value
of discretization is also critical because the lack of resolution in this direction
may lead to the formation of 2D structures in the flow, such as vortices, that do
not properly break down to turbulence. One could select, for instance, ∆z+

wall =
∆x+

wall/2.
In the wake zone, one should pay attention to the parameter ∆xwake/η,

where ∆xwake is the distance between two consecutive GLL points, and η is the
Kolmogorov length scale. In the near-wake region, i.e., up to one chord down-
stream of the airfoil, one may use ∆xwake/η < 18, whereas for more downstream
positions, this value could be gradually increased in order to reduce the compu-
tational cost. Notice that both τw and η should be obtained either through an
experimental run of Nek5000, with a trial mesh, or through a RANS computa-
tion. Moreover, the lack of resolution in some areas of the problem, such as the
trailing edge, as well as a too close outflow boundary of type 'O' may lead to
the instability and not convergence of Nek5000.

Another consideration regarding mesh is the aspect ratio, which is the quo-
tient between the maximum and minimum lengths of an element. Higher aspect
ratio elements increase the stiffness of the pressure Poisson operator, leading the
iterative method used to solve it to require more iterations to converge. This
issue can be alleviated with the use of a Schwarz pre-conditioner for the pressure
Poisson operator [5]; however, it is a good practice to keep the aspect ratio be-
low a certain level, e.g., 40. Furthermore, very different length scales across the
mesh also increase the stiffness of the aforementioned operator and should be
avoided, if possible, with a smoothing step such as the one described in Section
3.5. Finally, it is also desirable that the edges of the elements be orthogonal to
the boundaries of the domain and particularly to the airfoil wall. In this case,
one could use a smoother that enforces orthogonality, such as the one available
in the commercial software ICEM.

21

Nek5000 Course 2021

Page 179



References

[1] Convention of element, edge, and face numbering in Nek5000. http:

//nek5000.github.io/NekDoc/problem_setup/case_files.html. Ac-
cessed: 08-06-2021.

[2] Erik Boström. Investigation of outflow boundary conditions for convection-
dominated incompressible fluid flows in a spectral element framework. Mas-
ter’s thesis, KTH, Numerical Analysis, NA, 2015.

[3] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for
Incompressible Fluid Flow. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, Cambridge, 2002.

[4] S. Dong. A convective-like energy-stable open boundary condition for
simulations of incompressible flows. Journal of Computational Physics,
302:300–328, Dec 2015.

[5] P. F. Fischer. An Overlapping Schwarz Method for Spectral Element So-
lution of the Incompressible Navier–Stokes Equations. Journal of Compu-
tational Physics, 133:84–101, 1997.

[6] William J Gordon and Charles A Hall. Transfinite element methods:
blending-function interpolation over arbitrary curved element domains. Nu-
merische Mathematik, 21(2):109–129, 1973.

[7] J. G. Heywood, R. Rannacher, and S. Turek. Artificial boundaries and flux
and pressure conditions for the incompressible navier–stokes equations. In-
ternational Journal for Numerical Methods in Fluids, 22(5):325–352, 1996.

[8] V. Kleine, T. Fava, and G. Chauvat. Tool for non-orthogonal extru-
sion of the mesh with refinement for Nek5000. https://github.com/

vitorkleine/meshtools_pymech. Accessed: 10-06-2021.

[9] Yvon Maday and Einar M Rønquist. Optimal error analysis of spectral
methods with emphasis on non-constant coefficients and deformed geome-
tries. Computer Methods in Applied Mechanics and Engineering, 80(1-
3):91–115, 1990.

[10] K. Mittal. Mesh smoothing in Nek5000.
Nek5000/examples/smoother/README.pdf. Accessed: 08-06-2021.

[11] K. Mittal and P. Fischer. Mesh smoothing for the spectral element method.
Journal of Scientific Computing, 78:1152–1173, 1996.

[12] M. Mortensen. Converter from .msh to .rea. https://github.com/

mikaem/tools/blob/master/mshconvert/mshconvert.py. Accessed: 08-
06-2021.

[13] P. Negi, R. Vinuesa, A. Hanifi, P. Schlatter, and D. S. Henningson. Un-
steady aerodynamic effects in small-amplitude pitch oscillations of an air-
foil. International Journal of Heat and Fluid Flow, 71:378–391, 2018.

22

Nek5000 Course 2021

Page 180

http://nek5000.github.io/NekDoc/problem_setup/case_files.html
http://nek5000.github.io/NekDoc/problem_setup/case_files.html
https://github.com/vitorkleine/meshtools_pymech
https://github.com/vitorkleine/meshtools_pymech
https://github.com/mikaem/tools/blob/master/mshconvert/mshconvert.py
https://github.com/mikaem/tools/blob/master/mshconvert/mshconvert.py


[14] P. S. Negi, A. Hanifi, and D. S. Henningson. LES of the unsteady re-
sponse of a natural laminar flow airfoil. In Proceedings of the 2018 Applied
Aerodynamics Conference, Atlanta, Georgia, 25-29 June 2018, 2018.

[15] C. R. Schneidesch and M. O. Deville. Chebyshev collocation method and
multi-domain decomposition for Navier-Stokes equations in complex curved
geometries. Journal of Computational Physics, 106(2):234–257, 1993.

23

Nek5000 Course 2021

Page 181






	NekCoursePreface
	reports_numbers
	G01
	Continuous Galerkin formulation
	Basis Functions in Spectral Element Methods
	Legendre Polynomials (Modal Basis)
	Visual representation
	Properties

	Lagrange Interpolation Polynomials (Nodal Basis)
	Properties


	Spectral Element Method in 1D
	SEM formulation for Advection-Diffusion Equation with a Single Element
	Chain Rule
	Change of Integration Domain
	Applying Boundary Conditions: Homogeneous Dirichlet BC
	Neumann Boundary Condition
	Time Integration

	Relationship between Modal and Nodal Bases
	Nodal Approach
	Modal Approach


	Spectral Element Method in 1D - Multiple Elements
	Continuity (Scatter-Gather)
	Construction of a Global Basis
	Note of Caution - Discontinuous terms.
	Working in Local terms


	Spectral Element Method - Multiple Dimensions
	Definition: Tensor-Product
	Definition: Matrix-Free Formulation - Explained in 2D
	Matrix-Matrix Operators

	Obtaining the Element Operators
	Chain Rule
	Change of Integration Domain


	Implementation: Matrix-Free Formulation
	Short detour: Vectorization and performance
	Example of 3D gradient computation in Nek5000
	Back to local_grad3



	G03
	G031
	Introduction
	Fractional-step Method
	Generalized Block LU-decomposition Method
	Choice of Q

	Implementation on NEK5000

	G032
	Solution to the Stokes Problem
	Solution scheme for updated velocity field
	Preconditioning and pressure calculation 

	References


	G04
	Introduction
	Navier-Stokes Equations
	Karniadakis Scheme
	Pressure Boundary Condition
	Splitting Error
	Low-Mach Number Formulation
	Numerical approach for low-Mach number

	Implementation
	Explicit terms
	Pressure solve
	Velocity solve


	G05
	Iterative solvers and projection method
	Overview of the methods
	GMRES
	CG
	Preconditioning
	Projection onto prior solutions

	GMRES, CG and projections in Nek5000
	Right-preconditioned restarted GMRES iteration
	Preconditioned CG iteration
	Implementation of the projection scheme
	Subroutine glossary



	G06
	Introduction 
	Fundamental properties of linear multistep methods 
	General form of a linear multistep method 
	Adams-Bashforth schemes (ABk) 
	Backward differencing schemes (BDFk) 
	Necessary properties of a time integration method 
	Linear stability analysis based on the model equation
	Region of stability for ABk and BDFk schemes 
	Stability and choice of time-step 

	Temporal discretization of the unsteady Navier-Stokes equations 
	Extrapolation of the convective term (EXTk) 
	Stability of the BDFk/EXTk method 
	The Operator-Integration Factor Scheme (OIFS) 
	Variable time stepping 
	Spectral element discretization of the unsteady convection-diffusion problem 
	Extension towards the Navier-Stokes equations 

	Implementation pointers 
	Appendix. Newton's polynomial interpolation 

	G07
	Introduction
	Problem formulation
	Nek5000 flow diagram

	Overlapping Additive Schwarz method
	Implementation of Additive Schwarz Preconditioner in Nek5000
	Pressure preconditioner algorithm:
	Local solver
	Global solver
	Multi-level preconditioner


	Coarse problem
	Coarse grid solvers
	XXT
	Sparse basis projection method in XXT
	Algebraic multigrid (AMG)



	G08
	Contents
	Direct Stiffness Summation
	Scatter
	Gather

	Parallel Computing
	Element alignment
	Methodology of global numbering

	Gather-Scatter Library
	Initialization and Setup
	Basic Functions of gs_lib

	Networks
	Regular Networks
	Irregular Networks

	Flow Chart
	set_vert
	setvert2d
	fgslib_gs_setup
	Fortran - C gslib Interface
	dssum
	fgslib_gs_op


	G09
	Introduction
	Staggered grid and bubble functions
	Explicit filtering
	Example: Stokes problem
	Advantages
	Interpolation-based filtering technique: framework
	Interlacing
	Effect of pseudo-projection
	Boyd's transform
	Filter construction

	Limitations
	Non-dissipative nature of explicit filtering
	Violation of the divergence-free condition


	Relaxation-based filtering
	Relaxation-based filter parameters
	Effect of relaxation-based filtering on the eigenvalues of the system
	Cutoff ratio versus cutoff mode
	Implementation

	Over-integration
	Over-integration as dealiasing
	Advection problem and geometrical transformation
	Implementation


	G10
	Parallel computing
	Motivation
	Issues
	Benefits

	Graph Partitioning
	Types of Graph Partitioning

	Partitioning schemes in Nek5000
	ParMETIS
	Multi-level Scheme
	KL/FM Algorithm
	Multi-level k-way partitioning (parMETIS)

	ParRSB

	Implementation in Nek5000
	Conclusions

	G11
	Introduction
	Boundary Conditions
	Homogeneous essential boundary conditions
	Discretized homogeneous essential boundary conditions
	Inhomogeneous boundary conditions
	Spectral-Element Operators
	Natural outflow boundary conditions

	Mesh
	Deformed Geometries
	Generation of deformed geometries
	Description of the mesh files
	Mesh Related Functions
	Mesh Smoothing
	Mesh Quality


	Blank Page
	Blank Page




