DNS of turbulent duct flows

The databases on this page are publicly available. Please refer to the original publications when using the data.

Contact Ricardo Vinuesa (rvinuesa@mech.kth.se) if you have any questions about the data.

For additional information, visit Ricardo Vinuesa's Research Group VinuesaLab.

DNS of turbulent duct flow at Retau=180 and 360 (NEW LOCATION: https://kth-my.sharepoint.com/:f:/g/personal/rvinuesa_ug_kth_se/EmTnJ7cN7jpNmoNQVrv0cZgB2SDu6QOTVjmKA7L5X-gfEQ?e=itPiJy)

Instantaneous streamwise velocity field in the AR = 10, Retau=180 case,
with walls made transparent for clarity. Green and orange are low and high
velocities. Figure extracted from Vinuesa et al., Pys. Rev. Fluids 3 (2018).


- R. Vinuesa, P. Schlatter and H. M. Nagib. Secondary flow in turbulent ducts with increasing aspect ratio, Phys. Rev. Fluids 3, 054606 (2018).

- R. Vinuesa, A Noorani, A. Lozano-Duran, G. K. El Khoury, P. Schlatter, P. F. Fischer and H. M. Nagib. Aspect ratio effects in turbulent duct flows studied through direct numerical simulation. J. Turbul., 15, 677-706 (2014).

- R. Vinuesa, C. Prus, P. Schlatter and H. M. Nagib. Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica, 51, 3025-3042 (2016).

- R. Vinuesa, P. Schlatter and H. M. Nagib. On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows. J. Turbul., 16, 588-606 (2015).

Turbulence statistics of square ducts at Retau=180 and 360

- AR=1, Retau=180: zcoord_1_180.prof U_1_180.prof V_1_180.prof W_1_180.prof uu_1_180.prof vv_1_180.prof ww_1_180.prof uv_1_180.prof uw_1_180.prof vw_1_180.prof

- AR=1, Retau=360: zcoord_1_360.prof U_1_360.prof V_1_360.prof W_1_360.prof uu_1_360.prof vv_1_360.prof ww_1_360.prof uv_1_360.prof uw_1_360.prof vw_1_360.prof

Turbulence statistics of AR=3 ducts at Retau=180 and 360

- AR=3, Retau=180: zcoord_3_180.prof ycoord_3_180.prof U_3_180.prof V_3_180.prof W_3_180.prof uu_3_180.prof vv_3_180.prof ww_3_180.prof uv_3_180.prof uw_3_180.prof vw_3_180.prof

- AR=3, Retau=360: zcoord_3_360.prof ycoord_3_360.prof U_3_360.prof V_3_360.prof W_3_360.prof uu_3_360.prof vv_3_360.prof ww_3_360.prof uv_3_360.prof uw_3_360.prof vw_3_360.prof

Turbulence statistics of wider ducts at Retau=180

- AR=5, Retau=180: zcoord_5_180.prof ycoord_5_180.prof U_5_180.prof V_5_180.prof W_5_180.prof uu_5_180.prof vv_5_180.prof ww_5_180.prof uv_5_180.prof uw_5_180.prof vw_5_180.prof

- AR=7, Retau=180: zcoord_7_180.prof ycoord_7_180.prof U_7_180.prof V_7_180.prof W_7_180.prof uu_7_180.prof vv_7_180.prof ww_7_180.prof uv_7_180.prof uw_7_180.prof vw_7_180.prof

- AR=10, Retau=180: zcoord_10_180.prof ycoord_10_180.prof U_10_180.prof V_10_180.prof W_10_180.prof uu_10_180.prof vv_10_180.prof ww_10_180.prof uv_10_180.prof uw_10_180.prof vw_10_180.prof

- AR=14.4, Retau=180: zcoord_14_180.prof ycoord_14_180.prof U_14_180.prof V_14_180.prof W_14_180.prof uu_14_180.prof vv_14_180.prof ww_14_180.prof uv_14_180.prof uw_14_180.prof vw_14_180.prof