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The stabilizing effect of finite amplitude streaks on the linear growth of unstable perturbations
�Tollmien-Schlichting �TS� and oblique waves� is numerically investigated by means of the
nonlinear parabolized stability equations. We have found that for stabilization of a TS-wave, there
exists an “optimal” spanwise spacing of the streaks. These streaks reach their maximum amplitudes
close to the first neutral point of the TS-wave and induce the largest distortion of the mean flow in
the unstable region of the TS-wave. For such a distribution, the required streak amplitude for
complete stabilization of a given TS-wave is considerably lower than for �=0.45, which is the
optimal for streak growth and used in previous studies. We have also observed a damping effect of
streaks on the growth rate of oblique waves in Blasius boundary layer and for TS-waves in
Falkner-Skan boundary layers. © 2007 American Institute of Physics. �DOI: 10.1063/1.2746047�

In boundary-layer flows, the transition from a laminar
state to a turbulent one is usually caused by growth and
breakdown of small amplitude perturbations. For a long
time, the common understanding has been that any kind of
flow perturbation inside the boundary layer has a promoting
effect on transition. However, a number of recent studies1–4

have indicated that certain types of perturbations inside the
boundary layer can postpone the laminar-turbulent transition.
A general feature of these perturbations seems to be a modi-
fication of mean velocity profile to a more stable one. In
two-dimensional mean flows, these are streaky structures
that create regions of alternating negative and positive
streamwise velocity perturbations. Streaks are usually found
inside the boundary layers subjected to high free-stream tur-
bulence. A damping effect of moderate amplitude free-stream
turbulence on Tollmien-Schlichting �TS� waves has been ob-
served in some experiments.5 Numerical investigations of
Cossu and Brandt2 showed a clear stabilizing effect of
streaks on growth of TS waves in Blasius flow. They re-
ported an increasing damping effect with increasing streak
amplitude. These results were later verified by experimental
works of Fransson et al.,3 who generated the streaks by
means of small roughness elements. Recently, Fransson et
al.4 also showed that these streaks can truly delay the transi-
tion. Here, the transition was triggered by means of high-
amplitude two-dimensional disturbances generated through
random suction and blowing at the wall. These new results
have received great attention; e.g., Ref. 6. However, in all
these studies, both experimental and numerical, a single
spanwise spacing ��=0.45� of streaks has been used, which
corresponds to the most growing streaks. Therefore, we aim

to investigate whether other distributions of streaks are more
efficient for stabilizing TS-waves, so that a lower streak am-
plitude would be required for transition delay. This is impor-
tant because the amplitude of the streaks should not exceed
the threshold for secondary instability and instead promoting
the transition to turbulence. The present work is based on a
parametric study of the streak spacing. The feasibility of
such a study, requires a relative fast computational method,
such as the nonlinear parabolized stability equations �PSE�.7

Numerical procedure. We consider flow disturbances
that are periodic in time t and spanwise direction z. These
disturbances are decomposed in Fourier modes as

q�x,t� = �
m=−M

M

�
n=−N

N

q̃mn�x,y�exp�in�0z − im�0t� .

Here, q̃mn= q̂mn�x ,y�exp�i��mndx� is the amplitude function
of the mode �m�0 ,n�0� �referred to as �m ,n��, where �0

denotes the fundamental spanwise wavenumber, �0 the fun-
damental frequency, and � is the complex-valued streamwise
wavenumber. Further, x and y are the streamwise and wall-
normal coordinates, respectively. The evolution of each
mode is described by the nonlinear PSE as given, e.g., by
Bertolotti et al.7 In addition, we use a scaling proposed by
Levin and Henningson8 to modify the PSE to correctly de-
scribe the evolution of streaks. These equations are then dis-
cretized using a fourth-order compact scheme for the wall-
normal derivatives and first- or second-order backward Euler
for the streamwise derivatives. It is well known that original
PSE suffer from numerical instability for small streamwise
step-size. Here, we use the technique proposed by Andersson
et al.9 to stabilize the numerical integration. As initial condi-
tion for the streak, we use optimal disturbances10 at the lead-
ing edge, which in a linear framework lead to the maximum
perturbation energy at a certain downstream position. These
are computed with a spectral code used in Ref. 8 based on an

a�Electronic mail: shervin@mech.kth.se
b�Also at Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm,

Sweden.

PHYSICS OF FLUIDS 19, 078103 �2007�

1070-6631/2007/19�7�/078103/4/$23.00 © 2007 American Institute of Physics19, 078103-1

Downloaded 25 Nov 2007 to 130.237.29.138. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.2746047
http://dx.doi.org/10.1063/1.2746047
http://dx.doi.org/10.1063/1.2746047


adjoint optimization technique described in Ref. 10.
The procedure of the simulations is as follows. An opti-

mal disturbance is initiated close to the leading edge. Its
linear downstream development is followed up to a specified
streamwise position, where the nonlinear calculations begin
by the assignment of an initial amplitude, defined as

As = 1
2 �max

y,z
�us� − min

y,z
�us�� .

Here, us is the sum of the streamwise velocity component of
all �0,n�-modes. At this location, a single exponential distur-
bance is initialized, i.e., �m ,n�-mode, with an amplitude suf-
ficiently low to insure its linear behavior. Unless otherwise
stated, this location is upstream of the first neutral point of
the exponential disturbances at Re0=	x0Ue /�=250, where
Ue is the streamwise velocity at the edge of the boundary
layer and � the kinematic viscosity. The length scale used
here is 	�x0 /Ue. Usually, 20−30 modes were sufficient to
correctly describe the evolution of the disturbances.

Validation. The results obtained using the procedure de-
scribed above, are verified against the direct numerical simu-
lations of Cossu and Brandt.2 As in Ref. 2, we consider the
instability of a TS-wave of frequency F= ��0 /Re��106

=131.6 in the presence of a set of streaks ��0 /Re=6.36
�10−4� with different amplitudes �Fig. 1�a��. The initial pro-
files of the streaks are optimized for maximum growth at
Re=707 and the nonlinear calculations begin at Re0=272. As
reported in Cossu and Brandt2 and shown in Fig. 1�b�, the
stabilizing effect on the TS-wave is observed for all streak
amplitudes. Here, the following norm of the disturbance E
= ��0

�u ·u*dy�1/2, is used as a measure of the TS-wave size. In
Fig. 1�b�, case A corresponds to zero streak amplitude. For
moderate streak amplitudes �B, C� a damping of the growth
of the TS-wave is observed, whereas for a sufficiently large
streak amplitude �D� the TS-wave is completely stabilized.
In Fig. 1�c�, the mean-flow distortion u00, i.e., streamwise
velocity component of the �0,0�-mode, is shown. This is

induced by streaks and it modifies the velocity profile into a
“fuller” shape close to the wall. This seems to be the main
mechanism behind the stabilization effect of the streaks.2

Effects of the spanwise wavenumber of the streak. Previ-
ous studies2–4 have focused solely on the effects of the streak
amplitude. As the development of streaks also depends on its
spanwise wavelength, it is of interest to investigate its effects
on TS-wave instability. Therefore, we vary the spanwise
wavenumber of streaks in the range �0.1,1�. The initial pro-
files of these streaks are optimized for maximum growth at
Re=400. Assigning the same initial amplitude for each of
them results in streaks with different maximum amplitudes.
Since the stabilizing effect depends strongly on the streak
amplitude, it is difficult to draw a definite conclusion about
the significance of different values of �. Therefore, it seems
reasonable to compare streaks with different � but same
maximum amplitude. Here, for each streak we choose an
appropriate initial amplitude such that the maximum ampli-
tudes, i.e., As

*, of each of them is 10% of the free-stream
velocity. To illustrate the effect of streak parameter �, we
begin by investigating the stability of a two-dimensional TS-
wave with frequency F=131.6 in the presence of the two
streaks shown in Fig. 2�a�. The streaks A and B have the
spanwise wavenumbers, i.e., �A=0.45 and �B=0.65, respec-
tively, and fixed maximum amplitude As

*=10%. In Fig. 2�b�,
we show that in the absence of streaks the TS-wave �dotted
line� grows exponentially �with a rate predicted by the linear
theory� as it enters the unstable domain at branch I, the
shaded domain, and decays as it is propagated downstream
away from the domain. In the presence of streaks a damping
effect is observed, which is larger for streak B �dashed line�

FIG. 1. �a� Comparison of DNS and PSE simulations of the nonlinear down-
stream development of three streaks with increasing amplitudes. �b� The
evolution of the TS-wave in presence of streaks. �c� The mean-flow distor-
tion at Re=640 caused by streaks.

FIG. 2. �a� Evolution of amplitudes of two streaks with �=0.45 �solid� and
�=0.65 �dashed�. �b� TS-wave with F=131.6 in absence �dotted� and pres-
ence �dashed, solid� of streaks. �c� The maximum value of the mean flow
distortion caused by the streaks.
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than for streak A �solid line�, despite the fact that streak A
maintains a larger amplitude in the most part of the unstable
domain of the TS-wave. Streak B, on the other hand, attains
its maximum amplitude close to the location of branch I of
the TS-wave, and then rapidly decays downstream. This can
be explained if the distortions of the mean flow, i.e.,
�0,0�-mode, induced by these two streaks are compared. In
Fig. 2�c�, the development of the maximum mean-flow dis-
tortion, i.e., u+=maxy�u00�, for streaks A and B is shown. It is
apparent that streak B modifies the flow considerably more
than streak A, between branches I and II, due to larger values
of u+. This is caused by the larger amplitude of streak B
upstream of branch I.

As a measure of the amplification of the TS-waves, we
compute the N-factor, defined as N�x�=ln�E�x� /E�xI��. In
Fig. 3�a�, N�xII� for the TS-wave with F=131.6 is plotted as
a function of the spanwise wavenumber � of the streaks.
Here, the maximum streak amplitudes are kept constant; i.e.,
As

*=10%. As shown in Fig. 3�a�, N�xII� attains a minimum
value for �
0.65. This indicates that there exists an optimal
streaky boundary layer, when the objective is to minimize
the amplification of the TS-wave. It should be mentioned
that, due to nonlinear effects, there is a slight upstream shift
of the location of the As

* with increasing initial streak ampli-
tude �see Fig. 1�a��. Therefore, the “optimal” � depends
weakly on the streak amplitude. In order to relate the total
modification of the mean flow caused by streaks, to their
stabilization effects we compare the N-factor with the aver-

aged shape factor H̄. Here, H̄ is averaged in the streamwise
direction between branches I and II of the TS-wave. In Fig.

3�b�, H̄ is plotted as a function of �. In the absence of

streaks, the shape factor of a Blasuis profile is H̄=2.59,

whereas in the presence of streaks H̄ is smaller, indicating a

fuller velocity profile. Furthermore, H̄ attains a minimum
value in the presence of streaks with �=0.6, i.e., close to the
� that minimizes the N-factor of the TS-wave �shown in Fig.
3�a��. This indicates that the commonly used streak with �

=0.45 is not the most efficient stabilizing streak. This value
of � corresponds to the vortices generated at the leading
edge which experience the largest linear growth.10 We have
performed the same parametric study of � for two other fre-
quencies: F=170 and 90. For both frequencies, the N-factor,
i.e., N�xII�, attains a minimum at approximately the spanwise
wavenumber �0.9 and 0.45, respectively� for which the
streamwise averaged shape factor is the smallest. Again, the
streak that is the most efficient for stabilizing a TS-wave
attains its maximum amplitude close to branch I of that TS-
wave.

Now we aim at finding the minimum streak amplitude
necessary for the complete stabilization of a TS-wave. We
consider two different streaks: the optimal growing streak
��=0.45� and a streak with �=0.65, chosen such that the
maximum streak amplitudes are close to branch I of the
given TS wave. The maximum amplitudes are varied be-
tween 0% and 25%, and the maximum growth rates �*

=maxx��� of the TS-wave are computed for each streak. The
physical growth rates are calculated from the relation7

�=−�i+ �� /�x�ln�E�. When �*�0 the TS-wave is com-
pletely stabilized. For complete stabilization of a TS-wave
with F=131.6, the necessary amplitude of the streak with
�=0.65 is As=15%, whereas for �=0.45 the corresponding
amplitude is As=20% �see Fig. 4�a��. For F=170, the neces-
sary amplitude is reduced from As=22% to As=0.12%, when
� is increased from 0.45 to 0.9 �see Fig. 4�b��. As the TS-
wave frequency is decreased, the location of branch I moves
downstream and consequently streaks with smaller � are re-
quired to stabilize the flow.

Stabilization of oblique waves. The focus of previous
investigations2,3 has been on reducing the linear growth of
two-dimensional TS-waves, as these disturbances are the first
to become unstable in a Blasius boundary layer. However,
certain transition scenarios,7 require the existence of oblique
waves. Here, we choose two unstable oblique waves with
frequency F=131.6 and spanwise wavenumbers �0=0.09
and 0.1123, respectively. For these values of �0, a streak
with a spanwise wavenumber �=0.45 is initiated at Re0

FIG. 3. �a� The N-factor at branch II of the TS-wave �F=131.6� as a func-
tion of the spanwise wavenumber of streaks. The maximum amplitudes of

the streaks have been fixed at As
*=10%. �b� The averaged shape factor H̄ as

a function of the same set of streaks as in �a�.

FIG. 4. The maximum growth rate �* of TS-waves, F=131.6 in �a� and F
=170 in �b�, in the presence of streaks.
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=272 as modes �0,5�0� and �0,4�0�, respectively. The ob-
lique disturbances are initiated as a pair of modes �1, ±1�
with sufficiently small amplitude to insure a linear behavior.
The results are shown in Fig. 5�a�, where we compare the
norm E of the oblique waves in the presence �dashed line�
and the absence �solid line� of a streak with the maximum
amplitude As

*=10%. Similar to TS-waves, the linear growth
of the oblique waves is found to be damped when streaks are
present.

Effects of pressure gradient. We have also investigated
the effects of streaks on the linear growth of exponential
disturbances in boundary-layer flows with pressure gradients.
In particular, boundary layers with free-stream velocities
given as Ue=U�xm, m=�H / �2−�H�, where �H is the Hartree
parameter. In Fig. 5�b�, the evolution of a TS-wave with
frequency F=131.6 in boundary layers with favorable ��H

=0.1�, zero ��H=0�, and adverse pressure ��H=−0.1� gradi-
ents are shown by the solid lines. By introducing a streak at
Re0=278 with spanwise wavenumber �=0.45 and ampli-
tudes As
13%–16%, the growth of TS-waves is damped
�shown by dashed lines�.

Conclusions. We have found that the stabilization effect

of streaks on the linear growth of TS-waves in Blasius
boundary layer, observed in previous studies, to also apply to
three dimensional disturbances and Falkner-Skan boundary-
layer flows. We have also found that by distributing the
streaks “optimally” in the spanwise direction, it is possible to
completely stabilize a TS-wave, with considerably lower
streak amplitudes. For the TS-waves with high frequencies, a
reduction of the maximum streak amplitude by a factor of
almost 2 can be achieved. The streaks which most efficiently
reduce the growth rate of a given disturbance attain their
maximum amplitudes close to the branch I of that distur-
bance. These streaks generate a “fuller” velocity profile in
the unstable domain of the TS-waves. By computing the
streamwise averaged shape factor of the modified boundary
layer, one can estimate the stabilization effect of streaks
without actually calculating the interaction with the targeted
TS �or oblique� waves. It should also be mentioned that the
optimal growing streak, often associated with the spanwise
wavenumber �=0.45, is not the most efficient one to sup-
press TS-waves of all frequencies.
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FIG. 5. �a� The downstream development of oblique waves �F=131.6� in
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presence �dashed� of streaks in boundary layer with adverse, zero and fa-
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