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1 Aim of the project
This project focuses on the adjoint-based optimal
control of small disturbances in a channel flow. The
linear evolution of these disturbances is governed by
the Orr-Sommerfeld/Squire equations. The control
is applied by means of a time dependent blowing and
suction a(t) at the lower wall (y = −1), cf. fig. 1.
The objective of the controller is to minimize the dis-
turbance energy in the domain at some time t = T .
A measure of the control input is also included to
regularize the optimization problem and bound the
control energy used. So the objective function can be
written as,

J =
1

2

(

E(T )

E(0)
+ l2

∫ T

0

a2(t)dt

)

, (1)

where E(t) is the disturbance energy
∫ t

0
qHqdt at the

time t and l is the control penalty. The optimization
problem is then: find a∗ which satisfies,

J(a∗) ≤ J(a), ∀a(t) ∈ A, (2)

where A denotes the set of admissible controls.

2 Governing equations
In the following, the governing theory of the optimal
control strategy is presented, beginning with the flow
equations. Subsequently the adjoint control approach
is carried out. We refer to the book by Schmid and
Henningson [1] and to the review paper by Bewley [2]
for more thorough derivations.

2.1 Flow equations

The Orr-Sommerfeld and Squire equations can be ex-
pressed in a v − η perturbation formulation with a
time independent velocity-profile U ,

[(
∂

∂t
+ U

∂

∂x

)

∇2 −
d2U

dy2

∂

∂x
−

1

Re
∇4

]

v = 0. (3)

Here, the centerline Reynolds number for channel flow
is used, i.e. Re = UcL/ν. A second equation for
η = ∂u

∂z
− ∂w

∂x
is,

[
∂

∂t
+ U

∂
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−
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Re
∇2

]

η = −
dU

dy

∂v

∂z
. (4)
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Figure 1: Sketch of the physical domain with the time
dependent forcing (control) a(t).

The above Orr-Sommerfeld/Squire equations are
written in block form

[

B 0
0 I

]

︸ ︷︷ ︸

B̃

(

v̇
η̇

)

=

[

A 0
LC M

]

︸ ︷︷ ︸

Ã

(

v
η

)

(5)

After a Fourier decomposition in x and z of the
type exp(αx+βz), the Orr-Sommerfeld operator B,A
simplifies into

B =
∂2

∂y2
− k2, (6)

A = αU ′′ − αU

(
∂2

∂y2
− k2

)

−
i

Re

(
∂4

∂y4
− 2k2 ∂2

∂y2
− k2

)

, (7)

where k2 = α2 + β2. The Squire operator is simply

M = αU + i/Re(
∂2

∂y2
− k2). (8)

Finally, the coupling operator is given by

LC = −βU ′. (9)

The associated boundary conditions can be chosen as

∂v

∂y
(−1) = η(−1) = 0,

v(+1) =
∂v

∂y
(1) = η(1) = 0.

In our case the control of the flow is achieved by a
time-dependent blowing and suction at the lower wall
which can be written as,

v(−1) = a(t). (10)
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Figure 2: Iterative optimization loop.

2.2 Gradient evaluation using adjoint equa-
tions

In gradient based optimization, there are different
ways to compute the gradients of interest. To solve
the optimization problem formulated in the introduc-
tion, the gradient with respect to the control a(t) can
be defined through the directional derivate as,

δJ = lim
s→0

J(a + sδa) − J(a)

s
.

One way to solve a optimization problem is to perturb
the control, solve the Orr-Sommerfeld/Squire equa-
tions and evaluate the objective function. A straight-
forward method to accomplish this is to use a finite
difference approximation of the gradient,

∇J(a) ≈
J(a + ε) − J(a)

ε
.

However, the computational effort is very high when
the dimension of controller, n, is large, i.e. the
Orr-Sommerfeld/Squire equation have to be solved
n times. Another approach, based on the adjoint
equations can be used to evaluate the gradient of the
objective function, which involves solving only two
equations, the Orr-Sommerfeld/Squire equation and
the adjoint Orr-Sommerfeld/Squire equation.

This framework can be formalised by introducing
Lagrange multipliers, denoted as a+ and q+. These
variables are also known as the adjoint variables of a
and q, respectively. The Lagrangian can be written
as:

L = J − 〈B̃q̇ − Ãq, q+〉 − (v(−1) − a, a+), (11)

with the two scalar products defined as,

〈p, q〉 =

T∫

0

1∫

−1

pq dydt, (12)

(p, q) =

T∫

0

pq dt. (13)

To minimize J subject to the Orr-Sommerfeld/Squire
equation, we may equivalently minimize L with no
constraints. If one derives the variation of the La-
grangian with respect to the state q, the control a(t)
and the adjoint state q+ and control a+, respectively
one obtains a set of equations, called optimality con-
ditions, that are only satisfied at minimum point of
J .

The first variation of the Lagrangian with respect
to the adjoint state q+ and the adjoint control a+

leads to the state equation and the constraint of the
control, respectively. The first variation of the La-
grangian with respect to a leads to a first optimality
condition which is also the gradient of J expressed
only in terms of a and a+,

∂J

∂a
= −a+ + 2l2a. (14)

To evaluate ∂J

∂a
, a second optimality condition, re-

sulting from the integration by parts, links the ad-
joint variables q+ and a+ over a third derivative with
respect to y at the lower wall,

a+ = −1/Re
∂3v+

∂y3
. (15)

The adjoint state q+ is obtained by solving the adjoint
Orr-Sommerfeld equations with appropriate bound-
ary conditions and initial conditions. Observe that
the initial conditions of adjoint state are called ter-
minal conditions, because they depend on the state
at time t = T . These equations result from the first
variation of the Lagrangian with respect to the state
q,
(

∂2

∂y2
− k2

)

v̇+ + αU

(
∂2

∂y2
− k2

)

v+ + 2U ′ ∂v+

∂y

−i/Re

(

k4 − 2k2 ∂2

∂y2
+

∂4

∂y4

)

v+ + βU ′η+ = 0 (16)

and

η̇+ + αUη+ − i/Re

(
∂2

∂y2
− k2

)

η+ = 0. (17)

Integration by parts leads to the adjoint boundary
conditions,

v+(−1) = v+(1) = 0, (18)

∂v+

∂y
(−1) =

∂v+

∂y
(+1) = 0, (19)

η+(−1) = η+(1) = 0. (20)

and the adjoint terminal conditions,
(

∂2

∂y2
− k2

)

v+(T ) = −
1

k2E(0)

(
∂2

∂y2
− k2

)

v(T ).

(21)
Note, that one has to solve the above Poisson equa-
tion to get the terminal condition in v+, where the
different boundary conditions of the direct and ad-
joint state have to be taken into account, carefully.
In η+, the terminal condition simply yields:

η+(T, y) = −
1

k2E(0)
η(T, y) (22)
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Figure 3: Left: objective function J . Right: gradient
of the objective function J with respect to the control
a.

The optimal control a∗(t) can be computed in an it-
erative manner, cf. fig. 2. Beginning with an ini-
tial guess of the control one solves the direct Orr-
Sommerfeld/Squire equations forward in time. At
time t = T the adjoint terminal conditions can be
specified to compute the adjoint state backwards in
time from t = T to t = 0. Now the gradient and the
new, optimized control can be computed:

an+1 = an −
∂J

∂a
· s (23)

with a predefined step-size s.

3 Results, Conclusions and Further
Work

We apply the adjoint method to minimize the objec-
tive function for one wavenumber pair, α = 1, β = 1
and Re = 1000. The terminal time was chosen and
T = 12.5. The Orr-Sommerfeld/Squire equation are
discretized in space with second-order finite differ-
ences in wall-normal direction and in time with Mat-
lab subroutine, ODE45, is used. The initial guess of
state is a disturbance optimized to have the largest
energy growth at the terminal time T . The above
optimization procedure was applied with two dif-
ferent initial guesses of the control, a(t) = 0 and
a(0) = 0.5 sin(0.08πt), both converging towards the
same minimum of the objective function. In Figure 3
the values of J and its gradient ∇J are shown. The
minimum is found after 80 iterations, where the gra-
dient is of the order ∇J < 10E − 3.

Further work could be to test the performance of
the above controller. Also, the next natural step is to
use a more advanced optimization method than the
steepest descent, e.g. conjugate gradient or BFGS
methods.
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