

ROYAL INSTITUTE OF TECHNOLOGY

Perfomance of reduced-order models of fluid systems

Examplified on Blasius flow and Ginzburg-Landau equation

Shervin Bagheri, Luca Brandt & Dan Henningson Linnè Flow Centre, KTH, Stockholm

> 6th ERCOFTAC SIG 33 workshop Kleinwalsertal, Austria June 17-20, 2007

Motivation

ROYAL INSTITUTE OF TECHNOLOGY

- Navier-Stokes equations too complex to manipulate
 - n>10⁶ degrees of freedom
- Model reduction: approximate the high-dimensional system with a low-dimensional system
 - $m^{1/4}10$ degrees of freedom
- Model reduction is problem dependent:
 - Each application has a suitable low-dimensional model that captures the essential feature of its dynamics.
- In control design one describes the relation between inputsoutputs in terms of transfer functions.
 - How can we find a low-dimensional model that describes the inputoutput behaviour?
 - Answer: Balanced truncation

What is relevant for capturing the input-output behaviour?

ROYAL INSTITUTE OF TECHNOLOGY

- For control design we must analyze the mappings:
 - Perturbations Objective function
 - Perturbations —— Sensors
 - Actuators
 Objective function
 - Actuators
 Sensors
- Write linearized Navier-Stokes in state-space formulation:

$$\dot{q} = Aq + Bu \quad q(0) = q_0$$

 $y = Cq$

• The formal solution:

$$y = Ce^{At}q_0 + C\int_0^t e^{A(t-\tau)}u(x,\tau)d\tau$$

What is relevant for capturing the input-output behaviour?

ROYAL INSTITUTE OF TECHNOLOGY

- For control design we must analyze the mappings:
 - Perturbations Objective function
 - Perturbations —— Sensors
 - Actuators
 Objective function
 - Actuators
 Sensors
- Write linearized Navier-Stokes in state-space formulation:

$$\dot{q} = Aq + Bu \quad q(0) = q_0$$

 $y = Cq$

• The formal solution:

$$y = \underbrace{Ce^{At}q_0}_{0} + C \underbrace{\int_0^t e^{A(t-\tau)} Bu(x,\tau) \mathrm{d}\tau}_{0}$$

Find the components of the state that are easily excited by input

Shervin Bagheri

6th ERCOFTAC SIG 33 workshop

What is relevant for capturing the input-output behaviour?

ROYAL INSTITUTE OF TECHNOLOGY

- For control design we must analyze the mappings:
 - Perturbations Objective function
 - Perturbations —— Sensors
 - Actuators Objective function
 - Actuators Sensors
- Write linearized Navier-Stokes in state-space formulation:

$$\dot{q} = Aq + Bu \quad q(0) = q_0$$

 $y = Cq$

• The formal solution:

$$y = \underbrace{Ce^{At}q_0}_{t} + C \int_0^t e^{A(t-\tau)} Bu(x,\tau) d\tau$$

0

Find the components of state with large influence on output

Shervin Bagheri

Study cases – Choice of A

ROYAL INSTITUTE OF TECHNOLOGY

- 1D-case: Linear Ginzburg-Landau equation:
 - Convective and absolute instability
 - Transient growth due to non-normality of A

- 2D-case: Flat-plate boundary Layer -Blasius:
 - $-Re_{\delta}^{*}=500$
 - -n = 2(512x96) ¼ 10000
 - -Spectral Code

States easily excited by input

For unit impulse input $u = \delta(t)$ the state is given by,

 $q(t) = e^{At}B$

KTH VETENSKAP OCH KONST

ROYAL INSTITUTE OF TECHNOLOGY we can measure the "size" of the state with the n£n matrix

$$X = \int_0^\infty q(t)q(t)^H \mathrm{d}t = \int_0^\infty e^{A\tau} B B^H e^{A^H \tau} \mathrm{d}\tau$$

This matrix is called the controllability Gramian.

- Gives a measure of the controllability of the components of a state
- Let T diagonalize X:

$$TXT^T = \operatorname{diag}\{\sigma_1, \ldots, \sigma_n\}$$

- Eigenvalue σ_i measures how much the state $T_i q$ is excited by the input
- Cannot neglect states corresponding to small σ_i , these state may have a large influence on the output!!

Shervin Bagheri

Controllability of Ginzburg-Landau

ROYAL INSTITUTE OF TECHNOLOGY

Controllable modes of Blasius flow

ROYAL INSTITUTE OF TECHNOLOGY

Shervin Bagheri

States with large influence on output

How much does a state contribute to the output? Consider an initial state q_0 , the state is give by

$$y(t) = Ce^{At}q_0$$

We can measure the size of the output by,

$$||y||^{2} = q_{0}^{H} \underbrace{\int_{0}^{\infty} e^{A^{H}t} C^{H} C e^{At} dt}_{Y} q_{0} = q_{0}^{H} Y q_{0}$$

where Y, is called the observability Gramian.

- Measures how much energy a component of q_0 is transferred to output
- Let T⁻¹ diagonalize Y:

$$T^{-T}YT^{-1} = \operatorname{diag}\{\sigma_1, \dots, \sigma_n\}$$

– If σ_i is zero, the output cannot sense $T_i^{-1}q_0$.

ROYAL INSTITUTE

Shervin Bagheri

6th ERCOFTAC SIG 33 workshop

Observability of Ginzburg-Landau

ROYAL INSTITUTE OF TECHNOLOGY

Observable modes of Blasius flow

ROYAL INSTITUTE OF TECHNOLOGY

Balanced Realization

Unobservable and uncontrollable states do no influence the inputoutput behaviour of a system

ROYAL INSTITUTE OF TECHNOLOGY

Choose T and T⁻¹ so that the two Gramians become equal and diagonal:

$$TXT^T = T^{-T}YT^{-1} = \operatorname{diag}\{\sigma_1, \dots, \sigma_m\}$$

The columns of T contain the Balanced modes.

Balanced modes of Blasius flow

u-component

ROYAL INSTITUTE OF TECHNOLOGY

Balanced modes of Blasius flow

v-component

ROYAL INSTITUTE OF TECHNOLOGY

Balanced truncation – model reduction

- 1. Compute balanced modes from snapshots
- 2. Change coordinates:

$$\hat{q} = Tq$$

ROYAL INSTITUTE OF TECHNOLOGY

3. Truncate the least controllable and observable states

Projection of actuator

ROYAL INSTITUTE OF TECHNOLOGY

- Number of modes required to project an actuator
- Actuator placed upstream, close to Branch I
- Reduced-order model of order 13, based POD captures nothing!

White noise -> Sensor

ROYAL INSTITUTE OF TECHNOLOGY

- B close to branch I and C close to branch II
- Full-order: n=220
- Reduced-order: m=30
- Balanced modes perform best

White noise -> Sensor

ROYAL INSTITUTE OF TECHNOLOGY

- B close to branch I and C close to branch II
- Full-order: n=220
- Reduced-order: m=2
- Balanced modes perform best again

LQG -Feedback control (1)

ROYAL INSTITUTE OF TECHNOLOGY

• Inputs & Outputs:

- Disturbance: White noise
- Actuator: Gaussian Volume forcing
- Sensor: Gaussian function
- Full-order: n=220, Reduced-order: m=15

Shervin Bagheri

LQG -Feedback control (2)

ROYAL INSTITUTE OF TECHNOLOGY

• Inputs & Outputs:

- Disturbance: White noise
- Actuator: Gaussian Volume forcing
- Sensor: Gaussian function
- Full-order: n=220, Reduced-order: m=30

Conclusions

ROYAL INSTITUTE OF TECHNOLOGY

- Balanced modes perform better than POD modes approximating the large-scale model for the examples studied here.
- Balanced truncation is extendable to large-scale systems, using the snapshot method. Cost similar to computing POD modes.
- These mode capture the relation between input signals and output signals, and are hence suitable for control design.

Extra slides

ROYAL INSTITUTE OF TECHNOLOGY

Blasius Modes

ROYAL INSTITUTE OF TECHNOLOGY

Matrix-free methods:

- Arnoldi method
- Snapshot method
- Snapshot method of direct and adjoint equations

Blasius Modes

ROYAL INSTITUTE OF TECHNOLOGY

Matrix-free methods:

- Arnoldi method
- Snapshot method
- Snapshot method of direct and adjoint equations

- B and C are at branch I and II respectively.
- Full-order: n=220.
- Reduced-order: m=10
- Balanced modes performs best

ROYAL INSTITUTE OF TECHNOLOGY

Decay rates for Blasius

OF TECHNOLOGY

Examples of model reduction for fluid systems

ROYAL INSTITUTE OF TECHNOLOGY

- Control and optimal growth of globally unstable cavity-like flow using 2D global modes. Åkervik et al. (Jfm, 2007)
- Projection of actuators and sensors, frequency response and optimal growth using balanced modes on the 3D channel flow and 2D aerofoil. Rowley et al 2005-2007.
- POD modes (with shift mode) to describe flow around circular buildings. Noack et al (jfm, 2003).

Comparision of modes

ROYAL INSTITUTE OF TECHNOLOGY

