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A framework for the input-output analysis, model reduction and control design of spa-

tially developing shear flows is presented using the Blasius boundary-layer flow as an exam-

ple. An input-output formulation of the governing equations yields a flexible formulation

for treating stability problems and for developing control strategies that optimize given

objectives. Model reduction plays an important role in this process since the dynamical

systems that describe most flows are discretized partial differential equations with a very

large number of degrees of freedom. Moreover, as system theoretical tools, such as control-

lability, observability and balancing has become computationally tractable for large-scale

systems, a systematic approach to model reduction is presented.

I. Introduction

Control of wall-bounded transitional and turbulent flows has been the subject of several research efforts
owing to the high potential benefits. In these fluid-mechanics systems, due to the large flow sensitivity,
dramatic effects on global flow parameters may be achieved by minute local perturbations using devices
sensing and acting on only small parts of the flow with a small amount of energy. Such control devices can
be used to obtain reduction of the skin-friction drag, for example, implying relevant savings of the operational
cost of commercial aircrafts and cargo ships.

In this paper we present a framework for the input-output analysis, model reduction and control design
for complex flows. As a prototype of spatially developing shear flows the Blasius boundary-layer flow is
considered. The work is motivated by the need to provide efficient numerical tools to analyze complex
flows and design efficient control strategies. Powerful tools from linear systems and control theory could
not be used for fluid flows due to the complexity of the Navier–Stokes equations. However, the availability
of increasingly powerful computer resources and recent advances of matrix-free methods now enables the
application of analytical techniques that do not rely on physical insight into the specific flow configuration
and can in principle be applied to any geometry. The methods presented here all rely on the availability of
a numerical code for the solution of the Navier-Stokes equations and of the corresponding adjoint problem.

It is now well understood that the wall-bounded flows are very sensitive to specific perturbations.1 In
particular, boundary layer flows support convective instabilities and behave as noise amplifiers.2 Convectively
unstable shear flows are in fact stable from a global point of view:2, 3 wave packets can be generated locally,
grow in amplitude while traveling downstream and finally decay or leave the observation window. This
behavior can be captured by a non-modal analysis, see e.g. Ref. 4. It is therefore meaningful to analyze
the flow response from an input-output perspective. This provides knowledge on the spatial structure of
the initial conditions and forcing yielding largest possible energy growth over a finite time interval. This
optimization problem can be solved efficiently for more complex flows by solving the direct and adjoint
Navier-Stokes equation for the linear evolution of perturbation about a steady state, as shown here (see also
Ref. 5).
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In the context of hydrodynamic stability, the input/output approach usually considers the flow subject
to initial condition or forcing whose spatial structure is the object of the optimization mentioned above.
However, to perform model reduction realistic inputs and outputs have to be considered in order to represent
the system behavior in its actual configuration. Model reduction becomes indeed essential to apply modern
control theory in fluid flow systems. The aim is to build a model of low dimension that captures the
input-output behavior of the system and use this model for optimal feedback control design. With the help
of the adjoint Navier–Stokes equations two fundamental dynamical structures can be identified; the flow
structures most easily influenced by the actuators considered and the flow structures to which the outputs are
most sensitive. These so-called controllable and observable structures determine the input-output behavior
completely for linear systems. It is well-known that these two set of modes can be balanced,6 and represented
by one set of non-orthogonal modes, called the balanced modes. These are used as a projection basis for
model reduction. The approximated method employed to compute the balanced modes is the snapshot-based
balanced truncation.7, 8 This method has been recently applied to the channel flow 9 and the flow around a
pitching airfoil.10

Recently, several groups have suggested and pursued the combination of computational fluid dynamics
and control theory, thus going past early attempts of flow control based on physical intuition or on a trial-
and-error basis (see the review in Ref. 11). In early work from our group,12, 13 a linear model-based feedback
control approach, that minimizes an objective function which measures the perturbation energy, is formulated
where the Orr-Sommerfeld and Squire equations model the flow dynamics. The latter equations describe
the linear evolution of perturbations evolving in a parallel base flow. The control problem is combined with
a state estimator: The so called Kalman and extended Kalman filter have been implemented in order to
reconstruct the flow in an optimal manner by only considering continuous wall measurements. These studies
have also shown the importance of physically relevant stochastic models for the estimation problem,14, 15

where stochastic noise needs to describe accurately enough the unmodeled dynamics, like uncertainties and
nonlinearities. Based on these models the estimator is shown to work for both infinitesimal as well as finite
amplitude perturbations in direct numerical simulations of transitional flows.16, 17 These studies however
assumed a parallel base flow and distributed sensing and actuation at the wall.

Two aspects of the control problem have been identified as crucial in order to apply feedback control
in more complex flows moving towards a possible implementation in wind-tunnel tests. They are i) model
reduction to significantly decrease the cost of both constructing the controller and running it online, thus
allow the fast computation of the control signal directly from the sensor output; ii) the need to naturally
consider localized sensors and actuators. These are addressed in this work by using global modes, balanced
modes in particular, to build an efficient low-order model to be used to compute the control signal.

The present works applies and extends tools for feedback control and model reduction previously applied
to the complex Ginzburg-Landau equation, a model problem for non-normal spatial inhomogeneous flows
which allows us to consider globally unstable flows such as the cavity flow and the flow around a cylinder as
well as convectively unstable flows such as jets and boundary layers.18

II. Input-Output Formulation

We consider the two-dimensional incompressible flow over a flat plate with constant free-stream velocity
U∞ as shown in Figure 1. Starting from the leading edge a viscous boundary layer evolves downstream. The
evolution of the streamwise velocity u, the wall-normal velocity v and the pressure p in time and space is
governed by the incompressible non-linear Navier–Stokes equation.19 Our analysis deals with the evolution
of linear perturbations on the laminar boundary layer solution and is limited to the computational domain
shown by the gray area in the figure: The inflow boundary is set to the downstream position corresponding
to a Reynolds number Reδ∗

0
= U∞δ∗0/ν = 1000, where δ∗0 is the local displacement thickness of the boundary

layer and ν is the kinematic viscosity. Throughout the paper all variables are non-dimensionalized by U∞ and
δ∗0 . The length and height of the domain are Lx = 1000 and Ly = 30 in the streamwise direction x and wall-
normal direction y, respectively. The equations are solved by a pseudo-spectral Direct Numerical Simulation
(DNS) code described in Ref. 20, where the spatial operators are approximated by Fourier expansion in the
streamwise direction with Nx = 768 equally distributed points and Chebyshev expansion in the wall-normal
direction on Ny = 101 collocation points. A fringe region enforces periodicity in the streamwise direction.20

By marching the DNS in time we obtain a steady state, about which a linearization is performed. The
linearized Navier–Stokes equations will in this paper be subject to input-output analysis, model reduction
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Figure 1. The input/output configuration used for the control of perturbations in a two-dimensional flat-plate geometry.
The computational domain Ω = (0, Lx)× (0, Ly), shown by the gray region, extends from x = 0 to x = 1000 with the fringe
region starting at x = 800. The first input B1, located at (xw, yw) = (35, 1), models the initial receptivity phase, where
disturbances are induced by free-stream turbulence, acoustic waves or wall roughness. The actuator, B2, provides a
mechanism to manipulate the flow, in this case by a localized volume forcing, and is centered at (xu, yu) = (400, 1). Two
sensors, C1 and C2, are located at (xv, yv) = (300, 1) and (xz, yz) = (750, 1) respectively. The upstream measurements are
used to estimate the incoming perturbations, while the downstream sensor quantifies the effect of the control. Note
that in this work all the inputs and outputs are Gaussian functions.

by approximate balanced truncation and control in the H2 framework. To this end we introduce the inputs
B = [B1, B2] and the ouputs C = [C1, C2] as seen schematically in Figure 1. The first input B1 models
typical upstream disturbances entering the boundary layer through some receptivity mechanism such as
freestream turbulence or acoustic waves interacting with roughness. The actuator B2 provides a mechanism
to manipulate the flow, in this case by a localized volume forcing. The upstream measurement C1 is used
to estimate the incoming perturbations, while the downstream sensor C2 quantifies the effect of the control.
Note that in this work all the inputs and outputs are Gaussian functions on both velocity components given
by the expression

[

σxγy

−σyγx

]

exp(−γ2
x − γ2

y), γx =
x − x0

σx
, γy =

y − y0

σy
, (1)

with (σx,σy) determening the width and height of the function and (x0, y0) determening its position.
Once discretized and projected onto a divergence free subspace the linearized Navier–Stokes equations

for the disturbances q = [u, v]T of dimension n × 1, with n = 2NxNy, can be written as

dq

dt
= Aq + Bf, (2)

y = Cq, (3)

q(0) = q0. (4)

Here we have introduced the input operator B of dimension n × 2 and the output operator C of dimension
2 × n. The formal solution to this system of equations is

y(t) = CeAtq0 +

∫ t

0
CeA(t−τ)Bf(τ) dτ . (5)

The first part of the above relation describes the output generated by the evolution of the initial condition q0

while the second term describes the response to the forcing B with time dependent signals f . The evaluation
of the matrix exponential T (t) = eAt in (5) is the key to both stability analysis, input-output analysis and
control design, all of which will be discussed in the subsequent sections. However, this operator also poses the
greatest computational challenge due its dimension. The dimension, n, of the linearized operator depends on
the number of non-homogeneous spatial directions of the base flow. Except for one-dimensional base flows
the exponential matrix must be approximated. The simplest methods require that all elements of the matrix
can be stored in memory,21 a requirement that cannot in general be met in fluid systems. As an example,
the storage of the one dimensional Orr-Sommerfeld matrix for the evolution of disturbances in parallel flows
requires approximately 1MB of memory, the system matrix for the present spatially inhomogeneous flow
with the numerical scheme introduced above requires approximately 200GB, while the memory usage for a
full three-dimensional system would be of the order of 200TB. However, the action of T (t) on any flow field
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simply represents integrating the Navier-Stokes equations in time and therefore the exponential matrix can
be approximated by numerical simulation of the governing equations, also referred to as a time-stepper. In
what follows the reader should equate T (t +T )q(t) with a DNS simulation starting with an initial condition
q(t) and providing q(t + T ) at a later time. In this so called “timestepper approach”, system matrices are
never stored and storage demands in memory are of the same order as a small number of flow fields.

III. Stability Analysis

The first step in the understanding of the fluid problem at hand and in the control design is examining
the hydrodynamic stability of the flow. This amounts to focusing on the initial value problem defined by the
operator A in (5) with the output being the entire state. The asymptotic response of the system is governed
by the eigenmodes of the evolution operator

σjφj = T (t)φj . (6)

In particular if there are eigenvalues σj > 1, the system is linearly globally unstable, supporting self-sustained
oscillations. The above equation has the same eigenvectors as A and the eigenvalues of that system can be
related to the above through λj = ln(σj)/t. As now well understood the amount of information obtained
from (6) is limited to the asymptotic t → ∞ flow response and does not reveal the rich short time behavior.
Relevant transient growth1 of perturbations is indeed observed for almost all fluid dynamical systems and
it is related to the non-normality of the operator A. Therefore, in order to examine the largest possible
disturbance growth due to all possible unit norm initial conditions q0 we will consider the amplitude of the
disturbance at any time

||q(t)|| = (T (t)q0, T (t)q0) = (q0, T
∗(t)T (t)q0). (7)

In the expression above the adjoint evolution operator T ∗(t) is introduced. Applying this operator corre-
sponds to the integration of an adjoint state from time t to time 0. For a derivation of the adjoint evolution
operator we refer to Ref. 22 or Ref. 23. The maximum norm of the above expression can be obtained as the
largest eigenvalue of the positive definite operator T ∗(t)T (t)

σjφj = T ∗(t)T (t)φj , (8)

with the unit norm eigenvector φj being the corresponding optimal initial condition.
The eigenvalue problems defined in (6) and (8) provide information about the modal and non-modal flow

behavior. The dimension of the matrices appearing in (6) and (8) is too large to be solved by the standard
QR method. Instead one has to resort to subspace methods, such as the Arnoldi or the Lanczos method,24

that highlight the part of the spectrum that is assumed to be relevant for describing the dynamics. The
essential step in both is to represent the action of the system matrix on a random vector in terms of a set
of normalized Krylov vectors. Further, since it is only the action of the matrix involved that is needed,
it becomes clear that one can utilize a time-stepping technique, in our case a DNS, to build the Krylov
subspace.

In the two-dimensional Blasius boundary layer flow the memory requirements are still small enough
to enable the storage of A in memory, so the leading eigenmodes from the matrix eigenvalue problem
λjφj = Aφj can be obtained by means of the shift and invert Arnoldi procedure. Figure 2a shows the
eigenvalues obtained by the shift and invert matrix method as black stars. From this figure we can identify
several branches which all can be related to the spectrum of a parallel Blasius boundary layer, as found by
solving the Orr-Sommerfeld equations, though modified by non-parallelism and boundary conditions.25 The
upper branch can be identified as pure Tollmien-Schlichting (TS) waves. These modes are characterized by
slightly damped eigenvalues with the corresponding eigenvectors obtaining their maximum values inside the
boundary layer while decaying exponentially in the free stream. Figure 2b and figure 2c show two examples
of eigenvectors associated with eigenvalues marked k1 and k2 in Figure 2a. The streamwise wavelength of
the eigenvectors increases as we go towards lower frequencies. The wall normal structures of these modes
are very similar to those obtained by local temporal analysis. The timestepper method (shown as magenta
circles in Figure 2a) successfully locates the slightly damped eigenvalues in perfect agreement with the ones
obtained by the matrix method. It is noteworthy that all the eigenvalues are damped, indicating that we
will never observe the evolution of single eigenmodes in the flow, but rather we should focus our attention
on the non-modal behavior, in other words one should consider transient growth scenario. Note that it is
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Figure 2. (a) Eigenvalues of A as computed by the shift and invert Arnoldi method (shown as black stars) and
eigenvalues computed with the matrix-free method using the evolution operator T (t) = eAt (shown as magenta circles).
The matrix method is capable of finding eigenvalues deeper into the damped region. The slightly damped eigenvalues,
corresponding to Tollmien-Schlichting (TS) modes, and the freestream propagating modes are found by both methods.
(b) Streamwise velocity component of the least stable TS eigenvectors, marked k1 in (a). (c) Streamwise velocity
component of higher frequency more damped TS mode, marked k2 in (a).
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Figure 3. (a) Energy growth when optimizing for different times. The maximum is achieved for time t = 1800 for which
the maximum energy is E = 2.35 · 104. (b) Thin black line repeats the energy evolution leading to the maximum growth
at t = 1800, whereas thick magenta line shows the energy evolution obtained when projecting the system onto a small
number of eigenvectors related to the TS branch in Figure 2a. The latter clearly does not account for the initial gain
due to the Orr mechanism, but by rescaling and shifting in time the two curves collapse, showing that the long time
evolution is governed by propagating TS waves.

possible to project the system (7) on a set the set of eigenmodes obtained from (6), thereby approximating
the optimal growth by a low-dimensional model of the flow.1 For some flow configurations, where the degree
of non-normality is rather small, only a few of the eigenmodes are needed to describe the dynamics of the
flow. An example is the shallow rounded cavity flow in Ref. 26, where an oscillating cycle could be captured
by the sum of two unstable eigenmodes, and the detailed evolution of the Kelvin–Helmholtz waves could
be captured by O(100) eigenmodes. However for a similar boundary layer flow as studied here Ref. 25
showed that O(1000) eigenmodes are needed to capture the combined effect of the Orr mechanism and the
TS wavepacket evolution. With the present discretization and boundary conditions, however, the sum of
the 1500 eigenmodes obtained from the Arnoldi method is not able to correctly describe the Orr mechanism
as obtained by the optimization via the time-stepper defined in (8). This points to the limitations of using
eigenvalues in complex systems characterized by strong non-normality.

Figure 3a shows the energy evolution when solving for the largest eigenvalues of (8) at times t =
{100, 200, . . . , 2000}. When optimizing for short times the optimal initial condition consist of upstream
tilted structures that exploit the Orr mechanism only.25 As we go toward longer time optimization the
tilted structures move upstream, towards the start of our computational domain, weighting the possibility
of growth due to the Orr and the TS mechanism. We find that the maximum growth in this box is obtained
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Figure 4. Time evolution for streamwise velocity with the combined Orr and TS mechanism, when initiated with the
optimal initial condition from t = 1800. Note that the maximum amplitude is growing from frame to frame following
the energy evolution given in Figure 3(b).

for the time t = 1800. The corresponding optimal initial condition is shown in the top frame in Figure
4. In figure 3b we compare the energy evolution due to that initial condition with the energy evolution
obtained when projecting (8) onto a small number of modes related to the TS branch in Figure 2. The
projected system clearly does not capture the initial energy gain due to the Orr mechanism, but by rescaling
the energy curve and shifting it in time to account for the initial gain due to the Orr mechanism we see
that the subsequent evolution is almost perfectly matching the full system. The detailed evolution of the
streamwise velocity due to the optimal initial condition at time t = 1800 is shown in Figure 4. At the initial
time the structures are leaning backwards against the shear. During the initial phase of the development
the disturbance is raised up, exploiting the Orr mechanism, forming a wavepacket consisting of TS-waves.
The wavepacket then propagates downstream, grows in size and finally leaves the computational domain,
following the energy evolution in figure 3b.

IV. Input-Output Analysis

As mentioned above, fluid flow systems are characterized by a large number of degrees of freedom.
Therefore, to apply modern control theory to design efficient flow manipulation it is important to construct
a reduced order model of the system. The main features of the flow behavior which is relevant to maintain in
the reduced order model is the input-output behavior of the system, i.e. the relation between actuation and
sensor output since the disturbances are represented by an input and the objective consists of minimizing
an output signal. As a consequence, turning our attention to the particular solution with q0 = 0, the
input-output (I/O) relation can be written

y(t) = C

∫ t

0
eA(t−τ)Bf(τ) dτ. (9)

Rather than investigating flow fields at different times, the I/O behavior considers the time signals, f(t) and
y(t). Fortunately, the I/O behavior has significantly simpler dynamics compared to stability analysis where
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Figure 5. The operators used to examine the system input-output behavior. The controllability operator Lc relates
past inputs to the present state, while the observability mapping Lo relates the present state to the future outputs.
Their combined action is expressed by the Hankel operator H.

the entire flow dynamics is under investigation.
The model reduction problem for the preservation of input-output dynamics can thus be posed as: Find

the state-space system

dκ

dt
= Âκ+ B̂f, (10)

ŷ = Ĉκ. (11)

so that for any input f , ‖y − ŷ‖ ≤ ε where ε ' 1 and ŷ the output of the model. The reduced-order
system (11) can be obtained by a Galerkin projection onto a small number of modes, typically less than
m < 100. The transfer function associated with stable state-space system is defined as the Laplace transform
of (9)

y(s) = G(s)f(s) = C(sI − A)−1Bf(s) s ∈ C. (12)

The model reduction error is commonly given by

‖G(s) − Ĝ(s)‖ ≤ ε, (13)

with Ĝ = Ĉ(sI − Â)−1B̂.

IV.A. Balanced modes

One way to compute the reduced-order model (11) with a nearly minimal model reduction error (13) is called
balanced truncation.6 We outline the method by defining the mapping from past inputs to future outputs
via the Hankel operator,27

y(t) = Hf(t) = C

∫ 0

−∞
eA(t−τ)Bf(τ) dτ. (14)

The difference of the above expression and the formal solution (9) is that the Hankel operator (14) charac-
terizes the I/O behavior via a reference state q0. As shown schematically in Figure 5, the Hankel operator
can be decomposed into

H = LoLc (15)

where the controllability operator Lc is defined as

q0 = Lcf(t) =

∫ 0

−∞
e−AτBf(τ) dτ, (16)

and the observability operator Lo is defined as

y(t) = Lo(t)q0 = CeAtq0. (17)

The operator Lc describes the mapping of any input f(t) with t ∈ (−∞, 0] onto the state vector q0 at the
reference time t = 0. The action of Lc can be numerically computed by a time-stepper. It amounts to
solving the linearized Navier–Stokes equations for the velocity field q with forcing term f(t) and zero initial
conditions. The operator Lo describes the mapping of any initial velocity field q0 to the output signal y(t).
The action of Lo(t) can also be numerically computed and it amounts to extracting the output signal while
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Figure 6. Instantaneous snapshots of the streamwise disturbance component at t = 120, 600, 1200 and 1800.

solving the linearized Navier–Stokes equations with the initial condition q0 at the reference time t = 0 and
zero forcing.

Similar to the short-time stability analysis using the expression (7) and (8), the I/O analysis can be
reduced to an eigenvalue problem. The amplification of the output signal at time t is given by

‖y(t)‖ = (H(t)f,H(t)f) = (f,H∗(t)H(t)f). (18)

In particular, the eigenmodes fj of H∗H result in the largest output response, i.e.

H∗Hfj = σ2
j fj (19)

where σj are called the Hankel singular values and inputs fj have unit norm. The model reduction error of
balanced truncation is for a reduced-order model of order m is

σm+1 < ‖G(s) − Ĝ(s)‖∞ ≤ 2
n∑

j=m+1

σj . (20)

Using the mapping Lc we can now obtain a set of function {φj}m
j=1 by mapping the eigenvectors of H∗H

onto state-space, i.e.
φj = Lcfj. (21)

The balanced modes are non-orthogonal, and set of modes that are bi-orthogonal to φj ((φi,ψj) = δi,j) can
be found from

ψj = L∗
ogj, (22)

where gj are the eigenvectors of HH∗ and L∗
o =

∫ ∞
0 eAHtCH dt the adjoint of Lo.

Traditionally, the balanced modes are defined as the eigenvectors of the product of the controllability
and observability Gramian. This formulation is easily obtained by noting that

LcH
∗Hfj = LcL

∗
c

︸ ︷︷ ︸

P

L∗
oLo

︸ ︷︷ ︸

Q

Lcfj
︸︷︷︸

φj

= σ2 Lcfj
︸︷︷︸

φj

(23)

with the controllability Gramian

P = LcL
∗
c =

∫ ∞

0
eAtBBHeAHt dt, (24)
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Figure 7. Instantaneous snapshots of the streamwise disturbance component at t = −120, −600,−1200 and −1800 of the
adjoint equations.

and observability Gramian

Q = L∗
oLo =

∫ ∞

0
eAHtCHCeAt dt. (25)

By recognizing that (24) and (25) are the state correlation matrices of the forward and adjoint state forced
by impulses at the input and output respectively, the snapshot technique28 can be employed to compute the
balanced modes. The method is described in detail in Ref. 7: it amounts to collect a set of snapshots from
a forward simulation using the input B as initial condition

X = [u(t1), . . . , u(tm)]∆, (26)

and a set of snapshots from an adjoint simulation using the output C as initial condition,

Y = [p(t1), . . . , p(tm)]∆. (27)

In the above, ∆ contains the square root of the quadrature weights of the time-integrals given in (24)
and (25). Snapshots of the forward and adjoint simulation are displayed in figures 6 and 7. The eigenvalue
problem (23) can then be approximated as

PQφj ≈ XXHY Y H
︸ ︷︷ ︸

n×n

φj = σ2φj . (28)

This eigenvalue problem is of size n × n and prohibitively expensive to solve for Navier-Stokes system. In
the method of snapshots the balanced modes are expanded in snapshots, φ = Xa , in order to obtain an
eigenvalue problem of size m × m,

X(XHY Y HX
︸ ︷︷ ︸

m×m

a − σ2a) = 0. (29)

The balanced modes and their associated adjoint modes computed in this manner are shown in figure 8
and 9, respectively.
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IV.B. Model Reduction

To obtain the balanced reduced-order model (11) we can project Navier-Stokes equations including inputs
and outputs on the balanced modes

Ai,j = (ψi, Aφj) (30)

B1,j = (ψj , B1) (31)

C1,j = C1φj (32)

and similarly for B2 and C2. The model reduction error is shown in figure 10 together with the theoretical
bounds given by the Hankel singular values in (20)a. The infinity norm of the transfer function equals the
peak value of the frequency response. Estimating the model reduction error amounts to the calculation of
the difference of the peak values of the reduced-order and the Navier–Stokes system. The error norm remains
within or lower than the bounds given by the HSV for the first 50 modes.

The amplitudes of the transfer functions with s = iω, i.e. the frequency response, are displayed in
figure 10a for reduced-order models of order r = 2, 50 and 80 and for the full DNS model of order 105.
From figure 10b we observe that the reduced-order model of order 2 captures the most important aspect of
the input-output behavior, which is the response of the most dangerous frequency, i.e. the peak response of
the full model. The model with 50 modes is able to estimate the gains of all the amplified frequencies, but
fails to capture the damped low and high frequencies. Adding 30 additional modes results in a model that
preserves the input-output behavior correctly for all frequencies.

Finally, the impulse response from all inputs to all outputs in the reduced-order model (11) and in the
full Navier–Stokes system (2) is also compared. In figure (11) three signals B1 → C1, B1 → C2 and B2 → C1

are shown with black lines. The response of C2 to forcing in B2 is zero, since disturbances traveling upstream
are quickly damped. These impulse responses were obtained by using the time-stepper with ∼ 105 degrees
of freedom. The impulse responses of the reduced-order model (11) with r = 50 given by y(t) = CeAtB are
shown with red dashed lines. We observe that reduced-model registers the same signal as the full model from
all inputs to all outputs. The wavepacket triggered by the impulse of B1 reaches the first sensor C2 after
600 time units and the second sensor C1 after 1500 time units. The wavepacket triggered from the actuator
B2 reaches the second sensor after 600 time units.
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Figure 9. The streamwise velocity component of the adjoint balanced modes ψi.

V. Control Design

The final step after the analysis of the response of a linear system to initial conditions and external
excitations is to manipulate the inherent dynamics of a system or to control it. To this end, a reduced-order
feedback controller, which will have the same dimension as the reduced-order model of the previous section,
is developed. The closed-loop behavior of the system and the variations of the objective function will be
investigated and compared to the uncontrolled case for the flat-plate boundary layer flow.

The reducer-order plant with three inputs f = [f1, g, f2]T and two outputs y = [y1, y2]T obtained from
the model reduction procedure described in the previous section can be written,

dκ

dt
= Aκ+ B1f1 + B2f2 (33)

y1 = C1κ+ lf2, (34)

y2 = C2κ+ αg. (35)

Note again that the above state-system is the reduced-order model, the hats on A, B and C are dropped
for convenience. The input f1 represents disturbances whereas f2 is the control signal (see Figure 1). Note
that additional forcing terms appear also in the definition of the output signal. The first output y1 can be
regarded as the objective function,

‖y1‖
2 = ‖C1κ‖

2 + l2‖f2‖
2 =

∫ T

0

(

κHCH
1 C1κ+ l2fH

2 f2

)

dt, (36)

where it is assumed that the cross weighting between the state and control signal is zero.29 For large values
of the scalar l the control effort is considered to be expensive, whereas small values indicate cheap control.
The second output y2 is forced with noise g to model the uncertainty that may exists in the measurements
under realistic conditions. Large values of the scalar α indicate high level of noise corruption in the output
signal, whereas for low values of α the measurement y2 reflects information about the flow field with high
fidelity.

For our purpouses the so called H2 control problem can be formulated as follows:

Find an optimal control signal f2(t) based on the measurements y2(t) such that the in the presence of
external disturbances f1(t) and measurement noise g(t) the output y1(t) is minimized.
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Figure 10. (a) The Hankel singular values σi corresponding to the balanced modes are shown with red symbols. The
upper and lower theoretical bounds are depicted with gray lines. (b) The largest singular value of the transfer function
|G(iω)| from all input to all outputs computed using the time-stepper is shown with red symbols. The largest response
is for ω = 0.06 with a peak value of 144.6. The frequencies in the grey domain are amplified. The frequency response of
the reduced model with rank 2 (green), 50 (blue) and 80 (black).

The solution to this control problem is obtained by solving two quadratic matrix Riccati equations.29 These
equations can be solved since the dimension of (33) is less than 100. The solution to the H2 control problem in
a stochastic framework is also known as Linear Quadratic Gaussian, where stochastic processes are introduced
to describe the sensor noise g(t) and the external disturbances f1(t). We refer to Refs. 18, 30, 31 for further
details on the H2 control algorithm, as we will only outline the main steps here.

The determination of the control signal is based only on the measurements from the sensor C2. However,
for linear systems — due to the separation principle31 — the feedback control law can be determined
assuming that the complete velocity field is known. The forcing needed to reproduce the flow only from wall
measurements can be computed independently. Hence, the design of the H2-controller is performed in the
following three steps:

(i) Compute the control feedback gain K by solving a Riccati equation to obtain the feedback type of
control signal

f1 = Kκ. (37)

This leads to a new system (compared to (11)),

dκ

dt
= (A + B2K)κ+ B1f1, (38)

y1 = C1κ. (39)

The resulting modified operator A + B2K has dynamics that results in a smaller amplitude of the output
signal y1 than for the unperturbated operator A in (11).

(ii) Compute the estimation feedback gain L by solving a dual Riccati equation, to obtain the observer

dκ̂

dt
= (A + LC2)κ̂+ Ly2 (40)

which is asymptotically stable, i.e. ‖κ− κ̂‖ → 0 as t → ∞. This implies that the estimated state κ̂ based on
the measurements y2 approaches the true state κ exponentially fast.

(iii) The closed-loop controller is finally obtained as

dκ̂

dt
= (A + B2K + LC2)κ̂− Ly2, (41)

f2 = Kκ̂. (42)

Given the measurements signal y2 from the physical flow, the reduced-order controller provides an optimal
control signal f2 proportional to the estimated flow κ̂.
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We will now investigate the performance of the closed-loop system (42). In particular, the output y1 of
the closed-loop — with optimal control signal f2 — and of the linearized Navier–Stokes equations without
control are considered in the case of stochastic excitation from f1.

Three controllers are investigated: (i) cheap control/low noise contamination with l = 0.1 and α = 0.1,
(ii) expensive control/high noise contamination with l = 10 and α = 10 and (iii) an intermediate case with
l = 2 and α = 0.1.

Note that the purpose of the measurement noise g is to account for uncertainties in the sensor measure-
ments during the control design. When evaluating the closed-loop performance — solving the controlled
Navier–Stokes equations — the system is only forced with f1 and not with g.

The performance of the control in case (i) is examined first. In figure 12 the input and output signals
are shown. The gray region indicates the time when the control is active. As disturbance signal f1(t) we
choose white noise; the corresponding response of the sensor y2(t) in figure 12b confirms the amplification
and filtering of the signal as it traverses the unstable domain. The disturbances reach the second sensor
(figure 12d) after about 1500 time units where they have been amplified by one order of magnitude. The
control is activated at time t = 2500, the actuator immediately begins to force the system with a control
signal (figure 12c) based on the output y1, and after a delay of another 1500 time units, the stabilizing effect
of the control signal on the output f1 is clear. When the control is deactivated (at t = 7500) the disturbances
start to grow again.

The wall-normal maximum of the rms-values of the streamwise velocity component in cases with and
without control are shown in figure 13. The rms-value grows exponentially downstream in the uncontrolled
case until the fringe region at x = 800. The rms of the controlled perturbation grows only until it reaches
the actuator position where it immediately begins to decay. At the location of the objective function C1

(x = 750), the amplitude of the perturbations is one order of magnitude smaller than in the uncontrolled
case for the cheapest controller.

The rms values in the case of the expensive (case ii) and intermediate control (case iii) are shown with
dashed and dashed-dotted lines respectively. The expensive control is very conservative as the measurement
signals are highly corrupted and the control effort limited; it results only in a small damping of the dis-
turbances. The intermediate controller (case iii) is more cautious in reducing the perturbation energy just
downstream of the actuator when compared to the cheap controller. It is interesting to note, however, that
at the location where the objective function is measured, the disturbance amplitude has decreased nearly
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Figure 13. The rms-values of the uncontrolled system (red line), cheap controller (solid black), intermediate controller
(dashed-dotted line) and expensive controller (dashed line). The gray bar represent the size (defined as 99% of the
spatial support) and location of the two inputs, whereas the red bars correspond to the two outputs.

as much as with the cheap controller, although the total perturbation energy is much larger over the entire
domain.

VI. Conclusion

A unified framework for the stability and input-output analysis, model reduction and control design of
complex flows is presented. The two-dimensional Blasius boundary-layer flow is used here as example of
a spatially inhomogeneous flow characterized by strong non-normality of the operator describing the linear
evolution of velocity perturbations.3 The approach followed here requires only the numerical solution of the
Navier–Stokes equations and of the associated dual problem, the so-called time-stepper approach.5 It avoids
therefore the manipulation of large matrices and can be extended to fully three-dimensional flows, complex
geometries and physics.

It is shown how the stability of complex flows can be investigated by considering the eigenvalues of
the governing linear operator computed through subspace iterative methods. However, the boundary layer
flow considered here is characterized by convective instabilities and is therefore stable in a global sense.
The amplification of unstable waves traveling downstream and leaving the control domain can be seen in
this context as transient growth. Non-modal input-output analysis becomes therefore the correct tool to
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analyze these flows.3, 4 Optimal initial conditions yielding the largest possible energy growth over a finite
time horizon are obtained for the Blasius boundary layer by integrating the Navier-Stokes direct and adjoint
equations in time. The results reproduce and extend those previously obtained by expanding the flow into
the eigenmodes of the system.25 In the case of strong non-normality a large number of eigenvectors of the
system are needed and the time-stepper approach may become more efficient already for two-dimensional
flows.

To apply tools from modern control theory to fluid flow systems with many degrees of freedom model
reduction becomes unavoidable. To build a low-order model of the problem the main features of the flow
behavior are investigated in an input-output framework. The quantity one wishes to optimize for is now
defined by a sensor output, in our case the level of perturbations further downstream, while information
to the controller is provided by a sensor located upstream. Perturbations are introduced by the inputs
considered in the model: the input furthest upstream models incoming disturbances while a second actuator
is used to manipulate the flow. The observable, controllable and balanced modes of the system can be
computed by numerical simulations of the flow impulse response: controllable modes are approximated by
the POD mode of the flow response to inputs, while observable structures can be computed as POD modes
of the response of the adjoint system to excitations from the outputs. Balanced modes are computed also
from snapshots of the flow as introduced in Ref. 7. The analysis can be seen as an extension of the stability
analysis mentioned above,where inputs and outputs are taken into account.

Model reduction is achieved by projecting the governing equations on the leading balanced modes of
the system. We show that the input-output behavior of the flat-plate boundary layer can be captured
accurately with a reduced-order model based on fifty balanced modes. These modes are shown to provide
a good description of the flow9, 18 since the account for both observability and controllability through a
non-orthgonal projection. The spatial structure of these modes reflect the location of sensors/actuators and
the dynamics of linear perturbation evolving in a boundary layer. The balances modes are mainly located
downstream, where the response to the forcing is largest. The adjoint balanced modes are instead located
upstream, where the sensitivity to initial conditions is the largest.

Finally, the low-order model is used to obtain the feedback gain relating directly the measurements from
one upstream sensor to the actuator signal using the H2 formulation. The control is then applied in the
numerical simulation of the full system where we show that the perturbations growth could be reduced
efficiently. The present formulation accounts naturally for localized sensors and actuators and therefore, it
can be directly applied to different flow configurations. Further, the control law derived from the low-order
system can be applied on-line in an experiment provided accurate modeling of the sensor and actuator is
available for the I/O analysis.
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