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1 Introduction
Many powerful linear systems and control theory
tools have been out of the reach of the fluids com-
munity due to the complexity of the Navier-Stokes
equations. Flow control based on systematic meth-
ods adopted from control theory is becoming a fairly
mature field, with both computational and exper-
imental advances. In this sense, model reduction
plays an important role in developing effective con-
trol strategies for practical applications, since the dy-
namical systems which describe most flows are dis-
cretized partial differential equations with many de-
grees of freedom. Currently, balanced truncation rep-
resents the standard method of model reduction in
systems and control theory which preserves the main
input-output characteristics of the system. In this
article we investigate an approximate balanced trun-
cation by applying a modified version of the AISIAD
algorithm [4]. The method is demonstrated on the
Ginzburg-Landau equation and the linearized flow in
a plane channel.

2 Background
In this section we present the concept of model re-
duction as well as the main steps of the AISIAD al-
gorithm.

2.1 Model reduction

Consider a stable linear system in state-space form

ẋ = Ax + Bu

y = Cx ,
(1)

where A denotes the n × n system matrix, B is the
n × m input matrix and C represents the l × n out-
put matrix, with n as the dimension of the full sys-
tem. x, u and y denote the n-dimensional state
vector, the m-dimensional control vector and the l-
dimensional measurement vector, respectively. For
fluid-dynamical systems, the system matrix A rep-
resents the linearized and discretized Navier-Stokes
equations including the corresponding boundary con-
ditions. For two- or three-dimensional flows the size
of A is often above 105.

The idea of model reduction is now to construct a
reduced system of order q ≪ n

ẋr = Arxr + Bru

y = Crxr ,
(2)

so that the input-output behavior (frequency re-
sponse) of the original system (1) is preserved. To

achieve this the reduced system is projected onto a
bi-orthogonal set of functions, called the balanced
modes and defined as the eigenfunctions of the cross
Gramian PQ, where P and Q are the controllability
Gramian and the observability Gramian, respectively.
These two n×n matrices are solutions of the following
Lyapunov equations:

AP + PAH = −BBH (3a)

AHQ + QA = −CHC . (3b)

In the method of balanced truncation, the left and
the right dominant eigenvectors of the resulting cross
Gramian PQ can then be used to reduce the full sys-
tem by projecting the system matrices via (see [4]
algorithm 1)

Ar = SH
o ASc , Br = SH

o B , Cr = CSc , (4)

where Sc and So denote the projection matrices, the
balanced modes and their associated adjoint modes,
respectively.

Solving the Lyapunov equations is, however, pro-
hibitively expensive for large systems. When m ≪ n
and outputs l ≪ n the right-hand side of (3) are of low
rank, which in turn indicates that the Lyapunov equa-
tions have low rank approximations. Two approaches
exist: the snapshot-based balanced truncation [5] and
iterative methods based on power iterations or Krylov
subspace methods. In what follows, we will focus on
iterative methods.

It is worth mentioning, that the outlined con-
cept of model reduction only produces good re-
sults if the dominant controllability and observability
eigenspaces coincide. In other words, the states need
to be both controllable and observable.

2.2 The modified AISIAD algorithm

The AISIAD (Approximate Implicit Subspace Iter-
ation with Alternating Directions) algorithm, as de-
scribed in [4], directly approximates the dominant left
and right eigenspaces of the cross Gramian PQ. It is
based on a block power iteration method and consists
of the following steps:

1. Choose an orthogonal matrix V1 of size n × q as
an initial guess

2. Iterate until convergence:

(a) Solve the projected Lyapunov equation for
Xi,
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Figure 1: A comparison of the frequency response of the full model (red), the exact balanced truncation model
(blue dashed) and the AISIAD-based model (black dashed dotted). The reduced system consists of a dimension
of m = 4 (left) and m = 10 (right). The gray region marks the amplified frequencies.

AXi + XiH
H
i + BBHVi = 0, (5)

where HH
i = V H

i AHVi and Xi = PVi. Note
that Hi should be stable.

(b) Obtain an orthogonal basis which spans the
same subspace as Vi

[Wi, Si] = qr(Xi, 0). (6)

(c) Solve the projected Lyapunov equation for
Yi

AHYi + YiFi + CHCVi = 0, (7)

where Fi = WH
i AWi and Yi = QWi.

(d) Obtain an orthogonal basis which spans the
same subspace as Wi

[Vi+1, Ri] = qr(Yi, 0). (8)

(e) Check tolerance

‖diag{RiSi}−diag{Ri−1Si−1}‖ ≤ tol, (9)

where the diagonal elements of RS are the
eigenvalues of PQ at convergence. The
square root of these eigenvalues are called
the Hankel singular values (HSV).

3. Normalize VL = Vi+1 and WR = Wi,

[U,Σ, V ] = svd(V H
L WR), (10)

and recover the balanced modes and their asso-
ciated adjoint modes from

Sc = WRV Σ−1/2 , So = VLUΣ−1/2 . (11)

At convergence So and Sc are the left and the right
eigenmodes of the cross Gramian PQ, respectively.
For further details, the reader is referred to [4] algo-
rithm 2. Finally, the projection matrices So and Sc

can be applied to reduce the full system following (4).

To improve the performance of the (original)
AISIAD algorithm, Vasilyev and White [4] proposed
an efficient solution of the Sylvester equations (5) and

(7). By transforming (5) via X̃ = XU , with U result-
ing from a Schur decomposition of H, the modified
equation yields:

AX̃ + X̃S = −M̃. (12)

This linear system is then solved backwardly, xj rep-

resenting the jth column of X̃

(A + sjjIn) x̃j = −m̃j , (13)

and direct or sparse linear solvers can be applied. In
addition to that, an iterative Krylov-subspace solver
such as BiCGStab or GMRES can be employed too.
Even more, since the latter methods are based on
matrix-vector products they permit a matrix-free im-
plementation, e.g., based on direct numerical simula-
tions (DNS).

3 Application to the Ginzburg-
Landau equation

The complex Ginzburg-Landau equation is an am-
plitude equation, which arises in the context of non-
equilibrium systems. It is often used to describe the
system dynamics near the onset of linearized insta-
bility. A linearized version of this model is used to
mimic spatially developing flows, such as boundary-
layers, jets and cylinder wakes (see [1]). The equation
is of a convection-diffusion type with one additional
term to model different types of instabilities,

A = −ν
∂

∂x
+ γ

∂2

∂x2
+ µ(x) , (14a)

B = exp

[
−

(
x − xw,i

s

)2
]

, (14b)

Cx =

∫
∞

−∞

exp

[
−

(
x − xs,i

s

)2
]H

x(t)dx, (14c)



0 5 10 15 20 25 30 35 40 45 50
10

−20

10
−15

10
−10

10
−5

10
0

10
5

m

H
S

V

 

 
Exact BT
AISIAD

Figure 2: A comparison of the Hankel singular values
(HSV) of exact balanced truncation (red circles) and
the AISIAD method (black squares).

with x(t) < ∞ as x → ±∞. Moreover, the con-
vection and diffusion term are complex valued func-
tions in order to model dispersion and frequency se-
lection effects. All eigenvalues of A have negative real
part, and, therefore, the system is stable. However,
when considering a quadratic instability function

µ(x) = (µ0) + µ2
x2

2
, µ2 < 0, (15)

the flow becomes susceptible to instabilities for
µ(x) > 0, which defines a confined unstable region

in the x-direction as given by −
√
−2(µ0)/µ2 < x <√

−2(µ0)/µ2.
We now compare the AISIAD method with the

exact balanced truncation for computing a reduced-
order model. The latter method is computationally
feasible since a spectral discretization of the above
one-dimensional PDE results in n = 220. The exact
balanced truncation is computed using the square-
root method (see [2]). In Figure 1 the frequency re-
sponse defined as

|G| = |C(iωI − A)−1B|, (16)

is compared for the full model, the exact balanced
truncation and the AISIAD balanced truncation. In
Figure 1a the reduced system is of order m = 4 and
the AISIAD algorithm required 45 iterations for con-
vergence to a tolerance of 10−6. In Figure 1b the
reduced system is of order m = 10 and the AISIAD
algorithm required 7 iterations for convergence to the
same tolerance. We observe that both the exact bal-
anced truncation method and the AISIAD method
approximate the full frequency response very well for
m = 4 and almost exactly for m = 10. In Figure 2
the Hankel singular values, i.e. the square-root of the
eigenvalues of the cross Gramian PQ, are compared
for the exact balanced truncation and the AISIAD
method. We observe that for m = 50 the AISIAD
method (which required only 7 iterations for conver-
gence of 10−6) approximates the first 20 Hankel sin-
gular values very well, but fails to approximate the
very small eigenvalues close to machine epsilon.
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Figure 3: Sketch of plane channel flow

4 Application to the Linearized Chan-
nel Flow

The flow configuration under investigation is the lam-
inar Poiseuille flow in a plane channel with the ve-
locity profile U(y) = 1 − y2 as displayed in Figure
3. According to [3], this flow is linearly stable for
Reynolds numbers Re < 5772 which leads to a stable
input-output system of the form (1).

4.1 Equations of motion

The dynamics of small perturbations to the plane
channel flow is governed by the following formulation
of the incompressible linearized Navier-Stokes equa-
tions

∂u

∂t
+ U

∂u

∂x
+

∂U

∂y
v = −

∂p

∂x
+

1

Re
∆u (17a)

∂v

∂t
+ U

∂v

∂x
= −

∂p

∂y
+

1

Re
∆v (17b)

∂w

∂t
+ U

∂w

∂x
= −

∂p

∂z
+

1

Re
∆w (17c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (17d)

where u, v and w denote the velocity components of
the perturbation in the streamwise x-direction, the
wall-normal y-direction and the spanwise z-direction,
respectively. The Reynolds number is defined as Re =
(UL)/ν and the continuity equation (17d) is applied
to constrain the solution to be divergence free.

The flow is assumed to be periodic in the x- and
z-direction, with no-slip boundary conditions at the
walls, and we assume the following traveling-wave
form

φ(x, y, z, t) = φ̃(x, y)ei(βz−ωt) (18)

with φ = (u, v, w, p)T . In this expression, φ̃(x, y) de-
notes the complex amplitude and β the real spanwise
wavenumber of the perturbation. The parameter ω
characterizes the temporal long-term evolution of this
disturbance.

Under these assumptions, the system can be writ-

ten as ∂φ̃/∂t = L(U)φ̃, where L(U) represents the
linear stability operator, which, in this case, is the
Navier–Stokes equations linearized about the laminar
state U(y). This continuous system is descretized in
the x- and the y-direction and the discrete system can
be rewritten in the standard state-space form

ẋ = Ax. (19)

Herein, ẋ denotes the time derivative of x and A is
the discrete system matrix.



Figure 4: First three computed balanced modes Sc

using the AISIAD method (m = 4). The ṽ velocity
is displayed.

In addition to the forward solution, based on the
system matrix A, the solution of the adjoint system,
described by the adjoint system matrix AH , is re-
quired to solve (7). The adjoint system is derived in
a similar manner as the forward system and, owing to
a lack of space, the reader is referred to the literature.

In this article, the spatial discretization in the
x- and the y-direction is accomplished using second-
order finite difference schemes on a uniform grid; fur-
thermore, the states x of the system are the values of
ũ, ṽ and w̃ evaluated at the inner grid points.

4.2 Results

The (modified) AISIAD method is now applied to
compute the balanced modes Sc and the correspond-
ing adjoint modes So of the linearized plane channel
flow. For the present numerical experiment we con-
sider the following parameters: Lx = 7, Ly = 2,
Re = 900, β = 0; 66 × 34 (nx × ny) points are
used to resolve the flow in the x- and the y-direction,
respectively. Furthermore, an actuator and a sen-
sor, both modeled by a Gaussian function, are placed
at nx/4, ny/8 and 3nx/4, ny/8, respectively, to force
the system and to measure the corresponding out-
put. Moreover, the linear system (13) is solved it-
eratively employing GMRES (tol=10−3, maxit=30,
no restarts) as implemented in MATLAB, and di-
rect numerical simulations are performed to provide
the required matrix-vector products via a matrix-free
framework.

As a result, the first three computed balanced
modes Sc are shown in Figure 4. The order of the
reduced system was chosen as m = 4 and 8 block
power iterations were performed to converge to a tol-
erance of tol = 10−3.

5 Conclusions

In order to apply control theory to a flow it is often
necessary to reduce the number of degrees of freedom
of the model, whilst preserving the main input-output

characteristics of the system. The way in which the
model is reduced as well as the amount of reduction
significantly affect a subsequent flow control. The
computational cost of the model reduction algorithm
must also be taken into account.

Exact balanced truncation is considered to per-
form the best, by balancing the observability and con-
trollability requirements. For this reason it is used
as a benchmark for comparisons of other algorithms,
but it is computationally expensive. The AISIAD al-
gorithm performs an approximation to an exact bal-
anced truncation and shows a similar performance
at far lower computational cost for the Ginzburg-
Landau equation.

Similar performance for the Ginzburg-Landau
equation was found using a balanced POD algorithm.
This is in contrast to the relatively poor performance
given by a regular POD method.

A drawback of the AISIAD algorithm, however, is
that the number of degrees of freedom of the reduced
model needs to be specified at the start. If the ini-
tial guess is too low, the whole process needs to be
repeated. This is not the case for other model re-
duction algorithms such as POD or BPOD where the
model can be reduced further by simply taking more
snapshots.

Further drawbacks were found when the AISIAD
algorithm was implanted for plane channel flow. Due
to the extra complexity and greater number of pa-
rameters to tune, the AISIAD algorithm is rather
difficult to converge. Upon proper tuning, however,
the AISIAD algorithm gives good results at reason-
able computational cost. The time taken to converge
is less dependant on the cost of the DNS than for
POD methods and so for DNS expensive problems
the AISIAD algorithm offers significant advantages.
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