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Abstract

Methods in hydrodynamic stability, systems and control theory are applied to
spatially developing flows, where the flow is not required to vary slowly in the
streamwise direction. A substantial part of the thesis presents a theoretical
framework for the stability analysis, input-output behavior, model reduction
and control design for fluid dynamical systems using examples on the linear
complex Ginzburg-Landau equation. The framework is then applied to high-
dimensional systems arising from the discretized Navier–Stokes equations. In
particular, global stability analysis of the three-dimensional jet in cross flow
and control design of two-dimensional disturbances in the flat-plate bound-
ary layer are performed. Finally, a parametric study of the passive control of
two-dimensional disturbances in a flat-plate boundary layer using streamwise
streaks is presented.

Descriptors: Global modes, transient growth, model reduction, feedback con-
trol, streaks, Tollmien–Schlichting waves
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Preface

This thesis considers the stability and control of spatially developing flows. In
the first part a short review of the basic concepts and methods is presented.
The second part consists of the following papers:

Paper 1. Bagheri S., Hœpffner J., Schmid P.J. and Henningson D.S.,
2008
“Input-output analysis and control design applied to a linear model of spatially
developing flows”, Accepted for publication in Applied Mechanics Reviews

Paper 2. Bagheri S., Brandt L. and Henningson D.S., 2008
“Input-output analysis, model reduction and control design of the flat-plate
boundary layer”, Submitted to the Journal of Fluid Mechanics

Paper 3. Bagheri S., Schlatter P. and Henningson D.S., 2008
“The three-dimensional global stability of the jet in crossflow”, Internal report

Paper 4. Bagheri S. and Hanifi A., 2007
“The stabilizing effect of streaks on TS-waves: A parametric study”, Published
in Physics of Fluids, 19, 078103
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The code development and calculations were done by SB with feedback from
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Paper 2

The control and model reduction algorithms were implemented by SB with
feedback from LB. The computations were done by SB. The mathematical
formulation in the paper was done by SB and DH. The paper was written by
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Paper 3
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feedback from PS. The simulations were done by SB. The paper was written
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Introduction



CHAPTER 1

Introduction

The combined efforts of scientists and engineers in fluid mechanics have strongly
contributed to milestones in technological developments. However, some of
these technological successes, such as airplanes and spacecrafts, are also con-
tributing to global warming and the draining of earth’s limited resources. For
example, the worldwide shipping consumes about 2.1 billion barrels of oil per
year (Corbett & Koehler 2003) whereas the airline industry consumes about
1.5 billion barrels per year (Kim & Bewley 2007).

If the existing technological solutions can be improved, it can help to reduce
the world’s oil consumption and preserve the earth’s resources. Engineers have
used the physical principles of fluid mechanics, established by scientists in last
two centuries, to increase the efficiency of their applications. At the same
time a mathematically well-established field, systems and control theory, has
emerged which given a set of constraints and an objective, it provides the
“best solution”. The incorporation of systematic methods from systems and
control theory in fluid mechanics can make a significant difference in efficiency
of various applications.

However, the complexity of the governing equations of fluid mechanics have
until recently hindered the use of many of these methods on a full scale in appli-
cations. The Navier–Stokes equations consist of a four-dimensional nonlinear
partial differential equation (PDE). Since there exist analytical solutions only
for a few flow configurations, these equations are approximated numerically
giving rise to well above one million ordinary differential equations. In sys-
tems and control theory the most elegant results require the solution of various
matrix equations, such as the Riccati or Lyapunov equations. Even with the
use of supercomputers it is prohibitively expensive to solve these equations for
large systems.

The present thesis is part of a long-term project with the aim of applying
stability, systems and control theoretical tools to systems of very large dimen-
sion arising from various fluid dynamical situations. The most fundamental
tool is a Navier-Stokes solver, which given a flow field at certain time, the
solver provides a field at a later time.
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CHAPTER 2

Theoretical background

2.1. Hydrodynamic stability theory

The incompressible Navier–Stokes equations given by

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u, (2.1a)

∇ · u = 0, (2.1b)

u(x, 0) = u0, (2.1c)

govern the evolution of the flow field u(x, t) = [u, v, w]T and pressure field
p(x, t) in space x = (x, y, z) and time t. The equations are non-dimensionalized
with the characteristic velocity scale U , the length scale L and the kinematic
viscosity ν. The Reynolds number is defined as Re = UL/ν.

In general, hydrodynamic stability theory is concerned with characterizing
the behavior of infinitesimal disturbances u′ to a base flow U, which is a steady
solution to Navier–Stokes equations (2.1). The governing equations of these
disturbances are found by inserting u = U + ǫu′ and p = P + ǫp′, where p′

is the pressure perturbations, into (2.1) and neglecting the terms of order ǫ2.
The resulting linearized Navier–Stokes equations are,

∂u

∂t
+ (U · ∇)u+ (u · ∇)U = −∇p+

1

Re
∇2u, (2.2a)

∇ · u = 0, (2.2b)

u(x, 0) = u0, (2.2c)

where the superscript ′ of the disturbance fields has been omitted. The base
flow in our case is a steady solution to (2.1), but it can also be a time-periodic
solution or a time-averaged turbulent flow. To solve equations (2.1) and (2.2)
various boundary conditions depending the physical domain can be imposed.

If the PDE (2.2) is discretized in space and projected on a divergence-free
subspace it can be approximated by the initial-value problem

∂u

∂t
= Au (2.3a)

u(0) = u0, (2.3b)

where u(t) now denotes the state vector, compromising the divergence-free am-
plitude functions of the perturbations. The discretized and linearized Navier-
Stokes equations including boundary conditions are represented by the action
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4 2. THEORETICAL BACKGROUND

of the matrix A on u. The solution to (2.3) is given by

u(t) = eAtu0. (2.4)

The matrix exponential is the key to stability analysis and also to input-
output analysis and control design discussed in subsequent sections. However,
this function also poses the greatest computational challenge due its dimen-
sion. The dimension of the linearized operator depends on the number of
non-homogeneous spatial directions of the base flow. In table 2.1 we list the
base flows studied in this thesis. They are all spatially developing, i.e. the di-
rection which the disturbances travel in is inhomogeneous. We observe that the
dimension of A for flows with two or more inhomogeneous directions becomes
prohibitively large to allow for an evaluation of the exponential matrix.

Except for one-dimensional base flows the exponential matrix must be ap-
proximated. The most common methods (Molder & Van Loan 2003) require
that all elements of the matrix can be stored in memory. For fluid systems this
requirement cannot always be met. Instead, the recognition that the action
of eAt simply represents integrating the Navier-Stokes equations in time, the
exponential matrix can be approximated with a direct numerical simulation
(DNS) code, also referred to as a time-stepper. In what follows the reader
should equate eA(t+T )u(t) with a DNS simulation starting with an initial con-
dition u(t) and providing u(t + T ). In this so called “timestepper approach”,
matrices are never stored and storage demands in memory are of the same
order as a small number of flow fields.

As time tends to infinity the disturbance approaches the least stable eigen-
modes, φi, of A,

Aφi = λiφi. (2.5)

Even with iterative methods it is in general not possible to explicitly solve the
above eigenvalue problem, since A cannot be stored in memory. Instead we
make use of our DNS code and a time-stepper technique (Barkley et al. 2002)
by noting that the eigenmodes are invariant under the transformation eAt (for
fixed time t),

eAtφi = σiφi, |σ1| > · · · > |σn|. (2.6)

The asymptotic stability of disturbances as t→ ∞ is determined by the largest
magnitude of σ1,

|σ1| > 1 asymptotically unstable, (2.7a)

|σ1| ≤ 1 asymptotically stable. (2.7b)

The eigenvalues of A can be recovered from λi = log(σi)/t in order to obtain
the growth rate and frequency of the associated eigenmode φi.

For many open shear flows where fluid is continuously entering and leaving
the physical domain the matrix A is non-normal (Trefethen & Embree 2005)
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Base Flow Inhomogeneous Dimension Storage
direction(s) of u(t) of A

Ginzburg-Landau U(x) 1D 102 1 MB
Blasius U(x, y) 2D 105 25 GB
Jet in crossflow U(x, y, z) 3D 107 500 TB

Table 2.1. Spatially developing flows investigated in this thesis.

(AA∗ 6= A∗A). Here, the superscript ∗ denotes the complex-conjugate opera-
tion1. As a consequence, the disturbance can experience large transient energy
growth, although all eigenvalues λi have negative real parts. The amplification
of the initial disturbance u0 is then given by,

G(t) = ‖eAtu0‖2. (2.8)

In particular, if there is an initial condition (with unit norm) that results in
the maximum energy amplification, this function φo

i is an eigenmode of eA∗teAt

corresponding to the largest eigenvalue of

eA∗teAtφo
i = σo

i φ
o
i , σo

1 ≥ · · · ≥ σo
n ≥ 0. (2.9)

The condition for a short-time energy amplification becomes

σo
1 > 1 transient growth, (2.10a)

σo
1 ≤ 1 no transient growth. (2.10b)

The matrix exponential eA∗t is approximated by solving the adjoint Navier-
Stokes equations numerically using an adjoint time-stepper.

The most common approach to modern linear stability theory is the quest
for eigenmodes of A and A∗A, referred to as global modes and optimal dist-
urbances respectively. The calculation of these eigenmodes is computationally
tractable for very large systems using time-steppers (Barkley et al. 2002) in
combination with Krylov subspace methods. In Paper 3 the global eigenmodes
of jet in crossflow are computed using the Arnoldi method (Trefethen & Bau
1997). In Paper 4 optimal disturbances for the Blasius boundary layer are
computed using power iterations (Andersson et al. 1999).

2.2. Linear systems theory

Under realistic conditions the flow system is continuously forced with external
disturbances and entire instantaneous velocity fields are not available for anal-
ysis. The natural extension to the previous section is to include inputs and
outputs,

u̇ = Au+Bw,
z = Cu.

(2.11)

1We assume for simplicity that the norm is defined as ‖u‖2 = u
∗
u. See Paper 1 and 2 for

other definitions.
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The column vector B and the row vector C govern the type and location of the
input w(t) and output z(t), respectively. In the context of aerodynamic flows,
the input can represent the effects of free-stream turbulence, wall roughness
or impingement acoustic waves and the output can represent measurements of
pressure or friction at the boundaries of the flow domain.

For a stable system the equations (2.11) have the formal solution

z(t) = C

∫ t

0

eA(t−τ)Bw(τ) dτ (2.12)

where u0 = 0. For input-output analysis it is useful to define a mapping from
past inputs to future outputs,

(Hw)(t) = C

∫ ∞

0

eA(t+τ)Bw(τ) dτ. (2.13)

Notice that if the input u(t) = w(−t) for t < 0 then the output for t→ ∞ will
be z(t) = (Hw)(t) (Glover 1999).

Linear systems theory is concerned with the response behavior of the output
signal to various input signals. The amplification of the output signal at a
certain time is given by ‖Hw‖2. In particular, the largest output response is
given by the input wi corresponding to the largest eigenvalue of H∗H,

H∗Hwi = (σb
i )

2wi, σb
1 ≥ . . . σb

n ≥ 0 (2.14)

where σb
i are called the Hankel singular values. For an input with unit norm

the Hankel singular value gives a measure of how much the output is amplified,

σb
1 > 1 output amplification, (2.15a)

σb
1 ≤ 1 no output amplification. (2.15b)

One can associate a sequence of modes, referred to as balanced modes with
the sequence of inputs wi,

φb
i =

∫ ∞

0

eAtBwi. (2.16)

If a particular balanced mode φb
i has an associated Hankel singular value which

is zero, σi = 0, this mode does not influence the input-output behavior. This
has led to an efficient method of model reduction where the input-output behav-
ior is preserved, called balanced truncation (Moore 1981). Balanced truncation
is based on the idea of reducing the dimensions of the original system by re-
moving the redundant states – i.e. balanced modes corresponding to σb

i = 0 –
and also, in addition, removing the states that have a very weak influence on
the input-output behavior, i.e. φb

i corresponding to σb
i ≪ 1.

In Paper 1 and Paper 2 a time-stepper approach (Rowley 2005) is used
to compute the balanced modes for the Ginzburg-Landau equation and the
Blasius boundary layer. It is shown that a few balanced modes can preserve
the input-output behavior of the original high-dimensional system.
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2.3. Linear control theory

The next step after the analysis of the amplification behavior of a linear sys-
tem to initial conditions and external excitations is to manipulate the inherent
dynamics of a system or to control it. In fact the linear system written in
form (2.11) is the starting point for control. One additional input represent-
ing the actuator and one additional output representing a sensor result in the
system

u̇ = Au+B1w +B2f, (2.17a)

z = C1u+ f, (2.17b)

y = C2u+ g. (2.17c)

Note that the outputs are also forced. The first output z can be regarded as
the objective function,

‖z‖2 = ‖C1u‖2 + ‖f‖2 =

∫ T

0

(u∗C∗
1C1u+ f∗f) dt, (2.18)

where it is assumed that the cross weighting between the state and control
signal is zero (Zhou et al. 1999). The second output is forced with noise g
to model the uncertainty that may exists in the measurements under realistic
conditions. The so called H2 control problem can be formulated as following:

Find an optimal control signal f(t) based on the measurements y(t) such
that the influence of the external disturbances w(t) and measurement noise g(t)
on the output z(t) is minimized.

The solution to this control problem is obtained by solving two quadratic
matrix equations called the Riccati equations (Zhou et al. 1999). However,
these equations require the linearized Navier-Stokes operator A which we do
not have at our disposal in an explicit form. On the other hand, we can note
that the H2 control design process amounts to the determination of control
signal f given the output signal y. Therefore, it is sufficient to capture only
a small fraction of the dynamics, namely the relationship between the input
and output signals to design an optimal controller. It thus seems prudent to
replace the large matrix A in the Riccati equations with a reduced-order matrix
Â obtained by the projection of equations (2.17) onto the balanced modes. Once
the control signal is obtained using the reduced-order model it is applied to full
Navier-Stokes system.

The solution to the H2 in a stochastic framework (also known as Linear
Quadratic Gaussian) is derived in Paper 1 and applied to Blasius flow in Paper
2 using a reduced-order model.



CHAPTER 3

Numerical codes

3.1. Direct numerical simulations

The system of partial differential equations given in expression (2.2) for boundary-
layer flows is solved numerically using spectral methods. The simulation code
is described in detail by Chevalier et al. (2007) and employed for the simula-
tions presented in Paper 2 and Paper 3. The spatial discretization is based on
Fourier expansion in the streamwise and spanwise directions, and an expansion
in Chebyshev polynomials in the wall-normal direction. The time is advanced
using a four-step low-storage third-order Runge-Kutta method for the nonlin-
ear and forcing terms, and a second-order Crank-Nicholson method for the
linear terms. The code is fully parallelized for efficient use on both shared and
distributed-memory systems. To retain periodic boundary conditions, which is
necessary for the Fourier discretization, a fringe region is added at the end of
the computational domain where a forcing is applied so that the flow smoothly
changes from the outflow velocity of the physical domain to the desired inflow
velocity (Bertolotti et al. 1992; Nordström et al. 1999).

3.2. Parabolized stability equations

An alternative for solving the Navier-Stokes equations in weakly spatially de-
veloping flows is the parabolized stability equations (PSE) (Herbert 1993;
Bertolotti et al. 1992). They are based on the expansion of the disturban-
ces into Fourier modes in the horizontal directions. However, in the streamwise
direction every mode is decomposed into a slowly varying amplitude function
and a wave function with slowly varying wave number. The neglect of the small
second derivatives of the slowly varying functions with respect to the stream-
wise variable leads to an initial boundary-value problem that can be solved by
numerical marching procedures.

The PSE approach is a relative fast computational method compared to
DNS and is employed in Paper 4 of this thesis. The results presented in Paper
4 are calculated using the NOLOT code, developed by Hanifi et al. (1995). A
fourth-order compact difference scheme is used to approximate the derivative
with respect to the wall-normal coordinate. The derivate with respect to the
streamwise coordinate is approximated by a first or second order backward
Euler finite difference schemes. The nonlinear terms appear as a source on
the right hand side of the equations. The calculations start with fundamental

8
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modes initialized only. The higher modes are introduced in the calculations
when the corresponding forcing is larger than a predefined threshold.



CHAPTER 4

Summary of papers

Paper 1

Input-output analysis and control design applied to a linear model of spatially
developing flows.
This paper presents a review of recent developments in stability, systems and
control theory for a linear model of spatially developing flows. The review
covers a wide variety of topics, including transient growth of non-normal sys-
tems, convective and absolute instability, global modes, linear input-output sys-
tems, model reduction, and optimal/robust design of controllers and observers.
The concepts are demonstrated on a single canonical problem, the complex
Ginzburg-Landau equation, in order to elucidate the theory presented. The
complex Ginzburg-Landau equation is an amplitude equation which arises in
the context of non-equilibrium systems and is often used to describe the dy-
namics near the onset of instability (Chomaz 2005). Here, a linearized version
of this model is used to mimic the linearized Navier-Stokes equations. The
review is divided into four parts. First, the solution of the linear system (2.4)
is investigated, where the stability properties of the matrix exponential eAt, in
terms of global eigenmodes and optimal disturbances are analyzed. The second
part deals with the forced solution (2.12), where the notions of controllability
and observability are introduced and the response of the system to impulse,
harmonic and stochastic forcing is investigated. In the third section, model
reduction techniques based on projection of the linear system on an appropri-
ate subspace is discussed. In the last part of the review, the control design of
spatially developing flows is reviewed within the H2/H∞-framework.

Paper 2

Input-output analysis, model reduction and control of the flat-plate boundary
layer.
This paper considers the model reduction and control design of the flat-plate
boundary layer from an input-output viewpoint. The linearized Navier-Stokes
equations are written in the standard state-space form (2.17). The inputs repre-
sent external disturbances, measurement noise and actuators and the outputs
represent sensors and objective functions. Using matrix-free methods, such
as the snapshot method, the most controllable (or energetic) and observable
modes of the linear system are computed and analyzed. For the given inputs
and outputs it is found that the observable modes are located upstream in the

10
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physical domain, where the sensitivity to forcing is the largest. The control-
lable modes are on the other hand located downstream in the domain where the
response to forcing is the largest. These two sets of modes can be combined in
order to obtain the balanced modes. These modes are computed and used for
projection basis of the Navier-Stokes equations in order to construct a reduced-
order model. It is shown that the reduced-order model is able to reproduce the
input-output behavior of the flat-plate boundary layer with few degrees of free-
dom. An optimal controller within the H2 framework is designed using the re-
duced system and applied to the full Navier-Stokes equations. The closed-loop
behavior is significantly different compared to the uncontrolled Navier-Stokes
equations. The most amplified frequencies of the latter system are efficiently
damped by the control.

Paper 3

The three-dimensional global stability of the jet in crossflow.
In Paper 3 the global linear stability analysis of the jet in crossflow to three-
dimensional perturbations is numerically investigated. At a velocity ratio
R = 3, defined as the ratio of jet velocity to free-stream velocity, the flow
is found to be globally linearly unstable. In this case, the temporal frequency
of the most unstable global mode is in good agreement with the dominant
intrinsic frequency associated with the jet shear-layer vortices observed in di-
rect numerical simulation (DNS). In the DNS code described in section 3.1
the jet is enforced as a boundary condition with parabolic velocity distribu-
tion. Shear-layer vortices are continuously shed along the jet trajectory with
a well-defined frequency. The base flow for the stability analysis is a steady
solution of Navier-Stokes, obtained by damping the unstable temporal frequen-
cies using the selective frequency damping method (Åkervik et al. 2006). The
steady state consists of a dominant counter-rotating vortex pair in the far field
emerging from the near field vorticity of the shear layer. The large eigenvalue
problem is solved using the ARPACK library (Lehoucq et al. 1998) and the
linearized DNS as a time stepper. The most unstable mode takes the shape of
a localized wavepacket, wrapped around the counter-rotating vortex pair.

Paper 4

The stabilizing effect of streaks on TS-waves: A parametric study.
In Paper 4, the Parabolized Stability Equations described in section 3.2 are
modified to account for the algebraic growth of streamwise elongated vortices
called streaks. Using these equations, the nonlinear interaction of TS waves
and steady streamwise streaks, and the stabilizing effect of the streaks on the
mean flow is verified with previous DNS results (Cossu & Brandt 2002). The
amplification of the TS waves is calculated in the presence of a set of streaks
with varying spanwise wave numbers and fixed maximum streak amplitudes. In
this case, it is found that the optimal stabilization effect is obtained for streaks
with the location of the maximum amplitude close to neutral point (branch I)
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of the TS wave. These streaks generate the largest total mean flow excess in
the unstable streamwise region of the TS waves.



CHAPTER 5

Outlook

Flow control based on systematic methods adopted from control theory is be-
coming a fairly mature field. Model reduction plays an important role in devel-
oping effective control strategies for practical applications, since the dynamical
systems which describe most flows are discretized partial differential equations
with a very large number of degrees of freedom. Balanced truncation was ap-
plied to two-dimensional disturbances in the flat-plate boundary layer in Paper
2. The model reduction procedure will be extended to more general three-
dimensional disturbances in the flat-plate layer and also to other more complex
geometries. The method is applicable primarily to linear systems, although
there is an extensive theory on nonlinear balanced truncation (Scherpen 1993).
One method of balanced truncation for nonlinear systems has been introduced
by Lall et al. (2002), but the method is considerably more expensive than
the linear method applied in Paper 2. In the future possible extension of the
nonlinear method will be examined in order to make it more computationally
feasible.

Stability analysis has until recently only been constrained to the most sim-
ple flows due its large memory requirements. DNS on the other hand has been
performed for various complex three-dimensional flows such as ducts, diffusers,
parabolic leading edge etc. In Paper 3, the timestepping-technique for stability
analysis employed for fully 3D jet in crossflow has a cost which is comparable
to direct numerical simulations. The computation of steady-states based on
simple filtering techniques instead of Newton iterations is also an important
factor that has enabled the extension of stability analysis to complex flows. In
the future, the jet in crossflow for higher velocity ratios will be considered, in
order to explore the presence of a critical velocity ratio for global instability.
Recently (Barkley et al. 2008) the timestepper approach has been extended to
optimal transient growth analysis. If a convectively unstable configuration of
the jet in crossflow is found, a direct optimal growth analysis will be performed
using an adjoint simulation code.

13
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F-91128 Palaiseau, France

Accepted for publication in Applied Mechanics Reviews

1. Introduction

Whereas stability theory has long occupied a central role in fluid mechanics re-
search, control theory has only recently been applied to fluid systems. Despite
its long history, stability theory has undergone remarkable changes over the
past decades. The incorporation of short-term instabilities into a traditionally
asymptotic stability concept, the equal treatment of stability and response be-
havior within the same mathematical framework, and use of system-theoretical
tools to probe the disturbance behavior of fluid systems have reinvigorated
hydrodynamic stability theory and developed it into a modern tool of fluid
dynamic research. Especially the formulation of the governing equations in
state-space form combined with an input-output viewpoint of the perturbation
dynamics has brought the two fields of stability and control theory closer to-
gether. Whereas stability theory is concerned with all aspects of the open-loop
dynamics of the governing equations, control theory connects the output to the
input and focuses on the closed-loop characteristics — including optimal design
and performance analysis — of the underlying dynamical system. These two
closely related disciplines, and the unifying formulation that connects them, are
the subject of this review. Due to the vastness of these two fields, we restrict
ourselves to concepts of direct relevance to fluid dynamical systems as well as to
a simple model equation. The Ginzburg-Landau equation, a well-known model
equation displaying a great variety of phenomena observed in fluid systems, will
be used to demonstrate and exemplify concepts and techniques from stability,
systems and control theory.
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The recognition that short-term instabilities play an important role in
fluid dynamical systems can be traced back nearly two decades when scien-
tists searched for disturbances that optimize energy amplification over a finite
time span (Farrell 1988; Butler & Farrell 1992; Reddy et al. 1993; Reddy & Hen-
ningson 1993). These disturbances did not resemble the most unstable eigen-
vectors of the system which led to the development of a theoretical foundation
to describe short-term nonmodal phenomena (Trefethen et al. 2005; Farrell &
Ioannou 1996; Schmid & Henningson 2001; Schmid 2007). In fact, even if the
flow is asymptotically stable, substantial amplification of the input signal (ini-
tial condition or external forcing) into an output signal (energy) can occur. By
now, the associated theory has matured into an important component for un-
derstanding the transition process from laminar to turbulent fluid motion and
has been able to explain a variety of observed fluid structures in transitional
and turbulent shear flows (Schmid & Henningson 2001). In a further step, an
input-output framework has been suggested Jovanovic & Bamieh (2005) which
brings the analysis of stability characteristics closer to a system theoretic in-
terpretation, with impulse response, frequency response and transfer functions
as the principal tools of investigation.

At the same time, flow control based on control theory has emerged as a
new discipline of fluid mechanics (Joshi et al. 1997; Bewley & Liu 1998; Lee
et al. 2001; Högberg et al. 2003a,b; Hœpffner et al. 2005; Chevalier et al. 2006,
2007; Åkervik et al. 2007; Monokrousos et al. 2008). Starting with simple
feedback control laws and full-state information control, it has progressed to-
ward more realistic configurations by incorporating the estimation problem and
partial-state information control. During the control design process, a strategy
is determined that feeds information from the measurements (sensors) back to
the input signal (actuators) such that a given control objective is achieved. The
accompanying theoretical basis, adapted from control theory (Kwakernaak &
Sivan 1972; Anderson & Moore 1990; Lewis & Syrmos 1995; Zhou et al. 2002),
to determine these strategies has evolved substantially, and flow control has ad-
vanced into an independent and active field of fluid dynamics. Comprehensive
accounts on recent progress in the rapidly expanding field of flow control can
be found in Gal-El-Hak (1996); Bewley (2001); Kim (2003) and Kim & Bewley
(2007).

The input-output framework provides not only a convenient way of analyz-
ing stability and receptivity characteristics (Hill 1995; Luchini & Bottaro 1998)
of fluid systems, it represents the natural starting point for control design. Sta-
bility and receptivity analysis as well as control design can thus be accomplished
within the same formal setting. This unified analysis shall be exemplified in
this review article by investigating the stability and response properties of the
Ginzburg-Landau equation and by devising effective control strategies includ-
ing the evaluation of their efficiency and performance. The Ginzburg-Landau
equation has frequently been used as a model for instabilities in fluid systems,
see e.g. Huerre & Monkewitz (1990) and Chomaz (2005). We will use it here
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Figure 1. Overview of the open-loop and closed-loop analysis
performed in this review. The response in terms of the flow
state, kinetic energy and sensor signal to impulse, harmonic
and stochastic inputs of the parallel, non-parallel, convectively
unstable and globally unstable Ginzburg-Landau equation is
investigated in Sections 2 and 3. Model reduction of the system
is performed in section 4 followed by optimal (LQG), robust
(H∞) and reduced-order control design in section 5.

with two different sets of parameters: one set to model globally unstable flows
(so-called oscillators), and another set to describe convectively unstable flows
(so-called noise amplifiers). The Ginzburg-Landau equation has also been the
subject to several flow control studies (Monkewitz 1989; Park et al. 1993; Lauga
& Bewley 2003, 2004; Cohen et al. 2005).

The review is organized as follows (see also figure 1): we start with a
summary of stability results for the Ginzburg-Landau equation in section 2
where results for both asymptotic behavior and transient growth will be pre-
sented. In section 3 we investigate the input-output behavior of linear systems
in general, and the Ginzburg-Landau equation in particular. The response to
impulsive, harmonic and stochastic forcing will be considered, and the con-
cepts of controllability and observability will be introduced. In section 4 we re-
view the projection method of model reduction using global eigenmodes, POD
modes and balanced truncation. Section 5 deals with the control design for
the Ginzburg-Landau equation. We present a detailed derivation of the LQG
(Linear Quadratic Gaussian) control framework, raise the important issue of
actuator and sensor placement, and conclude by discussing robust control. Con-
cluding remarks and a summary of the presented material are offered in the
last section.
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Figure 2. Local stability concepts based on the linear re-
sponse of the parallel Ginzburg-Landau equation to a tempo-
rally and spatially localized pulse at t = 0 and x = 0, displayed
in the x-t-plane. (a) stable configuration µ0 ≤ 0 : the solution
at t = t1 > 0 is damped everywhere; (b) convectively unstable
configuration 0 < µ0 < µt : the solution at t = t1 is ampli-
fied, but is zero along the ray x/t = 0; (c) absolutely unstable
configuration µt ≤ µ0 : the state is amplified at t = t1 and
nonzero along the ray x/t = 0.

2. Asymptotic and transient behavior

2.1. Parallel flows — fundamental concepts

Before applying modern techniques of hydrodynamic stability theory (Schmid
& Henningson 2001) to the full Ginzburg-Landau model describing spatially
varying flows, we will first introduce and analyze a simpler version of the
Ginzburg-Landau equation. By neglecting the spatial dependence of the flow,
thus arriving at the parallel (i.e. constant-coefficient) Ginzburg-Landau equa-
tion, we will apply concepts of linear stability analysis to describe the growth
and decay of disturbances in time and/or space.

The parallel Ginzburg-Landau equation on the infinite interval −∞ < x <
∞ reads

∂q

∂t
= Aq =

(

−ν ∂
∂x

+ γ
∂2

∂x2
+ µ

)

q, (1a)

q(x, t) < ∞ as x→ ±∞, (1b)

with initial condition q(x, 0) = q0(x) and A as the Ginzburg-Landau opera-
tor. The solutions q(x, t) are functions in C with the inner-product defined
as 〈f, g〉 =

∫ ∞

−∞
g∗fdx. We occasionally refer to the this norm as the energy

norm. The superscript ∗ denotes the complex conjugate. The convective and
the dissipative nature of the modeled flow is represented by the complex terms
ν = U+2icu and γ = 1+icd, respectively. The above equation is of convection-
diffusion type with an extra real-valued term µ = µ0−c2u to model the presence
of exponential instabilities. The significance of the complex terms cd and cu
will become clearer when we decompose the system into wave-like solutions.

We first investigate the linear stability of the parallel Ginzburg-Landau
equation, i.e. the spatio-temporal evolution of the perturbation q(x, t) about
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the basic state qB(x, t) = 0. As introduced by Briggs (1964), this spatio-
temporal evolution of perturbations in fluid flow can be described by three
basic types of local behavior: (i) stable, (ii) convectively unstable and (iii)
absolutely unstable. Our model equation, in fact, has by construction the min-
imum number of required terms to give rise to a successive transition through
the three types of instability.

The three types of disturbance behavior can be probed by computing the
response to a spatially and temporally localized pulse as this pulse evolves in
space and time. Figure 2 demonstrates the three types of responses that may be
observed. First, the amplitude may asymptotically decay in time throughout
the entire domain (see figure 2a). In this case, the basic flow is deemed linearly
stable. Second, a convectively unstable flow is shown in figure 2b; in this case,
the perturbation grows in time, but is convected away from the location at
which it was generated, so that the response eventually decays to zero at every
spatial location. Finally, for an absolutely unstable flow (see figure 2c) the
perturbation is amplified both upstream and downstream of the location it was
generated and thus contaminates the entire spatial domain over time.

The response behavior to a δ-function applied at (x, t) = (0, 0) is equivalent
to the Green’s function or impulse response of the complex Ginzburg-Landau
equation. We will return to this concept in a subsequent section of this review.
In what follows, we will first exploit the homogeneity in space and time and
seek solutions in the wavenumber/frequency (Fourier) space. The dispersion
relation linking wavenumber and frequency then fully describes the evolution
of wavelike (and by superposition) non-wavelike solutions. Criteria for stability
or instability of the solutions, as well as the type of instability, follow easily
from the dispersion relation.

We express the solutions q(x, t) as a superposition of normal modes

q̃(k, ω) exp(ikx− iωt) (2)

with wavenumber k, frequency ω, and (complex) amplitude q̃. The imaginary
part of k and ω determines the stability of the associated solution, whereas the
real part describes the oscillatory behavior in x and t, respectively. Introducing
this normal mode decomposition into (1) results in the dispersion relation,
D(k, ω;µ0) = 0, which takes the form

ω = Uk + cdk
2 + i(µ0 − (k − cu)2). (3)

Within the temporal framework, an initial periodic perturbation with real
wavenumber k grows exponentially in time when µ0 in (3) exceeds (k − cu)2,
i.e. when exponential growth exceeds diffusion. In this case, ωi(k) > 0 and
the associated normal mode q̃ exhibits exponential temporal growth. Further-
more, we observe a finite interval k ∈ [cu −√

µ0, cu +
√
µ0] of unstable spatial

wavenumbers. A simple criterion for linear stability of the flow can be deduced
by considering the growth rate ωi = ωi,max of the most unstable wave k = kmax

in this interval. For the dispersion relation (3), we observe that kmax = cu and
the corresponding growth rate is ωi,max = µ0. Thus, the condition for a local
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Figure 3. The neutral stability curve for the parallel
Ginzburg-Landau equation (with cu = 0.2) in the (µ0, k)-
plane.

linear instability becomes,

µ0 ≤ 0 locally stable, (4a)

µ0 > 0 locally unstable. (4b)

In figure 3, the neutral curve, defined by ωi,max = 0, is displayed as a function
of µ0 and k. We see that the range of unstable wavenumbers increases as µ0

increases.

To further investigate the two types of locally unstable configurations —
convectively unstable and absolutely unstable — it is instructive to consider
perturbations that consist of a superposition of normal modes near k = cu
which form a travelling wavepacket. From the dispersion relation (3) we con-
clude that individual wave components of this wavepacket travel at the phase
velocity

ωr/k = U + cdk, (5)

whereas the wavepacket itself, and therefore the perturbation, travels at the
group velocity

Umax =
∂ω

∂k
= U + 2cdcu. (6)

In general, the group velocity is complex but carries a physical meaning when
it is real, which is always the case for the most unstable wavenumber cu.

The disturbance behavior in the unstable region depends on the compe-
tition between convection and instability. For the Ginzburg-Landau equation
we find that the flow is convectively unstable if Umax > 2

√
µ0|γ|, i.e., when

the group velocity exceeds the exponential instability of the unstable region
(for constant diffusion). This means that, for convection-dominated flows, per-
turbations grow as they enter the unstable domain but are quickly convected
downstream, beyond the unstable region where they decay, and the basic state
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relaxes back to its original state (see figure 2b). However, when µ0 exceeds the
critical value of

µt =
U2

max

4|γ|2 , (7)

there exists an unstable wavelength with zero group velocity. As the pertur-
bation is amplified in the unstable domain, it will gradually contaminate the
entire physical domain and render the flow absolutely unstable. In figure 4,
the neutral curve, defined by µt = 0, is displayed as a function µ0 and Umax.
The critical value µt is obtained by considering a wavepacket with a zero group
velocity ∂ω/∂k = 0 (see Huerre (2000) for an exact derivation). The associated
growth rate ωi = ωi,0 is the absolute growth rate. Unlike for our case, the
absolute frequency ω0 for realistic flow configurations can seldom be found in
analytic form. Instead, one has to resort to Briggs’ method (Briggs (1964),
see also Huerre (2000)) which amounts to locating pinch points in the complex
k-plane. In addition to the criterion of zero group velocity, one must ensure
that the two spatial branches k+(ω) and k−(ω) (for real ω) in (3) originate
from the upper and lower halves of the complex k-plane.

2.2. Spatially developing flows — a global approach

Despite the limitations of a parallel flow assumption, the above results carry
over to weakly non-parallel flows as described in Monkewitz (1990); Huerre
& Monkewitz (1990); Chomaz et al. (1991); Le Dizés et al. (1996). Within
a Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation, one can draw
conclusions about the global stability behavior from investigating the dispersion
relation locally. Many realistic flows, however, are strongly non-parallel which
requires us to resort to a global stability analysis. In this section, we will adopt
this global point of view to investigate the stability properties of a simple model
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Figure 5. (a) The spatio-temporal evolution of a disturbance
in a globally unstable flow. The disturbance grows exponen-
tially until the cubic nonlinear term −|q|2q (see Chomaz et al.
(1990); Chomaz (2005) for details of the nonlinear Ginzburg-
Landau equation) causes the disturbance to saturate and os-
cillate. (b) The energy that corresponds to the evolution in
(a) is shown in red, and the linear exponential growth for the
linear Ginzburg-Landau equation is shown in dashed black.

flow which depends on the flow direction x. We will see that a rich disturbance
behavior is uncovered which has its roots in the non-normality of the underlying
evolution operator (Trefethen 1997; Trefethen & Embree 2005; Davies 2002).
As a first step, one solves a global eigenvalue problem. Assuming completeness,
any perturbation can then be decomposed into the global eigenfunctions of the
governing operator. If there exists an unstable global mode, it is amplified until
it saturates due to nonlinearity and may lead to self-sustained oscillations in
the flow (figure 5). The short-time, or transient, behavior can also be captured

by global modes (Cossu & Chomaz 1997; Henningson & Åkervik 2008), if one
considers a superposition of them. For non-normal stability operator with
corresponding non-orthogonal global modes a superposition of decaying global
modes can result in a large transient amplification of perturbation energy (figure
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Figure 6. (a) Linear transient growth of a perturbation in
space and time: an optimal initial perturbation grows as it
enters the unstable domain at branch I at x = −8.2 until it
reaches branch II at x = 8.2. The two dashed lines depict
branch I and II. (b) The corresponding optimal energy growth
of the convectively unstable flow in (a).

6). As demonstrated by Cossu & Chomaz (1997), this transient behavior often
corresponds to a localized convective instability when using a local approach.

The linear complex Ginzburg-Landau equation serves as a simple model for
capturing both the short-time and long-time evolution of small perturbations
q(x, t) in spatially developing flows. We will use this model equation to illus-
trate fundamental concepts of linear global stability analysis. If the parameter
µ, responsible for the local instability in equation (1), is now taken as a func-
tion of x, the Ginzburg-Landau equation becomes a variable-coefficient partial
differential equation modeling non-parallel flows (Hunt & Crighton 1991). The
Ginzburg-Landau equation with µ as a linear function in x can be used to
mimic flows on the interval [0,∞) as shown in Chomaz et al. (1988). We will
adopt the commonly used quadratic function (Hunt & Crighton 1991; Cossu &
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Chomaz 1997),

µ(x) = (µ0 − c2u) + µ2
x2

2
, µ2 < 0. (8)

The flow is now susceptible to instabilities only when µ(x) > 0, which defines

a confined unstable region in the x-direction given by −
√

−2(µ0 − c2u)/µ2 <

x <
√

−2(µ0 − c2u)/µ2. The upstream and downstream edge of the unstable
domain are referred to as branch I and II, respectively, and are indicated by
the two black dashed lines in figure 5 and 6. The extent of this region depends
on the parameter µ2 which can be interpreted as the degree of non-parallelism
of the flow. The operator A in (1) with q(x, t) bounded for x = ±∞ is non-
normal if both the term involving µ2 and the convection term ν are non-zero.
As demonstrated in Cossu & Chomaz (1997) and Chomaz (2005) the smaller
µ2 and/or the larger ν the stronger the non-normality of the operator A. The
parameter µ2 thus plays a dual role: for large values of µ2 the system is strongly
non-parallel but weakly non-normal, while for very small values of µ2 the sys-
tem represents weakly non-parallel but strongly non-normal flow. For the latter
case, a local analysis may be more appropriate as the resulting global eigensys-
tem is rather ill-conditioned (Chomaz 2005; Trefethen & Embree 2005).

A global mode of the Ginzburg-Landau equation is defined as

q(x, t) = φ(x) exp(λt) (9)

and is a solution to the eigenvalue problem

λφ(x) = Aφ(x) φ(x) <∞ as x→ ±∞, (10)

where A is the operator defined in (1). The flow is globally unstable when
the real part of any eigenvalue λ is positive which results in self-excited linear
oscillations in the flow of a frequency given by the imaginary part of λ. For the
case µ2 6= 0 the eigenvalue problem (10) for the Ginzburg-Landau equation (1)
can be solved analytically (Chomaz et al. 1987). One obtains

λn = (µ0 − c2c) − (ν2/4γ) − (n+ 1/2)h, (11a)

φn(x) = exp{(ν/2γ)x− χ2x2/2}Hn(χx), (11b)

with h =
√−2µ2γ, n = 0, 1 . . . and Hn as the nth Hermite polynomial, scaled

with χ = (−µ2/2γ)
1/4. Global instability is determined by the sign of the first

eigenvalue (n = 0) which yields the criterion for global instability as µ0 > µc

where

µc = µt +
|h|
2

cos

(
Argγ

2

)

(12)

and µt is the threshold value for absolute instability (7). The term Arg denotes
the phase angle of γ. We therefore conclude from (12) that the threshold for a
global instability is higher than the one for an absolute instability. Formulated
in another way, an absolute instability is a necessary condition for a global
instability.
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The short-time behavior of a disturbance cannot be predicted by studying
individual eigenmodes. Instead, a more detailed analysis of the properties of
the stability operator A is necessary. When µ2 6= 0 and ν 6= 0 the Ginzburg-
Landau operator A is non-self-adjoint (Davies 2002), i.e., 〈q1,Aq2〉 6= 〈Aq1, q2〉.
As a consequence, the global modes are non-orthogonal 〈φn, φm〉 6= δnm, and
although they may form a complete basis, they are nearly colinear and their
superposition may lead to large transient growth (figure 6b). We will study
this issue in more detail by considering an expansion in global modes. To this
end, we find the adjoint global modes as

ψn(x) = exp{(−ν∗/γ∗)x}φ∗n(x) (13)

which satisfy the adjoint eigenvalue problem

λ∗nψn(x) = A+ψn(x), (14)

where

A+ = ν∗
∂

∂x
+ γ∗

∂2

∂x2
+ µ∗(x) (15)

with boundary condition ψn(x) < ∞ as x → ±∞. The superscript ∗ denotes
the complex conjugate. The adjoint global modes ψn are bi-orthogonal to the
global modes (11) according to

〈ψn, φm〉 = Nnmδn,m (16)

with Nnm as a normalization factor that we choose such that ‖φn‖ = ‖ψn‖ = 1.
The adjoint mode (13) distinguishes itself from its direct counterpart (11b)
mainly by the sign of the basic flow convection term ν. This manifests itself by
a characteristic separation of the direct and adjoint global mode in space. In
figure 7a and b, the two first direct and adjoint global modes of the Ginzburg-
Landau equation are shown where the separation in x is seen to increase for
higher modes, until the support of the direct and adjoint mode is nearly disjoint.
Consequently, Nnn = 〈φn, ψn〉 becomes increasingly small, a phenomenon we
shall investigate further in what follows.

We continue by stating that a sequence of global modes {φn}∞n=0 forms a
basis if any solution of the Ginzburg-Landau equation has a norm-convergent
expansion

q(x, t) =

∞∑

n=0

κnφn(x) exp(λnt), (17)

where the expansion coefficients κn are obtained using the adjoint global modes
and the initial condition q0 according to

κn =
〈q0, ψn〉
〈φn, ψn〉

. (18)

The denominator of the above expression, i.e. Nnn, becomes very small when
the direct and adjoint global modes have nearly disjoint spatial support. In this
case, the expansion coefficients (18) of q become large. Although the amplitude
of all stable global modes decreases monotonically in time, their superposition
produces a wavepacket that transiently grows in time as it propagates in space.
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Figure 7. The first (a) and second (b) global (black lines) and
adjoint eigenmode (red lines) of the Ginzburg-Landau equation
with the absolute value shown in solid and real part in dashed.
The gray area marks the region of instability

Although it is possible (Ehrenstein & Gallaire 2005; Åkervik et al. 2007,

2008; Henningson & Åkervik 2008), in practice the short-time amplification of
disturbances is rarely computed using global modes. Instead one computes the
norm of the exponential matrix (Trefethen & Bau 1997), ‖eAt‖, as we shall
demonstrate next.

2.3. Optimal energy growth and resolvent norms

For sufficiently large transient amplifications nonlinear effects can no longer be
neglected, and, in real flows, more complex instabilities or transition to tur-
bulence are often triggered. For this reason it seems important to investigate
the most dangerous initial condition that results in a maximum energy ampli-
fication over a specified time interval (Reddy et al. 1993; Reddy & Henningson
1993; Farrell 1988; Corbett & Bottaro 2001; Andersson et al. 1999; Luchini
2000).

For simplicity, we will formulate and present results using the discrete
Ginzburg-Landau operator A. See Appendix A for details of the numerical ap-
proximation of the operator A. The continuous approach can be found in Tre-
fethen & Embree (2005). The values of the Ginzburg-Landau parameters used
in the computations that follows can be found in Table 1.
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The discrete energy norm given by (107) can, after a Cholesky decom-
position of the energy weight matrix M = FHF, be related to the standard
Euclidean norm of a disturbance by

E(t) = ‖q‖2
M = ‖Fq‖2

2. (19)

We can now define the maximum transient growth of the perturbation
energy at time t as

Emax(t) = max
‖q0‖>0

‖q(t)‖2
M

‖q0‖2
M

(20)

= max
‖q0‖>0

‖FeAtq0‖2
2

‖Fq0‖2
2

= ‖FeAtF−1‖2
2 = σ2

1

where σ1 is determined from a singular value decomposition,

FeAtF−1 = UΣV H , Σ = diag{σ1, . . . , σn}. (21)

The above expression contains an optimization over all possible initial condi-
tions, and the peak value of σ2

1(t) is the maximum energy amplification over
time. Optimal initial disturbances can be calculated according to q0 = F−1V1

where V1 is the right principal singular vector of the SVD in equation (21).
The maximum growth and the corresponding optimal disturbance can also be
obtained from power iterations (Andersson et al. 1999; Schmid & Henningson
2001).

The optimal initial disturbance of the Ginzburg-Landau equation shown in
figure 8 is located at the upstream boundary of the unstable domain. As time
evolves it traverses the unstable domain (gray region), where it can exhibit
either decay, transient growth or asymptotic exponential growth as illustrated
in figure 9 depending on the value of bifurcation parameter µ0 (i.e. the Rey-
nolds number for Navier–Stokes equations). The optimal energy growth curves
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Figure 9. Optimal energy growth, Emax, as a function of
time. (S) stable configuration µ0 < 0: the perturbation en-
ergy decays exponentially for all time; (CU) convectively un-
stable configuration 0 < µ0 < µc: the perturbation energy
is amplified initially but decays to zero asymptotically; (GU)
globally unstable configuration µc < µ0: the perturbation en-
ergy grows exponentially asymptotically. The values of the
parameters used in the computations are listed in Table 1.

shown in figure 9 corresponds to a stable (S), convectively unstable (CU) and
globally unstable (GU) flow configuration. Note that, for both (S) and (CU)
configurations, all global modes are stable. However, only for the latter case do
we have µ0 > 0 yielding a locally convectively unstable spatial region. Conse-
quently, a transient energy growth of two orders of magnitude can be observed
before asymptotic decay sets in (Cossu & Chomaz 1997).

To conclude this section, we investigate the effect on global modes and
on the global spectrum as the operator A is discretized. The spectrum of A is
displayed in figure 10 by the green symbols using the analytical expression (11).
The spectrum of the discretized Ginzburg-Landau operator A is shown by the
blue symbols. A characteristic split of the eigenvalue branch is observed which
is rather common in finite-precision stability computations of strongly non-
normal flows. The reason for this split is the insufficient resolution to accurately
capture the increasingly oscillatory behavior of the associated eigenfunctions.
These observations are closely related to the notion of pseudospectra (Trefethen
& Embree 2005).

It is misleading to assume that if Aφ ≈ sφ, then s is close the spectrum
of A. If s is taken as an approximate eigenvalue in the sense that ‖Aφ −
sφ‖M < ǫ‖φ‖M , we can conclude that, for normal systems, ǫ can be as chosen
as small as one wishes. For non-normal systems, however, the minimum value
of ǫ can become very large. This observation suggests the definition of the
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Subcritical Supercritical
{µ0, µ2} {0.38,−0.01} {0.41,−0.01}
{ν, γ} {2 + 0.2i, 1 − i} {2 + 0.2i, 1 − i}
{xI , xII} {±8.2} {±8.2}
{xw, xs, xu, s} {−11, 0,−3, 0.4} {−11, 9,−9, 0.1}
{R,W,G, γ0} {1, 1., 0.1/1.0, 9} {1, 0.1, 9}

Table 1. Parameters {µ0, µ2}, {ν, γ} of the Ginzburg-Landau
equation given in (1) and (8). The critical values for global and
absolute stability are µc = 0.3977 and µt = 0.32, respectively.
External disturbances (B1), sensor (C2) and actuator (B2) are
Gaussian functions (see equations (108)) with mean given by
xw, xs and xu, respectively and a width of s = 0.4. Design
parameters {R,W,G, γ0} for the LQG- and H∞-compensators
are the control penalty (R), the covariance of the disturbance
(W ) and sensor noise (G), and a bound on the ∞-norm, (γ0).

pseudospectrum of A as the sets in the complex plane such that

{s ∈ C : ‖R(s)‖M = ‖(sI −A)−1‖M > ǫ−1}. (22)

The pseudospectrum of A (shown in figure 10) is visualized as a contour plot
of the norm of the resolvent

‖R(s)‖M = ‖FR(s)F−1‖2 = σ1(s) (23)

where σ1(s) is the largest singular value of FR(s)F−1. It is then straightforward
to conclude that the eigenvalues of the discretized Ginzburg-Landau operator A
are in fact ǫ-pseudoeigenvalues for ǫ equal to machine precision and thus align
with the 1015-contour of the resolvent norm in figure 10. For an alternative
approach to characterize the system sensitivity see Biau & Bottaro (2004).

The resolvent contours moreover give an indication of the existence of non-
normal effects, since the amount by which the contours protrude into the un-
stable half-plane can be used to estimate the maximum transient growth of
energy (Trefethen & Embree 2005; Schmid 2007). We will return to this con-
cept and use the resolvent norm from an input-output viewpoint in the next
section, where we generalize the resolvent to transfer functions — one of the
most central concepts in the design of control strategies.

2.4. Stability of supercritical and subcritical flows

Based on the global and local stability concepts introduced in the previous
sections we are now in a position to define two fundamentally different scenarios
that model the behavior of disturbances in a large number of flows.

The first model is known as the supercritical case, in which any flow dis-
turbance will grow exponentially until it saturates due to nonlinearities, as
shown in figure 5. A global analysis shows at least one unstable eigenmode
of A, yielding a globally unstable flow. This type of scenario prevails when
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Figure 10. Global spectrum of the subcritical Ginzburg-
Landau equation (see Table 1), where all the eigenvalues (blue
dots) are in the stable half-plane. The unstable domain is in
gray and the exact global spectrum is indicated in green. The
numerically computed global eigenvalues (blue dots) exhibit a
characteristic split, aligning with the resolvent contour that ap-
proximately represents machine precision. The resolvent norm
contours range from 10−1 to 1015.

the bifurcation parameter µ0 of the Ginzburg-Landau equation is larger than
the threshold µc. A local analysis confirms an absolutely unstable region since
µc > µt in (12) with µt as the threshold for a local absolute instability (given
by equation (7)). For more details on how the absolutely unstable region acts
as a “wavemaker” that sheds waves in the downstream and upstream direction,
see Chomaz (2005). Here, we will simply state the fact that linear local stabil-
ity theory can predict the occurrence of unstable global modes and provide an
estimate of the frequency at which these modes oscillate. The Karman vortex
street behind a circular cylinder is a generic supercritical flow configuration,
and a global and local analysis of the cylinder wake can be found in Pier (2002)
and Giannetti & Luchini (2007). It was first shown Provansal et al. (1987) that
the transition in a wake behind a cylinder close to the critical Reynolds num-
ber is described by the Landau equation, i.e. the nonlinear Ginzburg-Landau
equation without diffusion term. Since then, the Ginzburg-Landau equation
(often in its nonlinear form) has been used extensively to model cylinder wakes,
see Albarède & Monkewitz (1992); Monkewitz et al. (1996); Roussopoulos &
Monkewitz (1996); Lauga & Bewley (2004); Cohen et al. (2005). Other globally
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unstable flow examples that have been investigated as to their self-sustained
oscillatory behavior are, among others, hot jets (Lesshafft et al. 2006; Nichols
et al. 2007) and a separated boundary layer flow over a bump (Marquillie &
Ehrenstein 2002).

The second model is known as the subcritical case and describes the be-
havior of disturbances in convectively unstable flows (figure 6). As a result
of the non-normality of A, a global analysis reveals the presence of transient
energy growth (figure 6b) which cannot be captured by considering individual
eigenmodes of the operator A. Instead, one has to consider a superposition
of global modes or the norm of the exponential matrix to accurately describe
this short-term phenomenon. Transient growth is observed for the Ginzburg-
Landau equation when 0 < µ0 < µc. A local analysis shows that this corre-
sponds to a region where the flow is convectively unstable. The wavepacket in
figure 6 travels with a group velocity (Umax) composed of a dominant wave (cu)
which is associated with the local dispersion relation (3) analyzed in section 2.1.
Prototypical convectively unstable flow configurations contain, among others,
the boundary layer on a flat plate (Ehrenstein & Gallaire 2005; Åkervik et al.
2008), homogeneous jets and mixing layers (Ho & Huerre 1984).

The Ginzburg-Landau parameters {ν, µ0, µ2, γ} for modeling the linear sta-
bility of a subcritical or supercritical flow are listed in Table 1. The critical
value which delineates the two scenarios is µc = 0.4.

3. Input-output behavior

Input-output analysis is a type of analysis of linear systems that is common-
place in systems theory (Kailath 1980). It is concerned with the general re-
sponse behavior to various excitations of the linear system. In its generality,
it goes beyond the concept of classical stability theory commonly practiced in
fluid dynamics, as it is not only concerned with issues of stability (i.e., the
response to various initial conditions), but also with the short-term dynamics,
the response to external (deterministic or stochastic) excitations and the in-
fluence of uncertainties in the underlying system (Jovanovic & Bamieh 2005;
Schmid 2007). As such, it is thought of as an extension of stability analysis and
helps reveal a more complete picture of the behavior of disturbances governed
by the linear system.

The temporal response of the Ginzburg-Landau equation to initial condi-
tions (both short-term transient and long-term asymptotic) has been considered
in the previous section. In this section, we recast the Ginzburg-Landau model
into an input-output framework. The analysis is applied to the convectively
unstable case only, since these types of flows are sensitive to forcing and act
as noise amplifiers (Huerre 2000). Globally unstable flows behave as flow os-
cillators with a well-defined frequency that is rather insensitive to external
forcing.
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Figure 11. Example of the input-output behavior of the
Ginzburg-Landau equation with one input and two outputs.
In (a) the evolution in space and time of the state when forced
by random noise is shown. The region between the dashed
lines is convectively unstable. The locations of the forcing B
(x = −11), the first output C1 (at branch I) and the second
output C2 (at branch II) are marked by arrows. In (b) and
(c) the output signals y1 = C1q and y2 = C2q and in (d) the
input signal u are shown. Note that, in (c) the amplitude of
the output signal y1 is less than one, but further downstream
in (b), the second output signal y2 has an amplitude close to
10. This illustrates the amplifying behavior of the system.

This framework will build the foundation for the subsequent design of con-
trol schemes, since it allows the quantitative description of the open-loop dy-
namics, i.e. the response to, for example, excitation in the free-stream or to
blowing/suction at the wall. We will denote the input sources by u(t) and the
measured outputs by y(t). In many realistic flow cases, the output y(t) will
only be a subset of the state variable q(t). For example, only shear or pressure
measurements at the wall (or another specific location) will be available.

The common format for an input-output analysis is given by the state-space
formulation

q̇(t) = Aq(t) +Bu(t) (24a)

y(t) = Cq(t) (24b)

q(0) = q0 (24c)

where A represents the discrete Ginzburg-Landau operator, the matrices B and
C govern the type and location of the inputs u(t) and outputs y(t), respectively,
and q0 stands for the initial condition. For the state-space formulation of the
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linearized incompressible Navier–Stokes equations see Farrell & Ioannou (1993)
and Jovanovic & Bamieh (2005).

The continuous equations are discretized in space using a spectral Hermite
collocation method described in Appendix A. The inputs B = {B1, . . . , Bp}
and outputs C = {C1, . . . , Cr}H have spatial distributions of the form of Gauss-
ian functions given by equation (108). In what follows, we will formulate and
present results based on matrices and the discrete Ginzburg-Landau operator
A.

The corresponding adjoint state-space equations of (24) describing the evo-
lution of adjoint state variable r(t) can be written as (van der Schaft 1991)

ṙ(t) = A+r(t) + C+v(t) (25a)

z(t) = B+r(t) (25b)

r(0) = r0. (25c)

The discrete adjoint matrices are not simply the complex conjugate transpose
(in other words, (A+, B+, C+) 6= (AH , BH , CH)), unless the inner-product
used to derive the adjoint operator (14) has an associated weight M which is
unity. For the more general case, M 6= I, we have

A+ = M−1AHM, (26a)

B+ = BHM, (26b)

C+ = M−1CH , (26c)

where M is a positive-definite and Hermitian weight-matrix. In this work, M
is chosen such that the inner-product produces the energy of the state variable
(see Appendix A).

The system of equations (24) has the formal solution

y(t) = CeAtq0 + C

∫ t

0

eA(t−τ)Bu(τ) dτ (27)

where we identify the first part of the right-hand side with the homogeneous
solution and the second part with the particular solution stemming from the
forcing term Bu. Having covered the homogeneous solution (for C = I) in detail
in the previous section, we now turn our attention to the particular solution.
Setting q0 = 0 leaves us with the input-output relation

y(t) = C

∫ t

0

eA(t−τ)Bu(τ) dτ (28)

from which we will develop tools to capture and characterize aspects of the
transfer behavior of an input signal u(t) as it is passes through the linear
system given by A.

Before analyzing the above input-output relation in all generality, a first
simple numerical experiment shall demonstrate the response behavior of the
convectively unstable Ginzburg-Landau equation (see figure 11). As an input
signal u(t) we choose white noise — drawn from a normal distribution with
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zero mean and unit variance — introduced at a location just upstream of the
unstable region; the corresponding response y(t) = Cq(t) is extracted at the two
boundaries of the unstable domain, i.e., at branch I and II. A first observation
confirms the amplification of the signal as it traverses the unstable domain as
well as the emergence of a distinct frequency from the noisy input. The system,
thus, seems to act as both a noise amplifier (Huerre & Monkewitz 1990) and a
filter. These two characteristics will be analyzed in more detail below.

3.1. Impulsive and harmonic forcing

The above introductory example has shed some light on the response behavior
of the Ginzburg-Landau equations to external forcing. Even though the signal
has demonstrated amplification and frequency selection of the linear system, a
more general analysis is pursued that parameterizes the input-output behavior
more precisely.

For this reason, we will consider two distinct input signals: an impulsive
signal applied at a specified location xw = −11 which will trigger what is
referred to as the impulse response, and a harmonic signal, again applied at a
given location, that yields the frequency response of the linear system.

For the impulse response we thus assume

u(t) = δ(t) (29)

which, according to (28), results in

y(t) = CeAtB = g(t). (30)

The spatial localization of the impulsive input signal is contained in the matrix
B (see equation (108a)). For C = I, the above solution (30) represents the
Green’s function of the Ginzburg-Landau equation. It forms the fundamental
solution of the linear system since particular solutions to more general external
excitations can be constructed by a simple convolution of the input signal with
the Green’s function. The input-output system (24) is defined as stable if and
only if the impulse response (30) decays as time tends to infinity. Consequently,
the convectively unstable flow is input-output stable, which is in contrast to the
globally unstable flow where an impulse will trigger the growth of an unstable
global mode with a well defined frequency. For the convectively unstable case,
the state impulse response q(t) = eAtB for a pulse introduced at xw = −11
is displayed in figure 12a; the impulse response (30) is shown in figure 12b.
We observe the rise of a wavepacket with a distinct spatial wavenumber and
propagation speed. As expected from the introductory example (figure 5), the
amplitude of the wavepacket grows throughout the unstable domain before it
decays as the wavepacket passes branch II. For larger times, only the remnants
of the wavepacket near branch II are observed.

The impulsive signal u(t) = δ(t) contains all temporal frequencies with
equal amplitude. It is thus ideally suited to extract and analyze a frequency
selection behavior from an unbiased input. On the other hand, we could choose
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Figure 12. Impulse response of the Ginzburg-Landau equa-
tion: (a) The state response to an impulse introduced at t = 0
and xw = −11. (b) The impulse response at branch II. The
convective character of the instability is evident: a wavepacket
grows as it enters the unstable domain, but is gradually con-
vected away from this domain before it begins to decay.

an input signal with only one frequency (rather than all frequencies), i.e.

u(t) = est s ∈ C. (31)

Inserting the above input into (28), assuming A is globally stable and t = ∞
yields

y(t) =

∫ ∞

0

g(τ)es(t−τ) dτ = (32)

=

∫ ∞

0

g(τ)e−sτ dτ

︸ ︷︷ ︸

G(s)

est = |G(s)|e(st+φ).

We can identify the transfer matrix of dimension r × p

G(s) = C(sI −A)−1B s ∈ C, (33)

as the Laplace transform of the impulse response g(t). Due to the linear nature
of the Ginzburg-Landau equation an input est will generate an output with
the same frequency but with a phase shift φ = Arg G(s) and an amplitude of
|G(s)|. Since G(s) is usually a rectangular matrix, the amplitude is defined as

|G(s)| = σ1, (34)
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Figure 13. Input-output pseudospectra where
the black transfer function contour levels are
{100, 101, 103, 104, 105, 106}. The red contour (with level
208) represents the largest contour value that crosses the
imaginary axis. The blue symbols indicate the eigenvalues of
A.

where σ1{·} denotes the largest singular value of G(s). The transfer function
G(s) fully describes the input-output behavior of the system, whereas the state-
space formulation (24) describes the dynamics of flow.

The transfer function can be regarded as a generalization of the resol-
vent (22) introduced earlier. In fact, the pseudospectra in figure 10 are contours
of |G(s)| for the case B = I which corresponds to a uniform distribution of the
input and C = F (where M = FHF ) which corresponds to the measurement
of the flow energy. As discussed in section 2.4, the contours represent locations
in the complex plane where approximate eigenvalues of A can be found for
a given error norm (ǫ = 1/|G(s)|). Figure 13 displays pseudospectra of the
input-output system with B defined as in (108) and C = F. In this case, the
contour levels correspond to the response amplitude of the output for a unit
amplitude input of the form est.

As an example, we will concentrate on a purely harmonic forcing and set
s = iω. The response of the linear system to this type of excitation is given by
the expression

G(iω) = C(iωI −A)−1B ω ∈ R, (35)
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Figure 14. (a) The state response to harmonic forcing lo-
cated upstream of branch I (lower of the two dashed lines).
The largest response is at branch II (upper dashed line) for
ω = −0.65. (b) The frequency response, where the output is a
Gaussian function (see Appendix A) located at branch II. In
the gray area all forcing frequencies are amplified in the un-
stable domain, all other frequencies are damped illustrating a
filtering effect. This response corresponds to the thick dashed
line representing the imaginary axis in the pseudospectra plot
in figure 13, and the peak value ‖G‖∞ = 208 corresponds to
the red contour level.

and the largest response to a harmonic input can be defined as the maximum
value of |G(iω)|,

‖G‖∞ = max
ω

|G(iω)|. (36)

A remark on the choice of notation seems necessary: in the stability section,
we defined the energy norm of the state vector q(t) as ‖q‖2

M = qHMq, whereas
the definition (36) of ‖G‖∞ represents a norm of all stable transfer functions
in the complex frequency space.

For normal systems the largest response to harmonic forcing is proportional
to the distance of the real part of the largest eigenvalue of A to the imaginary
axis, i.e.,

‖G‖∞ ∼ 1/|Re(λ1)|. (37)

For non-normal systems, however, the response of the system can be substantial
even though the forcing frequency is nowhere close to an eigenvalue. The largest
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response ‖G‖∞, in this case, is proportional to the largest value of the contour
|G(s)| that crosses the imaginary axis.

This feature is exemplified on the Ginzburg-Landau equation in figure 13
and 14. The state response (i.e., the special case with C = I) to spatially
localized, harmonic forcing at xw = −11 is shown in figure 14a. The largest
response is obtained for a frequency of ω = −0.65, and the location of the most
amplified response in space is — not surprisingly — in the vicinity of branch II.
In figure 14b the frequency response |G(iω)| is shown which corresponds to the
dashed line in the contour plot of figure 13. The peak of this response ‖Gc‖∞ =
208 is associated with the red contour in the pseudospectra plot (figure 13). The
response computed from the distance to the nearest eigenvalue (37) has a value
of only 56. It is thus confirmed that the frequency response for non-normal
systems is substantially larger than what can be inferred from the distance of
the forcing frequency to the nearest eigenvalue.

3.2. Stochastic forcing

Under realistic conditions we rarely possess the exact knowledge of the dist-
urbances influencing the flow system, and it is therefore essential to account
for a certain amount of uncertainty. In this section we present fundamental
techniques to characterize the response behavior within a statistical frame-
work. This framework also gives insight into inherent stability properties of
the flow (Hœpffner 2006; Schmid 2007), as for example in the case of channel
flow studied by Farrell & Ioannou (1993); Bamieh & Dahleh (2001); Jovanovic
& Bamieh (2005) and boundary layer Hœpffner & Brandt (2008). When a
fluid system is externally excited by stochastic disturbances, its response is
best characterized by the state statistics, for instance, the rms values of the ve-
locity components, the mean energy, or two-point correlations. In the context
of aerodynamic flows, stochastic excitation can be attributed, among others,
to free-stream turbulence, wall roughness, or incident acoustic waves.

A naive statistical analysis may consist of performing a large number of
simulations by choosing sample realizations of the forcing and by subsequent
averaging of the resulting flow quantities to obtain the desired statistics. A
more direct approach involves the derivation of evolution equations for the
statistical properties, such as e.g. two-point correlations, of the flow quantities.
For linear systems it is possible to solve directly for the two-point correlations
of the flow quantities in terms of the two-point correlations of the external
excitation. The key equation relating second-order statistics of the excitation
to second-order statistics of the state is the Lyapunov equation. In this section
we will derive the Lyapunov equation and give examples of how to extract
relevant information from its solution.

An introductory example can be seen in figure 15a where the temporal
evolution of the state energy is displayed as a random forcing with zero mean
and unit variance applied upstream of branch I. The results of five simulations
are shown. Due to the stochastic nature of the forcing each simulation yields
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different results but, nevertheless, reveals a general trend: no energy is observed
at the beginning of each simulation (since the initial condition is identically
zero), but considerable energy levels are reached after an initial transient of
approximately 100 time units and a quasi-steady regime in which the energy
fluctuates about a mean value is established. Because of this observed noise
amplification, convective unstable flows are also referred to as noise amplifiers.
Furthermore, the dashed line shows the average of 50 simulations, representing
the evolution of the mean energy. This curve is compared to the mean energy
(red solid line) computed from the algebraic Lyapunov equation; this mean
energy level is increasingly better approached as the number of simulations
comprising the average is increased.

Although the above experiment already demonstrates the amplification
behavior of a convectively unstable linear system driven by stochastic forcing,
the relation between the forcing covariance and the resulting state covariance
will be established next.

We again consider the linear system given by equation (24), now driven by
a stochastic process u(t), i.e. a random time-varying input signal. We assume
that A is globally stable but convectively unstable. To simplify the analysis, we
also assume that the random variable u is normally distributed, i.e., that the
probability density function of the stochastic process is Gaussian, completely
characterized by its mean and its variance.

To represent the mean and the variance of a random variable, we introduce
the expectation operator E . The mean of a scalar random variable ξ is then
m = E{ξ}, its variance is the quadratic expression σ = E{ξξH}. From a
statistical point of view, E can be thought of as an averaging operator (for
example the action of an integral in time.)

We can similarly characterize the covariance of two random variables ξ and
η as Pξη = E{ξηH}. The covariance of two random variables gives information
about the degree of similarity of the two signals. The above definition of the
covariance is readily extended to vectors of random variables. The covariance
of two random vector variables f(t) and g(t) of dimension n is simply the n×n
matrix,

Pfg(t) = E{f(t)g(t)HM}. (38)

Using the energy weight matrix M , we recover the kinetic energy of a state by
simply taking the trace of the covariance matrix,

E(t) = E{trace(q(t)q(t)HM)} = trace(Pqq). (39)

Furthermore, the diagonal elements of Pqq are the variance of the individual
elements of q(t). In particular, we define the root-mean-square (rms-value) of
the disturbance as

qrms(t) =
√

diag{Pqq} (40)

From the above equations (39) and (40), it is clear that the covariance of
the state contains all the essential statistics that is necessary for evaluating
the response to stochastic forcing. We now return to our dynamical system
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Figure 15. The response to stochastic forcing. (a) The evo-
lution of the state energy for five different simulations (black
lines), the mean state energy given by the solution of the al-
gebraic Lyapunov equation (red solid line) and the energy av-
eraged over 50 simulations (thick dashed line). (b) The thick
red line shows the rms-value of the Ginzburg-Landau equa-
tion when excited by random forcing w at the location marked
with an arrow. Five representative snapshots of the response
to this forcing are shown by black thin lines; the average over
50 simulations is displayed by a thick blue dashed line.

(24) and derive an explicit expression of the state covariance in terms of the
forcing covariance. For simplicity, we will assume that the applied forcing is
uncorrelated in time, that is, it is a temporal white noise process:

E{u(t)u(t′)HM} = WMδ(t− t′) (41)

where t and t′ are two instances in time, and W denotes the spatial covariance
of u. For example, if u is a vector of random variables, Wij = E{uiuj

H}.
To derive an evolution equation for the covariance of the state, we start

with the expression describing the time evolution of the state forced by u (i.e.
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equation (28) with C = I),

q(t) =

∫ t

0

eA(t−t′)Bu(t′)dt′. (42)

As before, we have assumed a zero initial condition q0 = 0.

We begin with the definition of the covariance matrix Pqq of the state at
time t

P = E{q(t)q(t)HM}

=

∫ t

0

∫ t

0

eA(t−t′)B E{u(t′)u(t′′)HM}
︸ ︷︷ ︸

WMδ(t′−t′′)

BHeAH(t−t′′)dt′dt′′

=

∫ t

0

eA(t−t′)BWB+eA+(t−t′)dt′ (43)

where we have used the fact that u is uncorrelated in time and omitted the
subscript qq. We can differentiate this last expression in (43) with respect to
time to obtain an evolution equation for P of the form

Ṗ = AP + PA+ +BWB+ P (0) = 0. (44)

In this expression Ṗ denotes the time derivative of the covariance matrix. The
above equation is referred to as a differential Lyapunov equation. Given the
covariance W of the forcing term u, we obtain the time evolution of the state
covariance P. If the system A is asymptotically stable and, furthermore, A,W
and B are time-independent, the stochastically driven system relaxes after an
initial transient into a statistical steady state. To obtain this steady state, we
set Ṗ = 0 and recover the algebraic Lyapunov equation

AP + PA+ +BWB+ = 0. (45)

This statistical steady state is of interest if we study a system that is exposed
to external forcing for a long time horizon, e.g., the flow over a wing under
cruise conditions. We like to emphasize that despite the presence of a steady
statistical state, the state vector of the system as well as the external forcing
is varying in time.

To illustrate the above statistical description of the system dynamics, we
revisit the Ginzburg-Landau equation forced at the upstream edge of the con-
vectively unstable region where we apply the external excitation of Gaussian
form shown in equation (108a), with u(t) as a scalar white noise process with
zero mean and unit variance W = 1. The covariance of the state obtained by
solving the algebraic Lyapunov equation (Datta 2003) is depicted in figure 16.
The rms-value of this state-covariance is shown with a red line in figure 15b
and the gray area marks the region of convective instability. In addition, we
have represented the instantaneous state of five realizations of the forcing as
well as the mean of 50 of these realizations, as we did in figure 15a for the
total energy evolution in time. We see that the average of 50 realizations is
close to the mean obtained from the Lyapunov equation, but a sample set of
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50 realization is not yet enough for a converged statistical result. We will see
more examples of this kind in the control section where we will quantify the
performance of the controller using mean energy.

We conclude this section by stressing that transient growth mechanisms
in hydrodynamic stability theory as well as the spatio-temporal evolution of
disturbances can be recast into an input-output framework. For example, in
this framework, the output signal y(t) to random, impulsive or harmonic inputs
shown in figures 11, 12 and 14, respectively, exhibits an initial growth in time
before the signal either decays to zero or stabilizes around a steady state.

3.3. Controllability and observability

An important issue in the analysis of linear systems in state-space form con-
cerns the mapping between input signals and the state vector and between the
state vector and the output signals. Since for many realistic configurations
the matrices B and C are rectangular, reflecting the fact that we force the
system only at a few points in space and/or measure the system only at a
limited number of sensors, we need to address the topic of controllability and
observability (Kailath 1980).

In this section we will characterize the controllability and observability of
a system in terms of covariance matrices of the state and the adjoint state,
which in this context are called Gramians. We will continue to consider one
input and one output and assume that A is stable (subcritical Ginzburg-Landau
equation), even though the theory extends to unstable systems as well (Zhou
et al. 1999).

3.3.1. Controllability — the POD modes

The controllability of a system is concerned with finding the flow states most
easily influenced by a given input. It can be shown (Lewis & Syrmos 1995;
Antoulas 2005) that the minimum amount of input energy ‖u‖2

2 to bring the
state from zero to the given initial condition q0 is given by the expression

qH
0 P

−1q0 (46)

where P is the unique n× n matrix

P =

∫ ∞

0

eAτBB+eA+τ dτ, (47)

referred to as the controllability Gramian (for a derivation of this result in terms
of an optimal control problem see Lewis & Syrmos (1995).) Also note that the
adjoint operators with superscript + are related to the conjugate transpose H

according to (26).

Since for linear systems the state for an impulsive input at any given time
is q(t) = eAtB, we recognize that the controllability Gramian (47) equals an
infinite-horizon state covariance (43) with covariance W = I. This is not very
surprising since one can interpret white noise as a set of impulse inputs that
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Figure 16. The state covariance/controllability Gramian P
of the Ginzburg-Landau equation. The Gramian describing
how the state components are influenced by an input corre-
sponds in a stochastic framework to the state covariance for
white noise as input. The red circle signifies the forcing loca-
tion (xw = −11), the dashed box marks the region of insta-
bility. The states that are most sensitive to forcing, and thus
controllable, are located downstream, at branch II.

are uncorrelated in time. Furthermore, assuming A is stable, the controllability
Gramian can be computed by solving the algebraic Lyapunov equation (45). In
figure 16 the controllability matrix of the Ginzburg-Landau equation is shown
graphically. The state components that respond to an input located just up-
stream of the unstable region are situated downstream of the unstable domain.

By diagonalizing the matrix P we obtain a measure of controllability for
each component of the state vector. The diagonalization of the covariance
matrix or, in the linear framework, the controllability Gramian is commonly
referred to as the proper orthogonal decomposition (POD) (Lumley 1970) but is
also known as empirical eigenfunction (EOF) decomposition, Karhunen-Loève
decomposition or principal component analysis (PCA). The eigenvectors and
eigenvalues of P are given by

Pφi = λiφi, λ1 ≥ · · · ≥ λn ≥ 0. (48)

Since P is positive semidefinite, the eigenvalues are real and positive and the
eigenvectors are orthogonal. The first two POD modes of the Ginzburg-Landau
equation are shown in figure 17. Traditionally, the interpretation of these modes
is that they represent decorrelated energy-ranked flow states. For example,
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Figure 17. The first (a) and second (b) proper orthogonal
decomposition (POD) mode obtained from an eigenvalue de-
composition of the controllability Gramian in figure 16. Note
that these modes are orthogonal. The absolute value is shown
in solid and real part in dashed. The gray area marks the
region of instability.

the first POD mode φ1 is the most energetic structure in the flow containing
λ1/

∑n
i=1 λi of the total flow energy. From a linear systems point of view, POD

modes can be considered as the most controllable structures of the system for a
given input. In this case the eigenvalue λi is a measure of how much the state
φi is influenced by the input. In particular, if P is rank deficient, there exists
a zero eigenvalue, λi = 0, which would mean according to equation (46) that
the energy required to influence the corresponding state is infinite. If P is not
rank-deficient, we say that (A,B) is controllable.

3.3.2. Observability — the adjoint POD modes

The POD modes capture the response to input and thus span a controllable sub-
space of the state-space. Equally important in the input-output analysis is to
take into account the observable subspace by considering the relation between
the outputs and flow states. A similar analysis as in the previous section for
POD modes is thus performed, but this time for the adjoint system (25). Com-
paring the direct state-space equations (24) with their corresponding adjoint
state-space equations (25) we observe that the output of the direct equations
is related to the input of the adjoint equations.
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Figure 18. The observability Gramian Q of the Ginzburg-
Landau equation. The red circle markes the location of the
output C at branch II. The initial states that contribute most
to the output are located upstream, at branch I.

The observability of a system is concerned with finding the initial conditions
q0 that will produce the largest output energy. For zero input the solution to
the state-space equations is

y = CeAtq0. (49)

The output energy is then given by

‖y‖2
2 = qH

0 Qq0 (50)

where the observability Gramian,

Q =

∫ ∞

0

eA+τC+CeAτ dτ, (51)

is a unique matrix of dimension n× n.

If we note that the impulse response of the adjoint state-space equations (25)
is given by

r(t) = eA+tC+ (52)

the observability Gramian can be written as the state correlation matrix of the
adjoint system

Q = E{rrHM}, (53)

and the Gramian can be computed by solving the algebraic Lyapunov equation

A+Q+QA+ C+C = 0. (54a)



52 S. Bagheri, J. Hœpffner, P.J. Schmid & D.S. Henningson

In figure 18 the observability matrix of the Ginzburg-Landau equation is shown.
The observable components of the state vector are located upstream of the
unstable domain when the output location is at branch II (red dot in figure 18).

By diagonalizing the observability Gramian,

Qψi = λiψi, λ1 ≥ · · · ≥ λn ≥ 0, (55)

we obtain an orthogonal set of functions called the adjoint POD modes or
the most observable modes. These modes are flow structures that are ranked
according to their contribution to the output energy. The corresponding eigen-
values λi provide a means to measure how observable the corresponding eigen-
vectors are. If there exist zero eigenvalues, λi = 0, Q is rank deficient, which
means according to equation (50) that the corresponding adjoint POD mode
does not contribute to sensor output. If Q has full rank, we say that (C,A) is
observable.

It should be evident that in order to build an effective control system,
both sufficient controllability and observability has to be established. Only
in this case will the actuation have an appreciable effect on the flow system
whose response, in turn, will be detectable by the sensors. Without adequate
controllability or observability the flow of information from the system’s output
to the system’s input will be compromised, and any control effort will be futile.
Within the LQG-based feedback control framework, the controller will always
stabilize the system if the unstable global eigenmodes are both controllable and
observable. We will show how the controllability and observability of global
eigenmodes can be determined in the next section.

4. Model reduction

Any type of significant flow control applied to the discretized two- or three-
dimensional Navier–Stokes equations requires some form of model reduction.
Model reduction is concerned with the transformation of a system with a
large number of degrees of freedom to an approximately equivalent system
of markedly smaller size. The term“approximately equivalent” is often difficult
to quantify and usually encompasses a measure of preservation of important
system characteristics under the model reduction transformation. In this sense,
model reduction becomes problem-dependent: for example, a transformation
that preserves the inherent dynamics of the system may be inappropriate in
capturing the input-output behavior.

Model reduction techniques for fluid systems typically rely on physical in-
sight into the specific flow situation rather than on a systematic approach
detached from the application. For instance, for spatially invariant systems
it is possible to decouple the linear state space equations in Fourier space.
Control, estimation and other types of optimization can then be performed in-
dependently for each wavenumber and then transformed back to physical space.
This approach has been adopted in Högberg et al. (2003a,b); Hœpffner et al.
(2005); Chevalier et al. (2006, 2007); Monokrousos et al. (2008).
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Figure 19. The spatial support of the first 20 global (a),
POD (b) and balanced modes (c). The spatial support is de-
fined as the region where the amplitude of a particular mode
is larger than 2% of its maximum amplitude. The location of
the input (just upstream of branch I) and output (at branch
II) is marked with red and green dashed lines, respectively.
The global modes span only the region around branch II. The
first POD modes (b) are located at branch II, even though the
higher modes quickly recover the input. The balanced modes
(c) cover the region between input and output with only two
modes. The areas marked with light gray in (a) and (c) rep-
resent the spatial support of the adjoint modes for the global
and balanced modes. The spatial separation in x of the direct
and adjoint modes, shown in (a) for global modes, is absent in
(b) for the balanced modes.

The model reduction (or projection) technique (Obintata & Andersson
2001; Antoulas 2005) discussed in this paper involves three steps.

The first step consists of finding an expansion basis {φi}r
i=1 that spans an

appropriate subspace of order r of the state space of order n, with r ≪ n. We
will present and compare three different subspaces using the Ginzburg-Landau
equation: the subspace spanned by the least stable global eigenmodes, POD
modes and the balanced modes (described in the next section).

In a second step, the state-system given by (24) is projected onto this
subspace yielding the reduced-order model

κ̇(t) = Âκ(t) + B̂u(t) (56a)

y(t) = Ĉκ(t) (56b)

κ(0) = κ0. (56c)
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When the expansion basis is non-orthogonal, we can use a set of adjoint modes
{ψi}r

i=1 associated with {φi}r
i=1, to obtain the entries of κ, Â, B̂ and Ĉ,

κ̂i =
〈q,Aφi〉
〈ψi, φi〉

(57a)

Âi,j =
〈ψi, Aφj〉
〈ψi, φi〉

(57b)

B̂i =
〈ψi, B〉
〈ψi, φi〉

(57c)

Ĉi = Cφi (57d)

with i, j = 1, . . . , r. The term 〈ψi, φi〉 is a normalization factor that we choose
such that ‖φn‖ = ‖ψn‖ = 1 and is smaller than one if the modes are non-
orthogonal, that is ψi 6= φi. The subscript M in the above inner products is
omitted for brevity and we have assumed that B is a column vector and C a
row vector, i.e. we continue to consider one input and one output.

The third and final step consists of estimating the error of the reduced
order model (56). For control purposes it is not necessary for the reduced-
order model to capture the entire dynamics described by the general state-
space formulation (24), rather it suffices to accurately capture the input-output
behavior described by the transfer functionG(s) = C(sI−A)−1B. It thus seems
reasonable to estimate the error of a reduced-order system by comparing the
norms of the transfer function (35) of the full system G and the reduced system

Gr = Ĉ(sI− Â)−1B̂, e.g. ‖G−Gr‖∞ (Obintata & Andersson 2001; Zhou et al.
2002; Green & Limebeer 1995). This is equivalent to calculating the difference
of the peak values of the frequency response between the two models.

4.1. Global modes and input/output residuals

Global modes (figure 7a,b) preserve the dynamical characteristics of the system
matrix A. Model reduction using global modes simply consists of an expansion
of the state vector q into the leading global eigenmodes (10), where eigenmodes
with substantial decay rates will be neglected. By this process, the resulting
new system matrix Â in (56) will consist of a diagonal matrix of the retained
global eigenvalues. The new reduced state vector κ is given by the eigenfunction
expansion coefficients, and the expansion coefficients of B (57c) and C (57d) are
called the controllability modal residuals and the observability modal residuals,
respectively (see also Bewley & Liu (1998)).

It is clear that if 〈ψi, B〉 is zero in (57c), we will not be able to act on the
corresponding state component κi and therefore on the global mode φi. Thus,
we can use the controllability modal residual as a measure of controllability of
the global mode by considering the amount of overlap between the support of
the input and the support of the corresponding adjoint global mode. If this
overlap is zero, the global mode is not controllable (Chomaz 2005; Lauga &
Bewley 2004).
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Figure 20. The controllability modal residuals (black line)
of the first 20 global modes given by equation (57c) which is
the product of the overlap of the actuator and adjoint mode
〈ψi, B〉 (red) and the sensitivity defined by (〈ψi, φi〉)−1 (blue).
Although, the overlap of the spatial support of the actuator
decreases for higher modes, the controllability still increases
due to the rapid growth of the receptivity of higher modes to
forcing, quantified by the inverse of 〈ψi, φi〉.

A similar derivation based on (57d) shows that in order for (C,A) to be
observable, the spatial support of the sensor and the support of the global mode
must overlap. If Ĉi = Cφi is zero, we will not be able to detect the eigenmode
φi using a sensor characterized by C. This eigenmode is thus unobservable.

Owing to the term 〈ψi, φi〉 in the denominator of (57c), additional attention
has to be paid to the system’s sensitivity due to non-normal effects: the forcing
response or controllability of φi is inversely proportional to 〈ψi, φi〉, i.e. the sep-
aration of global and adjoint modes. This separation is illustrated in figure 19a,
where the spatial support — defined as the region where the amplitude of a
particular mode is larger than 2% of its maximum amplitude (see also Lauga
& Bewley (2003)) — of the first 20 global and adjoint modes is shown. We see
that the global modes only span a small part of the domain, which is located
near and downstream of the unstable domain (green dashed line), whereas the
corresponding adjoint modes are located upstream of the unstable domain (red
dashed line); this results in a large sensitivity, 〈ψi, φi〉 ≪ 1.

In figure 20 we display the controllability as the number of global modes is
increased, together with the numerator and denominator of expression (57c).
Whereas the numerator represents a measure of overlap between the input
and the adjoint global modes, the denominator measures the degree of non-
normality. The marked rise in controllability as more global modes are added
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Figure 21. Model reduction error of the POD (black), bal-
anced (red) and global (green) modes. For the balanced modes
the error always decays by increasing the number of modes, in
contrast to the error of POD modes. The error does not de-
cay at all for the first 50 global modes due to the failure to
project the input B located upstream of branch I onto the
global eigenmodes located close and downstream to branch II.

is thus a compound effect of these two components. It illustrates that non-
normal systems can be very sensitive to the external perturbation environment
and that it is possible to manipulate the flow using very small actuator effort.

An upper limit of the error for reduced-order models based on global modes
is given by (Skogestad & Postlethwaite 2005; Antoulas 2005)

‖G−Gr‖∞ ≤
n∑

i=r+1

|ĈiB̂i|
|Re(λi)|

. (58)

From the above expression it is evident that choosing a subspace based on
the criterion of dominant eigenvalues may not be appropriate if one wishes to
approximate the input-output behavior. The reason is that the error norm
(58) depends on the matrices B and C. Although the eigenvalues may exhibit

substantial decay, for highly non-normal systems B̂ is large yielding a large
model reduction error as shown in figure 21 using green circles.

In figure 22 we compare the frequency response of the full model |G(iω)|
of order r = 220 (blue dashed line) to the frequency response of the reduced
models |Gr(iω)| of order r = 2, 4 and 6 (green solid line). As before, the input B
(at branch I) is located upstream and the output C (at branch II) downstream.
The frequency response of the reduced models shows a large deviation from the
true frequency response, even as the number of included modes is increased.
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Figure 22. Comparison of the frequency response of the full
Ginzburg-Landau equation with three reduced-order models.
Blue dashed lines represent the full model of order n = 220.
The performance of reduced-order models based on r = 2, 4
and 6 modes are shown in the (a), (b) and (c), respectively.
Red lines represent the balanced modes, black lines the POD
modes and green lines the global eigenmodes. We observe that
the balanced modes capture the peak value of the frequency
response which represents the main characteristic of the input-
output behavior. The approximation of the frequency response
for the open-loop case is unsatisfactory for POD models of
order 2 and 4 and for all global-mode models.
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4.2. POD modes

For an improved transfer behavior of the reduced model we can base our sub-
space on the response of the linear system to external forcing. In this case,
both the system matrix A and the control matrix B determine the dynamics of
the driven system. To reduce a driven model, we will expand the state vector
into the POD modes (31) (figure 17). The expansion in POD modes will be
truncated at a convenient level that results in a significantly lower-dimensional
system matrix but still retains the most energetic structures. These modes
are ideal in detecting and extracting coherent fluid structures in a hierarchical
manner that is based on their contribution to the overall perturbation energy of
the flow. However, for control and input-output behavior low-energy features
that are not captured by this expansion may be critically important.

We like to point out that the controllable subspace adequately spans the
response to inputs but not necessarily the inputs themselves. This is illustrated
in figure 19b, where the spatial support of the first 20 POD modes are shown.
The first POD modes capture the largest structures, located at branch II;
however, in contrast to the global modes, the higher modes eventually cover
the entire unstable domain including our input location. For this reason the
error norm shown with black circles in figure 21 is not decreasing for the first
three POD-modes; only when the fourth mode, which captures some of the
input structure, is included in the expansion basis does the error norm begin to
decrease. An explicit error estimate does not exist for POD modes; only after
computing the frequency response of the two systems can one determine the
error (given by the difference of the peak values in the frequency response).

Finally, in figure 22 the frequency response of the POD-based reduced
model (black line) |Gr(iω)| of order r = 2, 4 and 6 is observed to gradually
approach the response of the full model.

4.3. Balanced modes

The third subspace is based on balancing the system and involves the three
matrices A,B and C. It is based on the idea of reducing the dimensions of
the original system by (i) removing the redundant states for characterizing
the input-output behavior — the uncontrollable and unobservable states —
and (ii) removing the states that are nearly uncontrollable and unobservable.
This technique of model reduction is referred to as balanced truncation (Moore
1981).

The balanced modes {φi}r
i=1 are defined as the eigenvectors of the product

of the two Gramians,

PQφi = φiσ
2
i , σ1 ≥ · · · ≥ σr ≥ 0. (59)

The eigenvalues σi are called the Hankel singular values (HSV). First two bal-
anced modes are shown in figure 23.

To illustrate what balancing refers to, let us consider the projection of the
Gramian matrices P and Q on a set of modes, for instance any of the modes
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Figure 23. The first (a) and second (b) balanced mode. The
modes are non-orthogonal and the adjoint balanced modes are
shown in red. The absolute value is shown in solid and real
part in dashed. The gray area marks the region of instability.

introduced in this section. The projected matrices, denoted by P̂ and Q̂, have
the elements

P̂i,j = 〈ψi, Pψj〉 (60a)

Q̂i,j = 〈φi, Qφj〉 (60b)

where ψi denotes the adjoint mode associated with φi. Balancing refers to the
fact that if P̂ and Q̂ are obtained from a projection onto balanced modes, they
become diagonal and equal to the Hankel singular values, i.e.

P̂ = Q̂ = Σ = diag(σ1, . . . σr). (61)

The balanced modes are flow structures that are ranked according to their
contribution to the input-output behavior. These modes are influenced by the
input and, in turn influence the output by the same amount, given by the
corresponding Hankel singular values σi.

A very attractive feature of balanced truncation is the existence of an a
priori error bound that is of the same order as the lowest bound achievable for
any basis,

σr+1 < ‖G−Gr‖∞ ≤ 2

n∑

j=r+1

σj . (62)
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Figure 24. Hankel singular values of the approximate bal-
anced truncation are marked with colored symbols and the
exact balanced truncation with black symbols. The number of
singular values that are correctly captured increases with the
number of snapshots (red: 1000, green: 500 and blue: 70 snap-
shots).

In contrast to equation (58) the above error norm is independent of the input
and output matrices B and C. The error norm for the balanced truncation
model in figure 21 shows a rapid decay. In figure 22 we notice that the perfor-
mance of balanced reduced-order models (red lines) |Gr(iω)| is very good, and
only two balanced modes are required to capture the peak response of the full
system.

In summary, we would like to recall that each of the three sets of basis vec-
tors (global modes, POD modes, balanced modes) span different subspaces of
the state space and are therefore suitable for different applications. The spatial
support is shown in figure 19 for the first 20 modes of each of the three sets.
The balanced modes (right plot), by construction, cover the region between the
input and the output with very few modes and are thus the appropriate set of
functions to accurately capture the input-output behavior of our linear system.

4.4. The snapshot method

To compute the POD modes or balanced modes we must first solve Lyapunov
equations. This becomes prohibitively expensive as n exceeds approximately
105 which usually is the case when discretizing the Navier–stokes equations in
two or three dimensions. Recently, numerous iterative methods to solve these
equations have appeared (Antoulas 2005; Antoulas et al. 2001).

A different approach to approximate the Gramians without solving the
Lyapunov equations — the so-called snapshot-based balanced truncation — has
recently been introduced (Willcox & Peraire 2002; Rowley 2005). It is based
on the snapshot technique first introduced by Sirovich (1987) for computing
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POD modes. We will demonstrate the method for one input and one output,
see Rowley (2005) for additional details.

We begin with collecting r snapshots q(tj) at discrete times t1, . . . , tr, of
the response of the system (24) to an impulse δ(t). These snapshot are gathered
as columns in a n× r matrix X, i.e.

X = [eAt1B, eAt2B, . . . , eAtrB]
√

∆r, (63)

where ∆r stands for the quadrature coefficients of the time integral in equa-
tion (47). Instead of solving the Lyapunov equation (45), we can approximate
its solution, i.e. the controllability Gramian P as

P ≈ XXHM. (64)

If we observe that eA+tC+ is the impulse response of the adjoint state-
space equation (25), we can construct an approximation of the observability
Gramian Q

Q ≈ Y Y HM (65)

by collecting a sequence of snapshots of the adjoint impulse response in the
n× r matrix

Y = [eA+t1C+, eA+t2C+, . . . , eA+trC+]
√

∆r. (66)

In the method of snapshots, instead of solving the large n×n eigenvalue prob-
lem (59) one can form the singular value decomposition of the r × r matrix,

Y HMX = UΣV H . (67)

The approximate Hankel singular values (HSV) are given in the diagonal matrix
Σ. The normalized balanced modes and the associated adjoint balanced modes
are recovered from

T = XV Σ−1/2, S = Y UΣ−1/2. (68)

Usually the number of snapshots r is significantly smaller than the number of
states n, which makes this method computationally tractable for systems of
very large dimensions.

Figure 24 shows the HSVs for the exact balanced truncation (solving two
Lyapunov equations) and the approximate HSVs (using the snapshot method).
For improved results more snapshots may be taken during periods of large
transient energy growth and fewer snapshots as the energy decreases. Snapshot-
based balanced truncation has been applied to channel flow (Ilak & Rowley
2008) and to the flow around a pitching airfoil (Ahuja et al. 2007).

5. Control

The natural extension to the investigations of the previous sections — the
response behavior of a linear system to initial conditions and external exci-
tations — is concerned with attempts to manipulate the inherent dynamics
of a system or to control it. A substantial body of literature on flow control
has accumulated over the past decade, with topics ranging from laminar flow
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control (Joslin 1998) to control of turbulence (Moin & Bewley 1994), from op-
position control (Choi et al. 1994) to suboptimal (Bewley & Moin 1994) and
nonlinear control (Bewley et al. 2001; Zuccher & Bottaro 2004; Guégan et al.
2006). Reviews on the subject of flow control can be found in Gunzburger
(1995); Gal-El-Hak (1996, 2000); Bewley (2001); Kim (2003); Kim & Bewley
(2007).

The framework laid out in the following sections falls in the category of lin-
ear feedback control (Kwakernaak & Sivan 1972; Anderson & Moore 1990; Zhou
et al. 2002; Skelton et al. 1998; Skogestad & Postlethwaite 2005). In particular,
our objective is to minimize the perturbation energy resulting from asymptotic
or transient instabilities of the uncontrolled system during the transition pro-
cess in order to suppress or delay turbulence (Joshi et al. 1997; Bewley & Liu
1998; Högberg et al. 2003a). Since the disturbance energy growth is initially
a linear process (Schmid & Henningson 2001) it seems prudent to design con-
trol schemes for the linearized governing equations. However, linear control
has also been applied with considerable success to the full Navier–Stokes equa-
tions (Chevalier et al. 2007), and attempts have been made to relaminarize a
fully developed turbulent flow (Högberg et al. 2003b).

We will consider two fundamentally different stability scenarios for the
evolution of perturbations q governed by the non-parallel Ginzburg-Landau
equation: (i) local convective instabilities and (ii) global instabilities. The
parameters for the two cases are listed in Table 1.

5.1. The concept of feedback

The actuation on the flow can be accomplished by various means, such as,
for example, the injection of fluid through blowing/suction holes in the wall.
Within the region of validity of our underlying physical model, it is possible
to compute a control strategy in advance that will retain the flow in a laminar
state. This procedure is referred to as open-loop control. However, under
the presence of uncertainty over the exact disturbance environment (or the
validity of our physical model), open-loop control will fail. Instead, one can
monitor the flow through measurements and adjust the actuation accordingly
such that predefined objectives are met. A control setup of this type is known
as closed-loop control. It uses feedback to establish a connection between the
output from the system (i.e. the measurement signal) and the input to the
system (i.e. the control signal). Under realistic conditions, we are faced with a
wide range of unknown variations, such as modeling errors or sensor noise, and
a feedback-type control system is required to efficiently compensate for these
uncertainties.
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The main idea of linear feedback control is shown in figure 1. The entire
system is described in state-space form as follows

q̇ = Aq +B1w +B2u, (69a)

z = C1q +Du, (69b)

y = C2q + g. (69c)

This set of equations is commonly referred to as the plant. The first equation
(69a) describes the dynamics of our linear system captured in the system matrix
A as external forces, modeled by B1w and B2u, are applied. We have decom-
posed the input into two terms with B1w(t) describing the effect of external
sources of excitations and B2u(t) representing the control input. The variable
z(t) given by the second equation (69b) represents the objective function as
described below. The third equation (69c) describes a connection between the
state q and the measurements y, where the additional term g accounts for noise
contaminating the measurements. In general, the objective is to find a control
signal u(t) such that the influence of the external disturbances w and g on the
output z is minimized. The above set of equations (69) has been discretized
using a Hermite collocation method as described in Appendix A.

Our objective is to find a control signal u(t) such that the perturbation
energy contained in the state variable q(t) is minimized. Furthermore, the
energy input expended by the control must be smaller than the amount of
energy gained by it. Thus, in addition to focusing on the perturbation energy
we also have to penalize our control effort. This results in a objective (or cost)
functional of the form

‖z‖2
2 = ‖C1q‖2

2 + ‖Du‖2
2 =

∫ T

0

qH CH
1 C1

︸ ︷︷ ︸

M

q + uH DHD
︸ ︷︷ ︸

R

u dt (70)

where M and R are positive semi-definite matrices; we have furthermore as-
sumed thatDH [C1 D] = [0 I] in order to get zero cross terms (Zhou et al. 2002).
It is important to realize that the 2-norm in the above expression is defined
both over time and space. Note that if C1 is chosen as F in equation (19) then
the kinetic energy of the disturbance will be minimized. In the above setup we
have assumed that the full state q is known, but for realistic flow situations
the complete instantaneous velocity field is not available for determining an
appropriate feedback. We thus have to estimate the full state vector resulting
in an approximate state vector q̂, reconstructed from the measurements y(t)
via an estimation problem. A controller based on an estimated state vector is
known as an output feedback controller or a compensator.

5.2. The LQG framework

If we assume that the unknown disturbance noise w and the measurement noise
g are given by white-noise stochastic processes with zero mean and respective
covariances W and G, a compensator can be found that minimizes the cost
functional (70). In addition, the closed-loop control is guaranteed to be stable,
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if the plant is both observable and controllable. In fact, a sufficient condition for
a global minimum value of (70) is that the system is stabilizable and detectable.
A system is stabilizable (detectable) if all unstable global modes are controllable
(observable).

The control will be optimal in minimizing (70) which stems, in one part,
from the optimal filtering of noise that has corrupted our signal (Kalman 1960)
and, in another part, from the optimal control when the entire state vector is
assumed to be available. These two separate problems — the estimation prob-
lem and the full-information problem — can then be combined to construct a
compensator. This two-step procedural framework matured in the 1960’s into
what we now refer to as Linear Quadratic Gaussian (LQG) control (Kwaker-
naak & Sivan 1972; Anderson & Moore 1990). The assumption that w(t) and
g(t) are white-noise stochastic processes may be far from reality in some appli-
cations; it is, however, possible to describe a plant with colored-noise input in
terms of an augmented system with white-noise input (Lewis & Syrmos 1995).

In applications LQG control is particularly successful when the system
operator A (in our case the Ginzburg-Landau equation) accurately describes
the modeled physical phenomenon. The remaining uncertainties in the overall
model are thus restricted to the inputs represented by stochastic disturbances
with known statistical properties. For this reason, the LQG framework is ap-
propriate when we can rely on an accurate plant, while a precise knowledge of
external disturbances and the degree of noise contamination of the measure-
ments are not available.

If the external disturbances are stochastic variables, the state will as well
be a stochastic process, and the objective function (70) can therefore be written
as

‖z‖2
2 = E

{
qHMq + uHRu

}
. (71)

As alluded to above, we will determine the optimal control u(t) in (69)
based on noisy measurements y(t) such that the cost functional (71) is mini-
mized. The first step in constructing such a compensator is to estimate the full
state q(t) given only the noisy measurements. After the state has been suc-
cessfully estimated, we assume, in a second step, that the control u(t) and the
estimate of the state q̂(t) satisfy a linear relation involving some yet unknown
matrix K, i.e.,

u(t) = Kq̂(t). (72)

The goal of this second step is then to find such a matrix K, which is referred
to as the control gain.

At the heart of the LQG-framework is the separation principle (Skogestad
& Postlethwaite 2005) which states that the controller that minimizes (70)
can be computed in two independent steps: (i) we can solve the estimation
problem to obtain an approximation q̂ of the true state q without any reference
to the control problem; (ii) to find the control gain K in (72) we do not need
the estimate q̂ in (72) but instead can assume the full-information relation
u(t) = Kq(t). One of the important consequences of the separation principle
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is the fact that the final compensator, using (72) based on the control gain K
obtained by considering q(t) (not q̂), will always yield a closed-loop system that
is stable if and only if each of the two separate problems (estimation and full-
information control) are themselves stable (see Zhou et al. (2002)). In addition
to stability, the closed-loop system will be optimal. To simplify the expressions
in the following analysis we assume that the adjoint system is derived using a
standard Euclidean inner-product, i.e. the dual or the adjoint of the plant (69)
is given simply by its complex conjugate transpose.

5.2.1. The estimation problem

Under the assumption that the measurements capture a sufficient amount of the
system’s dynamics (i.e. that we have significant observability), it is possible to
estimate or observe the state vector by using a Kalman filter (Kalman 1960).
In this section we derive the algebraic Riccati equation for estimation and
show examples on the Ginzburg-Landau equation. For additional details see
e.g. Lewis & Syrmos (1995); Anderson & Moore (1990).

We assume zero initial conditions, since we are interested in the controller
performance as an average over long time while the system is excited by external
perturbations. We further assume white-noise stochastic processes for w(t) and
g(t) with zero mean. The estimator then takes on the form

˙̂q = Aq̂ +B2u− L(y − ŷ), (73a)

ŷ = C2q̂. (73b)

In the above expression, we compare the measurement y from the state and the
measurement ŷ from the estimated state and feed back the mismatch in these
two quantities using the estimator gain L. To analyze the performance of the
estimation problem, it is instructive to derive the dynamics of the estimation
error q̃ = q − q̂. Combining (69) and (73) we obtain

˙̃q = Aq̃ +B1w + L(y − ŷ). (74)

Substituting the explicit dependence of the two measurements on the state q
and estimated state q̂, respectively, we obtain

˙̃q = (A+ LC2)q̃ +B1w + Lg (75)

where the estimation error dynamics is governed by the matrix Ae = A+ LC2

and is driven by two source terms, namely the external excitation w and the
sensor noise g. We aim at finding an estimator gain L such that Ae is asymp-
totically stable and is not sensitive to the external perturbations B1w + Lg.
Since (69) is driven by noise, the state q(t) and the output y(t) are consequently
random processes whose stochastic properties have to be considered in finding
the estimator gain L. The error covariance is given as

P (t) = E{q̃q̃H} (76)
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which represents a measure of uncertainty in the estimate. Smaller values of
P (t) indicate a better estimate as the estimation error is more tightly dis-
tributed about its mean value of zero. If the estimator (75) is stable, the error
q̃(t) will eventually reach a steady-state with a constant mean and covariance.
The steady-state covariance can be readily obtained by solving the Lyapunov
equation

AeP + PAH
e + LGLH +B1WBH

1 = 0 (77)

where G and W are the covariance matrices of g(t) and w(t), respectively. The
optimal estimation feedback gain L is then chosen to both keep (75) stable and
to minimize the mean of the steady-state estimation error. We obtain the mean
estimation error from the covariance (76) using the expression (39),

J = E{q̃} = trace(PM), (78)

where the mean is chosen as the kinetic energy. This minimization has to be
accomplished under the constraint that P satisfies the above Lyapunov equation
(77). We add this constraint to the cost functional J via a Lagrange multiplier
Λ and obtain the Lagrangian M

M = trace(PM) +

+trace[Λ(AeP + PAH
e + LGLH +B1WBH

1 )].

We thus minimize J subject to the constraint (77) by equivalently finding
stationary points of M without imposed constraints. The necessary conditions
for a minimum are given by:

∂M
∂P

= AH
e Λ + ΛHAe +M = 0, (79a)

∂M
∂Λ

= AeP + PAH
e + LGLH +B1WBH

1 = 0, (79b)

∂M
∂L

= 2Λ(PCH
2 + LG) = 0. (79c)

We can eliminate Λ from equation (79c) to obtain an expression for the esti-
mator gain

L = −PCH
2 G

−1. (80)

Inserting the expression above into the second condition (79b) leads to a qua-
dratic matrix equation for the error covariance P

AP + PAH − PCH
2 G

−1C2P +B1WBH
1 = 0 (81)

which is referred to as an algebraic Riccati equation. In Laub (1991); Datta
(2003) efficient methods of solving the Riccati equations can be found. We
can thus determine the optimal estimation gain L by solving (81) for the error
covariance P which, using (104), results in L. No requirements of observability
or controllability have to be explicitly imposed on the estimation problem;
however, if we place the input describing external disturbances B1 and the
sensor C2 such that (C2, A) is observable and (A,B1) is controllable, then the
resulting Riccati equation (81) will have a unique positive definite solution.
Moreover, the closed-loop estimator will then be asymptotically stable.
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Figure 25. (a) The mean of the error covariance trace(PM)
(lower dashed line) obtained by solving the Riccati-equation
(81) is compared to the estimation error (blue line) obtained
by marching the estimator in time (73). Also, the mean value
of the state (top dashed line/red line) is shown and found to
be nearly three orders of magnitude larger than the estimation
error. It is evident that both the state and the estimation error
reach a steady state. (b) The rms-value of the error and the
state are shown in blue and red lines, respectively. The red and
green Gaussian functions represent the location of the input
(stochastic disturbances) and the sensor. The error attains its
minimum value just downstream of the sensor location and
increases upstream as well as downstream of it.

One way to investigate the performance of the estimator, is to compare
the energy of the true flow state with the energy of the estimation error. In
figure (25a) the temporal evolution of the state energy (red line) and of the
estimation error (blue line) are shown. The energy of the estimation error is
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nearly three orders of magnitude smaller than the energy of the true state. In
the same figure, the mean energy of the estimation error — obtained by solving
the Riccati-equation (81) — and the mean energy of the state — obtained by
solving the Lyapunov equation (45) — are plotted with dashed lines. We
observe that the solutions of the Riccati equation and the Lyapunov equation
provide the mean energy in which, respectively, the estimation error and state
energy fluctuate about. In figure (25b), the corresponding rms of the error q̃rms

together with the rms of state qrms are shown.

5.2.2. Full-information control

The second step in the design of an LQG-compensator involves the solution of
an optimal control state-feedback problem. We show in this section that the
optimal solution is, again provided by the solution of a Riccati equation. The
reader is directed to Anderson & Moore (1990); Lewis & Syrmos (1995) for
more detailed derivations.

We seek a control u(t) as a linear function of the flow state q(t) that
minimizes the deterministic cost functional

J =
1

2

∫ T

0

qHMq + uHRu dt, M,R > 0, (82)

while satisfying the initial value problem

q̇ = Aq +B2u, q(t = 0) = q0. (83)

We perform the steps analogous to the estimation problem by first defining an
augmented Lagrangian N of the form (Lewis & Syrmos 1995)

N =
1

2

∫ T

0

(qHMq + uHRu) + λT (−q̇ +Aq +B2u) dt (84)

where λ is again a Lagrange multiplier which enforces the initial value problem
(97). The necessary conditions for a minimum of N result in the following set
of equations

∂N
∂λ

= −q̇ +Aq +B2u = 0, (85a)

∂N
∂q

= λ̇+Mq +AHλ = 0, (85b)

∂N
∂u

= Ru+BH
2 λ = 0. (85c)

We proceed by assuming a linear relation between the state q(t) and the La-
grange multiplier λ(t)

λ(t) = X(t)q(t), (86)

where X(t) is self-adjoint and positive semidefinite. Using this linear relation
and the optimality condition (85c) yields the following feedback law:

u(t) = −R−1BH
2 X(t)

︸ ︷︷ ︸

K(t)

q(t). (87)
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To find X(t) we differentiate (86) and use the state equation (85a) to obtain

−λ̇ = Ẋq +X(Aq −BH
2 R

−1B2Xq). (88)

Substituting equation (85b) into this last expression leads to a quadratic ma-
trix equation for X(t) that (assuming controllability of (A,B2)) asymptotically
converges to

AHX +XA−XB2R
−1BH

2 X +M = 0. (89)

As before, we obtain a Riccati equation for the linear mapping X. The solution
to this equation provides the optimal steady feedback gain via the relation (98).

Moreover, stabilizability of (A,B2) and detectability of (A,C1) imply ad-
ditional desirable properties: the feedback gain K is guaranteed to stabilize
the plant and to yield a global minimum value of (96). We recall that a sys-
tem is stabilizable (detectable) if all unstable global modes are controllable
(observable). In other words, if we place our actuators such that we ensure
controllability of the unstable global modes and if we choose M as the kinetic
energy weight matrix, then the closed-loop system is guaranteed to be stable.
In the limit as T → ∞ the cost functional is given by (Högberg 2001)

J = qH
0 Xq0, (90)

and any other stabilizing controller will result in a larger value of this objective
functional.

5.2.3. The LQG-compensator

Combining the estimator and controller we can now control our plant by solely
relying on the measurements y(t). To validate the separation principle, we may
write the control (72) in terms of the full state q and the estimation error q̃,

u = Kq −Kq̃. (91)

We can combine the plant (69) and the equation for the estimation error (75)
into the augmented system

(
q̇
˙̃q

)

=

(
A+B2K −B2K

0 A+ LC2

)(
q
q̃

)

+

(
B1 0
B1 L

) (
w
g

)

.

(92a)

Since this augmented system is block-triangular, the eigenvalues of the aug-
mented closed-loop system consist of the union of the eigenvalues of Ac =
A + B2K and Ae = A + LC2. Thus, if the full-information controller Ac and
the estimator Ae are stable, then the closed-loop system, i.e., the compensator,
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obtained by combining the plant (69) and estimator (73),
(
q̇
˙̂q

)

=

(
A B2K

−LC2 A+B2K + LC2

)

︸ ︷︷ ︸

A

(
q
q̂

)

+

(
B1 0
0 −L

)

︸ ︷︷ ︸

B

(
w
g

)

(93a)

z = (C1 DK)
︸ ︷︷ ︸

C

(
q
q̂

)

(93b)

is also stable. As the separation principle suggests, the compensator consisting
of an optimal estimator and an optimal full-state controller is itself optimal.
The closed-loop system, given by equation (93), as two inputs, the external
disturbances w and the measurements noise g, and one output, the objective
function z. This closed-loop system is treated as a new dynamical system whose
properties, such as stability, input-output behavior and performance, have to
be investigated. Next, we discuss these issues for the two prototypical flow
cases.

5.3. Control of Subcritical flow

For a choice of parameters that results in a convectively unstable plant (Ta-
ble 1), the objective is to apply control schemes that lower transient energy
growth or reduce the amplification of external disturbances. We will now con-
struct a LQG-compensator for the Ginzburg-Landau equation to illustrate how
a typical convectively unstable flow system may react to control. Similar to
the analysis of the uncontrolled system in sections 2 and 3, the response be-
havior of the closed-loop system — in terms of spatio-temporal evolution of
the state, kinetic energy and sensor signal — will be investigated for various
inputs, optimal initial disturbance, harmonic forcing and stochastic forcing.

Before control schemes can be designed, one has to decide on the placement
of actuators and sensors, the choice of which is reflected in the matrices B2

and C2. We assume the spatial distribution of the inputs and the outputs as
Gaussian functions of the form given by (108). The width parameter s = 0.4
is chosen such that 95% of the spatial extent of the input/output distributions
are ∼ 5% of the length of the unstable domain (see figure 31a). In this way, we
are restricted — as in any practical implementation of control schemes — to
only a limited number of noisy measurements and to actuation in a rather small
region of the full domain. An additional simplification is made by considering
only one actuator and one sensor.

Identifying regions of the flow where sensing and actuation are favorable
to the feedback control of a convectively unstable system is significantly com-
plicated by the convective nature of the flow. Usually one has to use physical
intuition and a trial-and-error approach. Transient growth of energy due to
the non-normality of A is associated with the local exponential growth of dist-
urbances between branch I and II. As a consequence — and in contrast to the
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globally unstable case (see next section), where it suffices to estimate at branch
II and control at branch I — the entire unstable domain between branch I and
II is of great importance for the flow dynamics.

Appropriate choices for the location of an actuator and a sensor for the
subcritical Ginzburg-Landau equation is found to be xu = −3 and xs = 0,
respectively. In figure 31a, the actuator and sensor placement are shown that
result in an acceptable closed-loop performance.

5.3.1. Stochastic disturbance

Consider a system driven by white noise B1w(t) just upstream of branch I.
From the noisy measurements y(t) = C2q(t) + g between branch I and II an
estimated state is obtained. Based on this estimate, the control signal B2u(t)
is applied upstream to the sensor. The placement of the excitation, sensor and
actuator is shown in figure 31a.

The covariance of the external and measurement noise should be chosen to
match as closely as possible the uncertainties that are expected for the chosen
design configuration, but it is difficult to make more specific statements. It has
however been found (Hœpffner et al. 2005; Chevalier et al. 2006; Hœpffner &
Brandt 2008) that the performance of the estimator can be improved dramati-
cally if the covariances are chosen to reflect physically relevant flow structures
rather than generic probability distributions. For our problem, the sensor noise
g is chosen to have a variance of G = 0.1 which is 10% of the variance of a
random input with W = 1.

Since (69) is driven by white noise w(t), the state q(t) is consequently a
random process and is defined by its stochastic properties, e.g. its covariance
P = E{qqH}. As we have shown in section 3.2, these properties are linked to
the statistical characteristics of the forcing via a Lyapunov equation (45).

In figure 31a the rms-values (40) of the state without control (red) and
with control (black) are shown. The rms-value of the uncontrolled state grows
exponentially as it enters the unstable domain at branch I; this growth prevails
until branch II. The rms of the controlled state, however, grows only slightly
in the unstable region and is considerably lower than the rms-value of the
uncontrolled state at branch II.

In figures 31b and c the performance of the compensator is shown more
explicitly in form of a temporal simulation of the closed-loop system (93) in
time. The control is only engaged for t ∈ [250, 750]. Without control the
stochastic disturbances grow exponentially as they enter the unstable region at
x = −8.2 and decay as they exit the region at x = 8.2. When the control is
activated the perturbation energy is reduced from E ≈ 103 to E ≈ 1. When
the control is disengaged, the disturbances immediately start to grow again.
During and after the time when the control is applied the perturbation energy
reaches a steady-state at a level that can be determined from the covariance
of the state according to E = trace(PM), (equation (39)). Dashed lines in
figure 31c indicate these levels.
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Figure 26. (a) Comparison of the frequency response of the
open-loop (red), LQG-controlled (black) and H∞-controlled
(blue) Ginzburg-Landau equation. For the open-loop, the ∞-
norm corresponding to the peak value of the response is 151,
whereas the 2-norm corresponding the to integral of the re-
sponse is 20.5. The H∞ controller minimizes the peak value
to 18.4 and reduces the 2-norm to 8.7. The LQG/H2 con-
troller, on the other hand, minimizes the 2-norm to 6.1 and
reduces the peak value to 20.8. (b) The energy evolution of
an optimal disturbance is shown for the convectively unsta-
ble Ginzburg-Landau equation (red line) and the closed-loop
system computed with LQG/H2 (black) and H∞ (blue ).

5.3.2. Harmonic and optimal disturbance

The aim of feedback control for subcritical flows is to design closed-loop systems
with small transfer function norms compared to the stable open-loop system.
Maximum transient energy growth of a perturbation and the norm of the system
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transfer function G are linked for highly non-normal systems (see section 3.1
for details). To show this link, we will pose the LQG problem as a control
problem in the frequency domain with the objective to minimize the 2-norm of
the closed-loop transfer function.

The relation between the input and output signals, that is, between dis-
turbance and measurement noise and the objective function, (w → z, g → z),
of the closed-loop system (93) (displayed schematically in figure 1) can be de-
scribed by the transfer function,

Gc(s) = C(sI − A)−1B s ∈ C. (94)

The relation between the objective function (70) in the time-domain and
in the frequency domain can easily be found from Parseval’s identity,

∫ ∞

−∞

z2 dt =
1

2π

∫ ∞

−∞

trace|Gc(iω)|22dω = ‖Gc(iω)‖2
2 (95)

with |Gc|22 = GH
c Gc. We have thus defined the 2-norm of the transfer function

Gc(s) as the integral over the 2-norm of the amplitude of the transfer function
along the imaginary axis. The H2 problem is then to minimize (95). The
symbol H2 stands for the “Hardy space” (Zhou et al. 2002) which contains the
set of stable transfer functions with bounded 2-norms.

In figure 26a the frequency response (w → z, g → z) of the open-loop
system is shown (red line) for the subcritical Ginzburg-Landau equation; we
observe a 2-norm of 20.5. The corresponding LQG/H2 closed-loop transfer
function (94) is displayed (black line) in figure 26, where the 2-norm is now
minimized to a value of ‖Gc‖2 = 6.1. In figure 26b the optimal energy growth
(section 2.3) of the uncontrolled and controlled system are compared. The
maximum transient energy growth (peak value) is reduced by an order of mag-
nitude.

5.4. Control of supercritical flow

For a globally unstable flow (parameters given in Table 1), i.e., an unstable
plant (69), the influence of uncertainties (w(t) and g(t)) on the system dynamics
is rather small compared to the asymptotic behavior of the most unstable global
mode. This mode will grow exponentially as soon as any disturbance (assuming
it is not orthogonal to the unstable mode) enters the unstable region. For this
reason disturbance modeling may not play a decisive role for globally unstable
flows, in contrast to convectively unstable flows.

The goal of any control effort is to stabilize an otherwise unstable system;
this task is particularly straightforward using LQG-based feedback control,
since the closed-loop system (93) is guaranteed to be stable as long as the
actuator and the sensor are placed such that the system is both stabilizable
and detectable.

In other words, the performance of a controller to a globally unstable
Ginzburg-Landau equation can only be successful if all unstable global modes
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Figure 27. Actuator and sensor placement for the supercrit-
ical Ginzburg-Landau equation which yields a stabilizable and
detectable system. The spatial support of the actuator (blue
bar), sensor (red bar), the unstable domain (gray region) as
well as the unstable global mode (black lines) together with
its corresponding adjoint mode (red lines) are shown.

are controllable and observable. It was concluded in section 4.1 that a global
mode is controllable (observable) if the overlap of the actuator (sensor) and the
adjoint mode (global modes) is nonzero. In figure 27, a configuration for the
actuator and sensor is shown that yields a plant which is both stabilizable and
detectable.

For this set-up a LQG compensator (93) is constructed by solving the
Riccati equations (99) and (81). The perturbation energy, the impulse response
and the spectrum of the uncontrolled plant (69) and controlled closed-loop
system (93) are shown in figures 28 and 29. We observe that the closed-loop
system has all eigenvalues in the stable half-plane yielding an asymptotically
stable flow.

For a point-wise spatial distribution of actuators δ(x − xu) it has been
shown in Lauga & Bewley (2003) that the Ginzburg-Landau equation gradu-
ally loses stabilizability as the parameter µ0 is increased. This loss is due to the
increasing number of unstable global modes which are located further down-
stream. Controllability of the unstable global modes is gradually diminished as
the support of the actuator and the support of the corresponding unstable ad-
joint global modes (57c) move apart until controllability is entirely lost. At this
point no compensator will be able to stabilize the system using one pointwise
actuator.

5.5. The H∞ framework — robust control

In the previous sections we have tacitly assumed that the system matrices A,B
and C are known exactly. In reality, however, this is not the case, since mod-
eling errors (for example, a small mismatch in the Reynolds number between
the model and the actual flow) are always present. The presence of these errors
raises the important issue of robustness of a specific control design.
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Figure 28. The spatio-temporal response to an impulse in
time induced at x = −10 for the uncontrolled system (a) and
LQG-controlled system (c).

Concentrating for simplicity on the dynamic model error, let us consider a
model system given by A. The real flow, on the other hand, shall be subject
to a small deviation from this model and is described by the dynamic matrix
A + ǫ∆ with ∆ as a unit-norm uncertainty matrix and with ǫ parameteriz-
ing the magnitude of the uncertainty. For a given value of ǫ, the controller
designed for A has the ”robust stability” property if the closed-loop system is
stable for all unit-norm uncertainty matrices ∆ and, similarly, has the ”robust
performance” property if the performance of the closed-loop system is satisfac-
tory for all possible unit-norm uncertainty matrices ∆. If information about
the specific form of the uncertainties is available, one can restrict the structure
of the uncertainty matrix ∆ to reflect this information and thus reduce the
“uncertainty set”. In a similar fashion, the magnitude ǫ of the uncertainty may
be estimated or bounded.

Unfortunately, the LQG/H2-control design does not account explicitly for
uncertainties in the system matrices, which is needed to guarantee robust per-
formance or even robust stability. For a given controller, the smallest value
of ǫ such that the closed-loop system is unstable is referred to as the stability
margin. It is known (Doyle Aug 1978) that there are no guaranteed stability
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margins for LQG/H2-controllers. However, this does not necessarily mean that
the H2-controller will be unstable for very small values of ǫ; instead, it merely
means that the search for robustness is not accounted for.

To incorporate the presence of uncertainties into the control design frame-
work one can adjust the actuation penalty and sensor noise which, in turn,
directly affects the strength of the controller and may help push the control
design toward robustness. This approach has led to the development of con-
trol optimization based on the H∞-norm. Instead of minimizing the energy of
the transfer function (i.e., the integral of the frequency response over all fre-
quencies), it concentrates instead on reducing the peak value of the frequency
response. These are two very different objectives: for instance, a strong peak in
the frequency response localized about one single frequency may not contribute
significantly to the energy (integral) of the response. This new H∞-objective
plays a pivotal role in the search for robustness since closed-loop instabilities
can be quantified by the relation between the magnitude of the dynamic un-
certainty and the maximum frequency response (Zhou et al. 2002).

The steps to compute H∞-controllers closely follow the ones for LQG/H2-
design except that a new term is added to the objective functional that will
represent the worst possible external forcing. The subsequent optimization
scheme will search for a controller that achieves the best performance for the
worst perturbation (Bewley & Liu 1998; Bewley 2001). Mathematically, this
is equivalent to searching for a saddle point of this new objective functional
rather than a minimum. The augmented objective functional reads

J =

∫ T

0

qHMq + uHRu− γ2wHWw dt. (96)

In this expression w represents both external disturbances and measurement
noise. We then wish to find the control u which minimizes the control ob-
jective (70) in the presence of a disturbance w that maximally disrupts this
objective. A new free parameter γ appears that plays the role of ǫ in parame-
terizing the magnitude of the worst perturbation.

To simplify the following derivation we assume for now that W = 1 and
R = 1. Similar to the LQG-design in 5.2.3, we can also specify the control
objective in the frequency domain instead of the time domain (96). In this case
we simply aim at restricting the maximum values of the closed-loop transfer
function as given by (see e.g. Green & Limebeer (1995)),

‖Gc(iω)‖∞ ≤ ‖z‖2

‖w‖2
≤ γ. (97)

The above transfer function norm was defined in (36).

The H∞-problem consists of finding a control signal u(t) that minimizes
both the perturbation energy and control effort while maximizing the effects
of the external disturbances w. As the parameter γ approaches infinity the
objective functional (and the optimal control) reduces to the one of the LQG-
problem. In this review we will merely present the solution of the H∞-problem
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Figure 29. Top figure: The perturbation energy of an initial
condition which illustrates the asymptotic growth and decay
of the global mode of the controlled and uncontrolled systems.
Bottom figure: The spectrum of the uncontrolled (red) and
LQG-controlled (black) Ginzburg-Landau equation. The ex-
ponential growth of the wavepacket in figure 28a is due to one
unstable global mode of the open-loop shown by the red cir-
cle in the unstable half-plane (gray region). The LQG-based
closed-loop is stable with no unstable eigenvalues.

and show how it relates to the LQG-solution. For a more detailed derivation
of this link see Zhou et al. (2002) or Green & Limebeer (1995).

The solution of the above H∞-problem is, similar to the LQG-problem, ob-
tained by solving two Riccati equations which stem from two separate problems:
the estimation and the full-information control problem. The full-information
control problem leads to the Riccati equation of the form

AHX +XA−X(−γ−2B1B
H
1 +B2B

H
2 )X +M = 0 (98)
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with the control given by
u = −BH

2 X
︸ ︷︷ ︸

K

q. (99)

Furthermore, one finds that the worst-case disturbance w is given by

wworst = γ−2BH
1 Xq. (100)

The Riccati equation (98), whose solution yields the control feedback gain
for H∞, is modified such that it takes into account the worst-case disturbance
acting on the system. We notice that the term −γ−2B1B

H
1 is absent in the

Riccati equation (99) of the LQG-problem. Rather, by modeling and incorpo-
rating the structure of the disturbances B1 when computing the feedback gain
K, the components of the state that are expected to be most influenced by
external disturbances are forced by the largest feedback, Kq̂. We would like to
point out that the parameter γ is supplied by the user and that the resulting
control (99) is only suboptimal rather than optimal. For large values of γ,
the full-information solution of the associated LQG-problem and the optimal
control signal are recovered.

The estimated state is also computed in the presence of worst-case distur-
bances ŵworst = γ−2BH

1 Xq̂ and is therefore the result of the following estima-
tion problem

˙̂q = Aq̂ +B1ŵworst +B2u− L(y − ŷ), (101a)

ŷ = C2q̂. (101b)

Similar to the LQG-estimation problem, the difference between the true mea-
surement y and the estimated measurement ŷ is fed back using the estimator
gain L. There is, however, no longer any assumption on the disturbances w
and g. Instead the additional term B1ŵworst provides the estimator with infor-
mation on the worst-case disturbance. The estimation gain in equation (101)
is given by L = −ZY CH

2 , where Y is the solution of the following Riccati
equation (for a derivation of this result see, e.g. Zhou et al. (2002))

AY + Y AH − Y (−γ−2CH
1 C1 + CH

2 G
−1C2)Y +B1B

H
1 = 0, (102)

and Z is a constant matrix given by

Z = (I − γ−2Y X)−1. (103)

Equation (102) can now be compared to the Riccati equation (81) for the LQG-
problem. The additional term −γ−2CH

1 C1 is present in the above equation
which reflects the fact that the computation of the estimation gain L depends
on the weights in the cost functional. The components of the estimated state
that most contribute to the objective functional are forced stronger by the
feedback L(y − ŷ). In addition we notice that the estimation gain L depends
via equation (103) on the solution of the full-state Riccati solution X.

By combining the estimator (101) and the plant (69) it is straightforward
to formulate the H∞-compensator as a closed-loop system. Even though the
required calculations (the solution of two Riccati equations) are reminiscent
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of the LQG-approach, in the H∞ case we face additional restrictions for the
stability of the closed-loop system and a more demanding computational effort
for finding an optimal controller.

First, stabilizability and detectability is no longer a sufficient condition to
guarantee the stability of the closed-loop system. For the H∞-problem to be
solvable, the spectral radius ρ of XY has to be smaller than γ2 (Doyle et al.
Aug 1989).

Secondly, the solution presented above is merely suboptimal; finding an
optimal robust controller involves an iterative process that terminates when a
lower bound γ0 of γ is found which still satisfies ρ(XY ) < γ2. This optimal
γ0 can typically be found with fewer than 20 iterations using the bisection
algorithm.

We use the Ginzburg-Landau equation to exemplify the techniques intro-
duced above. For a more detailed investigation we refer to Lauga & Bewley
(2004). In figure 26a the frequency response (i.e., the mapping w, g → z) of
the open-loop system is shown with a red line for the subcritical Ginzburg-
Landau equation, displaying a ∞-norm of 151. The corresponding H∞ closed-
loop design is shown with a blue line where the ∞-norm is now reduced to
‖Gc‖∞ = 18.4. Comparing the frequency responses of the controlled systems
based on the H2 and H∞, we can confirm that in the former case the 2-norm
‖Gc‖2 is minimized while in the latter case ‖Gc‖∞ is minimized. Consequently,
the most amplified frequencies are more damped in the H∞-case at the expense
of the higher frequencies which are amplified compared to the uncontrolled case.
The H2 controller, on the other hand, shows a smaller reduction of the most
unstable open-loop frequencies (i.e. the peak value in the frequency response).
This is not surprising, since the H2-controller minimizes the energy — the
integral of the transfer function along the imaginary axis — whereas the H∞-
controller minimizes the peak value of the transfer function on the imaginary
axis.

The optimal energy growth (see equation (21)) in figure 26b demonstrates
that the maximum energy growth is smaller for the H∞-design which suggests
that reducing the most amplified frequencies, rather than all the frequencies,
is a more efficient strategy for damping maximum energy growth. However,
to achieve its goal the H∞-controller expends more control energy than the
corresponding H2-controller (Lauga & Bewley 2004).

Using the Ginzburg-Landau equation for a set of parameters that yields a
globally unstable flow Lauga & Bewley (2004) compared the H∞-controller to
the H2-controller for a range of control penalties and various levels of measure-
ment noise. They found that the H∞ control design always uses more control
energy (for the same control penalty) than the corresponding H2 control de-
sign. A robust controller uses this additional control energy to ensure that
the constraint on the maximum value of the transfer function norm ‖Gc‖∞ is
satisfied.
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5.6. Reduced-order controllers

The process of systematic control design as presented above involves the solu-
tion of two Riccati equations. The cost of computing a Riccati solution is of
order n3 where n is the number of components in the discretized state vector.
Whereas for the Ginzburg-Landau equation n is still sufficiently low to allow
a direct solution of the Riccati equations, for the Navier–Stokes equations the
number of state vector components is rather large. The cost of a direct Riccati
solution is prohibitively expensive when n > 105 which is easily reached for
two- and three-dimensional flow configurations. As discussed in section 4, this
high cost can be avoided by developing a reduced-order model which preserves
the essential flow dynamics.

Similar to solving a Lyapunov equation, there exist “matrix-free” methods
to solve a Riccati equation. One common approach that significantly reduces
the cost of directly solving the Riccati equation — if the number of inputs
and outputs is much smaller than the number of states — is known as the
Chandrasekhar method (Kailath 1973). In this method the Riccati solution
is expressed as the solution to a coupled system of ordinary differential equa-
tions which needs to be integrated in time (see Hœpffner et al. (2005) for an
application).

Even if we manage to obtain the feedback gains from the full system, how-
ever, there still remains the issue that the controller is of very high order, which
requires a rather fast feedback-system running next to the experiment.

We will return to the issue of model reduction (see section 4) based on the
projection of the original high-dimensional system onto a smaller system using
a given basis. One of the main advantages of this approach is that the error
in the reduced-order model can be quantified in terms of transfer functions as
shown in equation (54) and (58).

Once a reduced-order model is devised (using the techniques in section 4)
whose transfer function is a sufficiently good approximation of the open-loop
transfer function, we can design an H2- or an H∞-controller for this reduced
model. This results in a reduced-order controller which, coupled to the full-
order open-loop system, will result in the following augmented system

(
q̇
˙̂q

)

=

(
A B2K̂

−LĈ Â+ B̂2K̂ + L̂Ĉ

)(
q
q̂

)

+

(
B1 0

0 −L̂

) (
w
g

)

. (104)

The expression of the reduced-order controller is equivalent to the full-order
given by equation (93), except that the quantities marked withˆare of order
r ≪ n. Note that the feedback gainK and estimation gain L have the dimension
of the reduced model resulting in a fast online controller.

We can now compare the frequency response of the reduced-order models
with and without control. The frequency response of the full model without
control was shown by the dashed blue lines in figures 22. The frequency re-
sponse of reduced-order models using global modes (green), proper orthogonal
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Figure 30. The frequency response of the closed feedback-
loop based on a LQG-compensator. Blue dashed lines rep-
resent the full model of order n = 220. The performance of
reduced-order models based on r = 2, 4 and 6 modes are shown
in the (a), (b) and (c), respectively. Red lines represent bal-
anced modes, black lines POD modes and green lines global
eigenmodes. We observe that reduced order controller based
on balanced modes outperforms the other two models. The
poor performance of the reduced-order based on POD and
global modes, is directly associated with the unsatisfactory
approximation of the open-loop case in figure 22.
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decomposition (POD) modes (black) and balanced modes (red) were also shown
in the figures.

In figures 30a,b,c we display with dashed blue lines the frequency response
Gc(iω) of the LQG closed-loop system when solving the full-order (n = 220)
Riccati equations. Comparing the dashed blue lines in figure 22, where the
frequency response of the reduced-model of the open-loop is shown, with the
ones of the closed loop in figure 30, we see that the most unstable frequencies
are reduced by an order of magnitude. Solving the Riccati equations for the
reduced models of order r = 2, 4 and 6 for the three sets of modes (global, POD,
balanced modes) we observe the same trend for the closed-loop system as we
saw for the open-loop system: the reduced-order model based on two balanced
modes (red line in figure 30b) is able to obtain a closed-loop performance very
similar to the full model, whereas POD modes require a substantially larger
basis and global modes fail entirely.

It should be mentioned that model reduction for unstable systems is also
possible using global modes (Åkervik et al. 2007), POD modes (Gillies 1998)
and, more recently, balanced modes (Ahuja & Rowley 2008).

6. Conclusion

A unifying framework for linear fluid dynamical systems has been presented
and reviewed that allows the analysis of stability and response characteristics
as well as the design of optimal and robust control schemes. An input-output
formulation of the governing equations yields a flexible formulation for treating
stability problems and for developing control strategies that optimize given
objectives while still satisfying prescribed constraints.

The linear Ginzburg-Landau equation on the infinite domain has been used
as a model equation to demonstrate the various concepts and tools. It has been
modified to capture both subcritical and supercritical disturbance dynamics
and thus span the range of fluid behavior observed in various generic shear
flow configurations. With a small modification, the equation can also be used
to mimic instabilities in other spatially developing flows, for instance flows
on semi-infinite domains such as inhomogeneous jets and wakes. We should
however keep in mind that Ginzburg-Landau is a great simplification of the
dynamics described by linearized Navier–Stokes equations, modelling merely
the fundamental behavior of different types of local and global instabilities and
the transition between them.

Input-output-based analysis tools, such as the impulse response or the fre-
quency response, have been applied to the model equation. This type of analysis
lays the foundation for a thorough understanding of the disturbance behavior
and the design of effective control strategies. Concepts such as controllability
and observability play an important role for both the input-output behavior
and the control design.
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The design of effective and efficient control strategies is a challenging task,
starting with the placement of actuators and sensors and ending with the ju-
dicious choice of a model reduction basis in order to numerically solve the
compensator problem. Along the way, compromises between optimality (H2-
control) and robustness (H∞-control) have to be made that influence the overall
performance of the feedback system.

It is hoped that this review has given a comprehensive and modern intro-
duction to the fields of stability and control theory and has shown the close
link between them. It is further hoped that it will spark interest in the fluid
dynamics community to continue the exploration of these two exciting disci-
plines.

The Matlab files to reproduce the results and figures of this review article
are available from the FTP server ftp://ftp.mech.kth.se/pub/review.
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Appendix A. Discretization

The numerical studies in this review article are based on a pseudospectral
discretization of the Ginzburg-Landau operator A using Hermite functions and
the corresponding differentiation matrices provided by Weideman & Reddy
(2000). To approximate the derivatives in (1), we expand the solution q(x, t)
in n Hermite functions

q(x, t) =

n∑

j=1

αj(t) exp(−1

2
b2x2)Hj−1(bx) (105)

where Hj(bx) refers to the jth Hermite polynomial. The differentiation process
is exact for solutions of the form

f(x) = exp(−1

2
b2x2)p(bx) (106)

where p(bx) is any polynomial of degree n − 1 or less. The scaling parameter
b can be used to optimize the accuracy of the spectral discretization (Tang
1993). A comparison of the above expression with the analytical form of the
global Ginzburg-Landau eigenmodes (11b) shows that they are of the same form
except for the exponential term exp{(ν/2γ)x} stemming from the convective
part of the Ginzburg-Landau equation. This exponential term is responsible for
the non-orthogonality of the eigenmodes of A. The Hermite functions are thus
the “orthogonal part” of the global modes. By choosing the Hermite function
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scaling factor b = χ we obtain a highly accurate approximation of A, since any
solution of the Ginzburg-Landau equation will decay with the same exponential
rate as the Hermite functions in the limit as the domain tends to infinity.

The collocation points x1, . . . , xn are given by the roots of Hn(bx). We also
notice that the boundary conditions are enforced implicitly and that −x1 =
xn = O(

√
bn) in the limit as n → ∞ (Abramowitz & Stegun 1964). The

discretization converts the operator A into a matrix A of size n× n (with n as
the number of collocation points). Throughout this review article we present
results for n = 220 yielding a computational domain with x ∈ [−85, 85].

Discretization transforms flow variable q(x, t) into a column vector q̂(t) of
dimension n, and the inner product is defined as

〈f, g〉 =

∫ ∞

−∞

f(x)∗g(x)dx (107)

≈
n∑

i=1

n∑

j=1

f̂H
i ĝjwi,j = f̂HMĝ = 〈f̂ , ĝ〉M ,

where f̂ = [f̂1 . . . f̂n]H and ĝ = [ĝ1, . . . , ĝn]H are column vectors consisting of,
respectively, f(x) and g(x) evaluated at the collocation points. The symbol H

denotes the Hermitian (complex conjugate transpose) operation. The positive-
definite matrix M contains the weights wi,j of the chosen quadrature rule. For
instance, applying the trapezoidal rule to the Hermite collocation points results
in a diagonal matrixM = 1

2diag{∆x1,∆x2+∆x1, . . . ,∆xn−1+∆xn−2,∆xn−1},
with ∆xi = xi+1 −xi. In this paper, the discrete variables f̂ are denoted by f .

The operators B and C, describing the input and output configuration,
are represented at their respective collocation points. We assume a spatial
distribution of inputs B = {B1, . . . , Bp} and outputs C = {C1 . . . Cr}T in the
form of Gaussian functions

Biu(t) = exp

[

−
(
x− xw,i

s

)2
]

u(t), (108a)

Ciq(t) = exp

[

−
(
x− xs,i

s

)2
]H

Mq(t). (108b)

where x represents the Hermite collocation points.
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Figure 31. The controlled Ginzburg-Landau equation with
stochastic excitation: (a) white noise w with zero mean and
unit variance W = 1 forces the system at x = −11, just up-
stream of unstable region with input B1 as a Gaussian function
(green). Measurements y(t) of the state (red Gaussian) con-
taminated by white noise with zero mean and variance G = 0.1
are taken at xs = 0. The actuator u with control penalty R = 1
is placed upstream of the sensor at xu = −3. The rms-values
of the uncontrolled and LQG-controlled state are given by the
solid red and black lines, respectively. The absolute value of
the state |q| is shown in an x-t-plane in (b), while the lower
plot (c) displays the kinetic energy E = ‖q‖M as a function of
time. The control is only engaged for t ∈ [250, 750]. Dashed
lines in (c) indicate the mean value computed from Lyapunov
equation.
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Albarède, P. & Monkewitz, P. A. 1992 A model for the formation of oblique
shedding and “chevron” patterns in cylinder wakes. Phys. Fluids A 4, 744–756.

Anderson, B. & Moore, J. 1990 Optimal control: Linear Quadratic Methods. New
York: Prentice Hall.

Andersson, P., Berggren, M. & Henningson, D. 1999 Optimal disturbances and
bypass transition in boundary layers. Phys. Fluids 11, 134–150.

Antoulas, A., Sorensen, D. & Gugercin, S. 2001 A survey of model reduction
methods for large-scale systems. Contemp. Math 280, 193–219.

Antoulas, C. A. 2005 Approximation of Large-Scale Dynamical Systems. Philadel-
phia: SIAM.

Bamieh, B. & Dahleh, M. 2001 Energy amplification in channel flows with stochas-
tic excitation. Phys. Fluids 13, 3258–3269.

Bewley, T. & Moin, P. 1994 Optimal control of turbulent channel flows. In Active
Control of Vibration and Noise (ed. E. W. H. K.W. Wang, A. H. Von Flotow
R. Shoureshi & T. W. Farabee). ASME DE-Vol. 75.

Bewley, T. R. 2001 Flow control: New challenges for a new renaissance. Progr.
Aerospace. Sci. 37, 21–58.

Bewley, T. R. & Liu, S. 1998 Optimal and robust control and estimation of linear
paths to transition. J. Fluid Mech. 365, 305–349.

Bewley, T. R., Moin, P. & Temam, R. 2001 Dns-based predictive control of
turbulence: An optimal benchmark for feedback algorithms. J. Fluid Mech. 447,
179–225.

Biau, D. & Bottaro, A. 2004 Transient growth and minimal defects: Two possible
initial paths of transition to turbulence in plane shear flows. Phys. Fluids 16,
3515–3529.

Briggs, R. J. 1964 Electron-stream interaction with plasmas. MIT Press .

Butler, K. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in
viscous shear flow. Phys. Fluids A 4, 1637–1650.
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The dynamics and control of two-dimensional disturbances in the spatially
evolving boundary layer on a flat-plate are investigated from an input-output
viewpoint. From the linearized Navier–Stokes equations with inputs (distur-
bances and actuators) and outputs (objective function and sensor) controllable,
observable and balanced modes are extracted using the snapshot-method and
a matrix-free time-stepper approach. A balanced reduced-order model is con-
structed and shown to capture the input-output behavior of linearized Navier–
Stokes equations. This model is finally used to design a H2-feedback controller
to suppress the growth of two-dimensional perturbations inside the boundary-
layer.

1. Introduction

Many powerful linear systems and control theoretical tools have been out of
reach for the fluids community due to the complexity of the Navier–Stokes
equations. Two elements that have enabled a systematic approach to flow
control are the availability of increasingly powerful computer resources and
recent advances of matrix-free methods. In this paper, the linearized Navier–
Stokes equations including inputs and outputs are analyzed using systematic
tools from linear systems and control theory. The techniques do not rely on
physical insight into the specific flow configuration and can in principle be
applied to any geometry.

We will focus on the flat-plate geometry which still poses a computational
challenge. The two-dimensional Blasius boundary-layer is non-parallel, i.e. spa-
tially evolving and therefore has two inhomogeneous spatial directions. Many
tools in both stability analysis and control theory rely on the linearized stability
operator, which even for two-dimensional flows becomes very large when it is
discretized. As an example, a moderate grid resolution with 200 points in two
directions leads to a system matrix with a memory demand of 10 Gigabytes,
whereas to store a flow field requires only 3 Megabytes. It is therefore essential
to either approximate or develop algorithms where large matrices are avoided
and the storage demands are of the order of few flow fields. Matrix-free methods
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employ the “timestepper approach” in which given a flow field a Navier–Stokes
code is used to provide a field at a later time. The time-stepper technique
has become increasingly popular in stability analysis, both for computing the
largest transient growth and performing asymptotic analysis (Barkley et al.
2002). Another example of matrix-free method is the snapshot method intro-
duced by Sirovich (1987), which allows the proper orthogonal decomposition
(POD) of flow fields without solving large eigenvalue problems.

The starting point of modern optimal and robust control design, also de-
noted as H2– and H∞–control, is an input-output formulation referred to as the
standard state-space formulation (Zhou et al. 1999). The well-known stochastic
approach to optimal control referred to as LQG (Linear Quadratic Gaussian)
is an example of a H2 controller. In the H2 framework three inputs and two
outputs are considered; the inputs represent external disturbances, measure-
ment noise and the actuator whereas the outputs represent measurements for
estimation and the objective functional to be minimized. The control problem
is to supply the actuator with an optimal signal based on the measurements
taken from the first sensor, such that the effect of external disturbances and
measurement noise on the disturbance energy is minimized at the location of
the second sensor. Given the physical distribution of the inputs and outputs,
the control design process amounts to the determination of input signals given
output signals. Therefore, for successful control design it is sufficient to capture
only a fraction of the dynamics, namely the relationships between the input
and output signals.

The aim of this study is to build a model of low dimension that captures the
input-output behavior of the flat-plate boundary layer, and use this model for
optimal feedback control design. With the help of the adjoint Navier–Stokes
equations two fundamental dynamical structures are identified; (i) the flow
structures that are influenced by the inputs (ii) the flow structures that the
outputs are sensitive to. These controllable and observable structures deter-
mine the input-output behavior completely for linear systems. It is well-known
in systems theory that these two set of modes can be balanced, and repre-
sented by one set of modes, called the balanced modes. In this way, the flow
structures that capture most of the input-output behavior are extracted and
used as projection basis for model reduction. The method employed in this
work to compute the balanced modes is called the snapshot-based balanced
truncation (Rowley 2005; Willcox & Peraire 2002). This method has been ap-
plied to the channel flow (Ilak & Rowley 2008) and the flow around a pitching
airfoil (Ahuja et al. 2007).

Previous work in flow control involving model reduction and control design
has typically relied on physical insight into the specific flow situation rather
than on a systematic approach detached from the application (see Kim & Be-
wley 2007, for a recent review). For instance, for parallel flows it is possible to
decouple the linear equations in Fourier space. Control, estimation and other
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types of optimization can then be performed independently for each wavenum-
ber and then transformed back to physical space. This approach has been
adopted for channel flow in Högberg et al. (2003) and even extended to weakly
nonparallel flows by Chevalier et al. (2007a). Another example is the projec-
tion of the linearized Navier–Stokes equations on a set of modes such as global
eigenmodes of the stability operator or POD modes. Although, these methods
have been applied with considerable success to various flows (Gillies 1998; Åk-
ervik et al. 2007) their success is strongly dependent on the dynamics of the
specific flow situation. For many open shear flows the global eigenmodes and
their associated adjoint modes can become widely separated in the streamwise
direction (Chomaz 2005) and gradually move away from the locations of the in-
puts and outputs (Lauga & Bewley 2003). As a consequence controllability and
observability of the global eigenmodes is gradually diminished. If controllabil-
ity/observability is lost for any unstable eigenmode, no control scheme will be
able to stabilize the system. The POD basis also has limitations for describing
the input-output behavior. Although it is optimal for capturing the energy of
the response to an input, it does not always capture the input itself and takes
no consideration of the output. However, examples of successful adaptations
of POD modes can be found e.g. in Noack et al. (2003); Siegel et al. (2008) for
the globally unstable flow past a circular cylinder.

The paper is organized as follows: we start with describing the flow do-
main, the inputs, outputs and the control problem in section 2. In this section
the mathematical framework is presented with evolution, controllability and
observability operators and their associated adjoint operators. These operators
are used to introduce the Gramians and balanced modes in section 3, where we
also investigate the input-output behavior of our linear system and discuss the
most controllable, observable and balanced modes. In section 4 the impulse
and harmonic response of the balanced reduced-order model are compared to
the full Navier–Stokes equations and the model reduction error is quantified.
Section 5 deals with the control design. We briefly introduce the H2 framework
and evaluate the closed-loop performance. Concluding remarks and a summary
of the presented material are offered in the last section. Finally, in the appendix
we derive the adjoint operators, describe the snapshot method, the solution of
the H2 problem and our time-stepper.

2. Problem formulation

2.1. Governing equations

We consider the linear spatio-temporal evolution of two-dimensional distur-
bances in a viscous, incompressible flow over a flat plate. The geometry of the
problem and the physical domain, Ω = (0, Lx)× (0, Ly), are shown in figure 1.
The disturbance behavior is governed by the Navier–Stokes equations linearized
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Figure 1. The input/output configuration used for the con-
trol of perturbations in a two-dimensional flat-plate geometry.
The computational domain Ω = (0, Lx)×(0, Ly), shown by the
gray region, extends from x = 0 to x = 1000 with the fringe
region starting at x = 800. The first input B1, located at
(xw, yw) = (35, 1), models the initial receptivity phase, where
disturbances are induced by free-stream turbulence, acoustic
waves or wall roughness. The actuator, B2, provides a mean to
manipulate the flow, in this case by a localized volume forcing,
and is centered at (xu, yu) = (400, 1). Two sensors, C1 and C2,
are located at (xv, yv) = (300, 1) and (xz, yz) = (750, 1) respec-
tively. The upstream measurements are used to estimate the
incoming perturbations, while the downstream sensor quanti-
fies the effect of the control. Note that in this work all the
inputs and outputs are Gaussian functions given by expres-
sion (10).

about a spatially evolving zero-pressure-gradient boundary layer,

u̇ = Au−∇p+ f , (1a)

0 = ∇ · u, (1b)

u = u0 at t = 0. (1c)

The disturbance velocity and pressure field at position x = (x, y) and time t
are represented by u(x, t) = [u, v]T and p(x, t), respectively. The divergence
operator is denoted by ∇ = [∂x, ∂y]T , the external forcing by f(x, t) and the
governing linear operator A is

A(Re,U, λ) = −(U · ∇) − (∇UT )T + Re−1∇2 + λ(x). (2)

The Reynolds number is defined as Re = U∞δ
∗
0/ν, where U∞ is the free-

stream velocity and δ∗0 the displacement thickness at the computational inflow
x0 = 0. All the simulations were performed at Re = 1000 which corresponds
to a distance of 341δ∗0 from the leading edge to the inlet of the computational
domain. The base flow U = [U, V ]T (x, y) is a solution to the steady nonlinear
Navier–Stokes equations.
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The term λ(x) is used to enforce periodicity of the physical flow in the
streamwise direction, so that a spectral Fourier expansion technique can be
employed for our numerical solution. This function is nonzero only in a fringe
region at the end of the domain (see figure 1) where it forces the outgoing
perturbation amplitude to zero (See Appendix C and Nordström et al. 1999,
for further details). The solutions to (1) satisfy no-slip condition at the plate
and vanish at the upper boundary Ly = 30δ∗0 which is chosen to be well outside
the boundary layer. The boundary conditions hence are

[u, v]x=0 = [u, v]x=Lx
, (3a)

[u, v]y=0 = [u, v]y=Ly
= 0. (3b)

2.2. Standard state-space formulation & the H2 problem

The Navier–Stokes equations (1) may be written in the standard state-space
form (Zhou et al. 2002) useful for applying tools from systems theory and for
H2/H∞ control design. In this framework, any instantaneous divergence-free
disturbance field u that satisfies the boundary conditions (3) is an element of
the state-space X = L2(Ω). Furthermore, the forcing f , also referred to as the
input, is decomposed into external disturbances w and a control u, i.e.

f = B1w + B2u, (4)

where the input signals w, u are functions of time and B1(x, y),B2(x, y) are
linear mappings from R → X. The first mapping, B1, represents the spatial
distribution of the sources of external disturbances acting on the flow (see fig-
ure 1). In our model, the input forcing B1 is located at the upstream end of
the domain to model the upstream receptivity phase, when disturbances are
introduced into the boundary layer by e.g. roughness and free-stream pertur-
bations. The actuator used for control is defined by the mapping B2, which
represents a localized volume force, mimicking blowing and suction at the wall.
Finally, u(t) represents the control signal we wish to apply and is based on the
sensor measurements.

Information about the disturbance behavior is given by two outputs

z = C1u+ lu, (5)

v = C2u+ αg, (6)

where the output signals z, v are functions of time and C1, C2 are functionals
from X → R. The sensor defined by C1 is located far downstream and it is used
to evaluate the level of the disturbance amplitude. Therefore it reveals whether
the“objective”of our control has been met. In particular, the objective is to find
a control signal u(t) such that the perturbation energy in the flow is minimized
downstream at the location defined by C1. To design an efficient controller,
however, the energy input expended in the actuation should be limited; thus,
the control effort is penalized with a scalar l. For large values of l the control
effort is considered to be expensive, whereas small values indicate cheap control.
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This results in an objective functional of the form

‖z‖ = ‖C1u‖ + l‖u‖ (7)

and explains why the control signal is added to the sensor signal when defining
the output signal z. The norms in (7) are associated to the inner products de-
fined in the next section. In the definition of z we have assumed 〈lu, C1u〉 = 0
so that there is no cross weighting between the flow energy and control in-
put (Zhou et al. 1999).

The second output signal v(t) is the measurement signal extracted from the
sensor C2. This signal is the only information delivered to the controller in order
to provide a control signal such that the above objective is met. The additional
term g(t) accounts for noise contaminating the measurements. This term can
be considered as a third forcing, but rather than forcing the Navier–Stokes
equations it forces the measurements. Large values of the scalar α indicate
high level of noise corruption in the output signal, whereas for low values of α
the measurement v reflects information about the flow field with high fidelity.

The choice of the relative position of the sensor C2 and actuator B2 used
in the control design process and reported in figure 1 is based on the knowl-
edge of the behavior of boundary layer instabilities. These instabilities are of
a convective nature, so unstable waves are amplified while travelling down-
stream eventually leaving our control domain. As a consequence, the relative
streamwise position of the sensor and actuator is related to the flux of infor-
mation. Since the control signal is based on the measured velocity disturbance,
the actuation can be implemented only downstream of the measurement point.
In the same way, the effect of the control can be measured only downstream
of the actuator. A completely different choice of sensors and actuators may
be more appropriate in the case of globally unstable flows (see Bagheri et al.
2008), when the whole flow beats at a specific frequency. As example, in the
case of feedback control applied to flow separation over a long shallow cavity
(Åkervik et al. 2007), the measurement sensor was placed at the downstream
end of the cavity where the velocity fluctuations reach larger amplitudes, while
the actuation was applied at the upstream edge where adjoint modes revealed
higher flow sensitivity.

The Navier–Stokes equations (1) with input vector f = [w, g, u]T as an
element in the input space U = R

3 and output vector y = [z, v]T as an element
in the output space Y = R

2 may now be written in the standard state-space
form

u̇ = Au−∇p+ Bf (8a)

0 = ∇ · u (8b)

y = Cu+ Df (8c)

where C = [C1, C2]
T , B = [B1, 0,B2] and

D =

[
0 0 l
0 α 0

]

. (9)
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H = LoLc

Outputs
(y)

Inputs
(f)

State
(u0)

Figure 2. The operators used to examine the system input-
output behavior. The controllability operator Lc relates past
inputs to the present state, while the observability mapping Lo

relates the present state to the future outputs. Their combined
action is expressed by the Hankel operator H.

The system (8) is asymptotically stable, i.e. in the global framework all the
eigenvalues of the linearized Navier–Stokes system for a spatial boundary layer
represent perturbations decaying in time. Note that the pressure gradient
and the continuity equation can be removed from (8) by considering only the
divergence-free part of the state, i.e. projecting the equations on a divergence-
free subspace (Chorin & Marsden 1990).

Finally, we define the spatial distribution of the sensors and actuators in-
troduced above. In this work, the input and output operators are modeled with
the Gaussian function h(x,x0), defined as

h(x;x0) =

[
σxγy

−σyγx

]

exp(−γ2
x − γ2

y) (10)

where

γx =
x− x0

σx
, γy =

y − y0
σy

. (11)

The scalars (σx, σy) and (x0, y0) determine, respectively, the size and location
of the inputs and outputs. They are all of the same size, but located at different
streamwise locations, as shown schematically in figure 1. With these definitions
we have,

B = [h(x;xw), 0,h(x;xu)] (12)

and

Cu =

∫

Ω

[
h(x;xz)u
h(x;xv)u

]

dxdy. (13)

The particular shape of sensor and actuators implies that the inputs amount
to localized volume forcing, whereas the flow measurements are obtained by
averaging the velocity field over small domains using the Gaussian function as
weights.
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Operator Mapping Definition Adjoint operator
Evolution X → X T (t+ s)u(t) = u(t+ s) T ∗(t− s)u(t) = u(t− s)

Controllability U → X Lcf(t) =
∫ 0

−∞
T (−t)Bf(t)dt L∗

cu0 = B∗T ∗(−t)u0

Observability X → Y Lo(t)u = CT (t)u0 L∗
o(t)f =

∫ ∞

0
T ∗(t)C∗fdt

Hankel U → Y y = Lo(t)Lcf f = L∗
c(t)L∗

oy

Table 1. The linear operators used in this work. See Appen-
dix A for further details and derivations of the adjoint opera-
tors.

2.3. Operators

When performing model reduction for control design, one wishes to retain the
relationship between the inputs and the outputs in the low-order system. Fol-
lowing linear system theory, the properties of the input/output system (8) can
be described by the three operators introduced in this section. In the framework
presented below we assume that all operators are bounded in the chosen met-
rics and we refer to Curtain & Zwart (1995) and Dullerud & Paganini (1999)
for further mathematical details. See figure 2 and table 2.3 for an overview of
the operators.

First, we define a linear evolution operator T : X → X for the state variable
u as

u(x, t+ s) = T (t+ s)u(x, t). (14)

Given a perturbation field at time t, T (t+s) provides the velocity field at a later
time t+ s. The operator satisfies the following properties T (t+ s) = T (t)T (s),
T (0) = I. Note that T can be considered as a semi-group of the form exp(At)
on a divergence-free subspace (see e.g. Curtain & Zwart 1995).

In this work, the action of the operator is approximated numerically: T (t+
s)u(x, t) is obtained by solving the partial differential equation (1) using a time-
stepper (Barkley et al. 2002) (i.e. a Navier–Stokes solver) with u(x, t) as initial
condition. In its simplest form, a time-stepper sets up a grid in space and
time and computes approximate solutions on this grid by marching in time.
This approach is computationally feasible also for high-order systems since
large matrices are not stored. The time-stepper used and the corresponding
numerical method are described in Appendix C.

The operators needed to describe the input-output behavior can be related
to the formal solution of the system of equations (8), which is

y(t) = CT (t)u0 + C
∫ t

0

T (t− τ)Bf(τ)dτ + Df(t). (15)

This equation can be verified by inserting T = exp(At) into (15) and using (8).
In the expression above, we identify the first term on the right-hand side with
the homogeneous solution and the second term with the particular solution
stemming from the forcing f. Note that in our case the forcing term is an
element in X, i.e. divergence-free and satisfies the boundary conditions. For a
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more general forcing f , only the divergence-free part of the forcing f̂ will affect
the output signal. The difference f̂ − f can be written as the gradient of a
scalar and thus will only modify the pressure (Bewley et al. 2000). The third
part of expression (15) relates the input to the output through the matrix D
without any operators involved. Without loss of generality, we will neglect this
term for now and consider it again in section 5 for control design.

In systems theory, the quantitative investigation of the input-output prop-
erties of a linear system is commonly performed through the mappings sketched
in figure 2. We begin by introducing the controllability operator Lc : U → X,

u0 = Lcf(t) =

∫ 0

−∞

T (−τ)Bf(τ)dτ. (16)

This operator describes the mapping of any input f(t) with t ∈ (−∞, 0] onto
the state vector u at the reference time t = 0. The action of Lc can be
numerically computed by a time-stepper. It amounts to solving the linearized
Navier–Stokes equations for the velocity field u with forcing term f(t) and zero
initial conditions. The observability operator Lo : X → Y is defined as

y(t) = Lo(t)u0 = CT (t)u0. (17)

This operator describes the mapping of any initial velocity field u0 to the
output signal y(t). The action of Lo(t) can also be numerically computed and
it amounts to extracting the output signal while solving the linearized Navier–
Stokes equations with the initial condition u0 at the reference time t = 0 and
zero forcing.

A direct mapping between input and output can be obtained as the com-
bination of the operators just introduced (see figure 2),

y(t) = LoLcf(t) =

∫ 0

−∞

CT (t− τ)Bf(τ)dτ. (18)

This expression can be interpreted as a mapping from past inputs to future
outputs. It can be shown that equation (18) is the formal solution for a system
which is forced by f(t) in the time interval t ∈ (−∞, 0], resulting in the flow
field u0 at t = 0. The output is extracted for t ≥ 0, corresponding to the signal
y(t) produced by the initial condition u0. Expression (18) is also the starting
point for the input-output analysis leading to systematically finding reduced
order approximations. The mapping from inputs to outputs given by (18) in
terms of Lc and Lo is called Hankel operator and is denoted by H, i.e.,

y(t) = Lo(t)Lcf = (Hf)(t). (19)

We have two different representations of the input-output behavior of the flow
system; (i) the state-space representation (8) and (ii) the Hankel operator H
defined in (19). Note that in the latter case it is assumed that inputs and
outputs are not active at the same time.
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2.4. Adjoint equations and operators

Before issues related to controllability, observability and model reduction can
be considered the adjoint linear operators corresponding to (T ,Lc,Lo) must
be introduced. The adjoint variables provide information about how variations
in the velocity field affect the system output and how variations in the forcing
affect the flow. We show that the adjoint operators can be associated with the
adjoint linearized Navier–Stokes equations in state-space form, where the role
of the inputs and outputs is reversed. The operators (T ∗,L∗

c ,L∗
o, C∗,B∗) and

adjoint Navier–Stokes equations are derived in Appendix A. The derivations
in the make use of the following definitions of inner products in, respectively,
the state (X), input (U) and output (Y) space,

〈u,p〉X =

∫

Ω

uTp dxdy, ∀ u,p ∈ X, (20a)

〈f, y〉U = fT y, ∀ f, y ∈ U, (20b)

〈f, y〉Y = fT y, ∀ f, y ∈ Y. (20c)

Note that the kinetic energy of a perturbation u at time t is measured by
‖u(t)‖2

X
. The adjoint of the unforced (f = 0) linearized Navier–Stokes equa-

tions (1) associated with inner product (20a) is

−ṗ = A∗p+ ∇σ, (21a)

0 = ∇ · p, (21b)

p = pT at t = T, (21c)

where

A∗ = (U · ∇) − (∇U)T + Re−1∇2 + λ(x). (22a)

This system of equations describes the evolution of adjoint flow field p(x, t) =
[u∗, v∗]T backwards in time. The term σ denotes the adjoint pressure field; the
boundary conditions for p are given in A.1.

The evolution operator associated with (21) is

p(x, t) = T ∗(t)p(x, t+ s), (23)

so that given an adjoint field at time t+s the adjoint evolution operator provides
a solution at an earlier time t. Again, the above operator is approximated
numerically using a time-stepper solving equations (21). In A.1 it is shown
that T ∗ is in fact the adjoint of T under the inner product (20a).

The adjoint linearized Navier–Stokes equations and its corresponding evo-
lution operator form the basis of the adjoint input-output system dual to (8).
This can be obtained in three steps; (i) derive the adjoint input and output
operators B∗ and C∗ (ii) use B∗, C∗ and T ∗ to derive the adjoint controllability
and observability operator L∗

c and L∗
o (iii) identify the adjoint state-space with

the system which is associated with L∗
c and L∗

o.
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The adjoint of the input and output operators B and C associated with the
inner products (20b) and (20c) are,

C∗ = [C∗
1 , C∗

2 ] = [h(x;xz), h(x;xv)], (24)

and

B∗p =





B∗
1p

0
B∗

2p



 =

∫

Ω





h(x;xw)p
0

h(x;xu)p



 dx, (25)

respectively.

The adjoint controllability and observability operators L∗
c and L∗

o associ-
ated with the inner products (20b) and (20c) (derived in A.2) are given by

L∗
c(−t)p(x, 0) = B∗T ∗(−t)p(x, 0) (26a)

L∗
ot(t) =

∫ ∞

0

T ∗(τ)C∗t(τ) dτ, (26b)

where t ∈ Y and p ∈ X. The first mapping, L∗
c , is from the adjoint state at

time t = 0 onto a signal in U at time −t. The mapping L∗
o is from an output

signal in Y in t ∈ (∞, 0] to a state in X at t = 0. In analogy to the case of the
forward problem defined by (8), it can be seen that these two mappings are the
observability and controllability operator of the following state-space system,

−ṗ = A∗p+ ∇σ + C∗t, (27a)

0 = ∇ · p, (27b)

e = B∗p, (27c)

with initial condition p(x, T ) = pT . This system has two inputs contained in
the vector t = [z∗, v∗] with t ∈ Y and three outputs contained in the vector
e = [w, u, g] ∈ U. Comparing the above adjoint equations with (8) we observe
that the outputs and inputs have exchanged place. In the dual system (27),
the adjoint flow field is forced by the outputs; the adjoint problem will then
be used to identify flow fields yielding the largest output response (Dullerud &
Paganini 1999).

3. Input-output analysis

In this section, the main input-output characteristics of our problem are ana-
lyzed in order to identify the modes to retain in a low-order flow model. We
introduce the concepts of Gramians and balancing using the operators defined
in the previous section. For a more detailed presentation of systems theory we
refer to Kailath (1980) and Curtain & Zwart (1995). The analysis amounts
to computing the eigenmodes of three operators; LcL∗

c , L∗
oLo and L∗

cL∗
oLoLc.

The three sets of modes correspond to flow structures that are the most easily
influenced by the input (controllable modes), to the states that produce the
largest output energy (observable modes) and to the most relevant states for
the input-output behavior (balanced modes). For the sake of clarity, we will
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show numerical results obtained using only the first input B1 and the first out-
put C1 i.e. single-input and single-output system (SISO). We will return to the
multi-input multi-output (MIMO) state-space system with input vector f and
output vector y in section 4. The three sets of eigenmodes mentioned above
can be computed numerically for high-order systems by using the following two
approximations:

(i) The time-stepper: As mentioned above, solutions of Navier–Stokes sys-
tem (8) in input-output form are obtained numerically using a forward time-
stepper, which approximates the action of evolution operator T . An adjoint
time-stepper is used for computing solutions of the associated adjoint sys-
tem (27) and the action of the adjoint evolution operator T ∗. The numerical
code employed is described in Appendix C. In the simulations presented, we
have used 768 collocation points in the streamwise direction x and 101 points in
the wall-normal direction y, with a computational box of dimensions Lx = 1000
and Ly = 30 (see figure 1). The discretized system has thus m ≈ 105 degrees
of freedom.

(ii) The snapshot method: The controllable and observable modes intro-
duced below are computed using the snapshot method introduced by Sirovich
(1987). Recently Rowley (2005) extended this method to obtain balanced
modes. The snapshot technique is described in Appendix B. For the results
presented, the flow structures are computed by collecting 1600 snapshots of the
forward simulation using each input as initial condition and 1600 snapshots of
the adjoint simulation using each output as initial condition. The snapshots
were taken with equal spacing in the time-interval [0, 4000].

3.1. Controllable modes

We begin our input-output analysis by searching for flow states that are most
easily triggered by a given input. This issue is related to the concept of control-
lability, which, in general, quantifies the possibility of steering the flow between
two arbitrary states. A commonly adopted interpretation of controllability is
illustrated by the following optimal control problem: What is the minimum
input energy ‖f‖2

L2
in the time span t ∈ (−∞, 0] required to bring the state (if

possible) from zero to the given initial condition u(x, 0) = u0?

Assuming u0 has an unit norm, it can be shown (Lewis & Syrmos 1995;
Dullerud & Paganini 1999) that the optimal input is given by

f = L∗
cP−1u0, (28)

where P is the controllability Gramian defined as

P = LcL∗
c =

∫ 0

−∞

T (−t)BB∗T ∗(−t)dt =

∫ ∞

0

T (t)BB∗T ∗(t)dt. (29)
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Figure 3. Instantaneous snapshots of the streamwise distur-
bance component at t = 120, 600, 1200 and 1800.

In the first equality the expressions (16) and (26a) have been used. Using
equation (28) the minimum input energy is given by

‖f‖2
L2 =

∫

Ω

uT
0 P−1u0dxdy. (30)

The controllability Gramian P provides a means to rank different states
according to how easily they can be influenced by an input. In particular, the
most easily influenced, or most controllable, flow structures are the eigenfunc-
tions of P associated to the largest eigenvalues of,

Pφc
i = λc

iφ
c
i . (31)

The superscript c stands for controllable modes. Note that by definition of P
the eigenvalues are real and positive and the eigenfunctions mutually orthogo-
nal. If λc

i ≪ 1, the corresponding eigenfunction φc
i requires very large energy

to be excited by the input since (λc
i )

−1 is proportional to ‖f‖L2
. The mode is

then referred to as nearly uncontrollable1.

For linear systems the controllability Gramian corresponds to the covari-
ance of the state response to an impulse in time. Therefore, the controllable
modes can be regarded as proper orthogonal decomposition (POD) modes (Bagheri

1Our use of controllability and observability corresponds to approximate controllability and
observability in the context of partial differential equations (Curtain & Zwart 1995).
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Figure 4. The streamwise component of four most control-
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i .

et al. 2008; Ilak & Rowley 2008). Traditionally, the interpretation of these
modes is that they represent decorrelated energy-ranked flow states. For ex-
ample, the first POD mode φc

1 is the most energetic structure in the flow
containing λc

1/
∑∞

i=1 λ
c
i × 100 percent of the total flow energy. These modes

can be conveniently obtained by collecting r snapshots of the flow at discrete
times t1, . . . , tr and solving a r × r eigenvalue problem (Sirovich 1987).

The controllable modes can thus be computed from the response of the
flow to an impulse, δ(0),

u(x, tj) = T (tj)B1. (32)

The impulse response can be used to build the Gramian and to compute the
most controllable modes as shown in Appendix B. Figure 3 shows the stream-
wise velocity component of the instantaneous velocity field after an impulse
from B1 at four different times. The generation and convection of a wavepacket
with a dominant spatial wavenumber and a propagation speed of about 0.4U∞

can be observed. The wavepacket grows in amplitude and size in the x-direction
until it reaches the beginning of the fringe region at x = 800. As it enters this
region, the disturbance is eventually damped by the fringe forcing reproducing
the effect of an outflow. The input-output system (8) is thus asymptotically
stable.

The u-component of the four most controllable modes φc
i with respect to

B1 are shown in figure 4, while the corresponding eigenvalues λc
i are displayed
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Figure 5. (a) The normalized eigenvalues λc
i (red symbols)

and λo
i (black symbols) associated with controllable modes and

observable modes respectively. (b) The Hankel singular values
σi corresponding to the balanced modes.

in figure 5a with red symbols. The first 20 controllable modes contain 99% of
the flow energy, meaning that a significant part of the controllable subspace is
spanned by 20 modes. Note that the flow structures that are the most easily
influenced by the input B1 are located downstream in the domain, where the
energy of the response to forcing is the largest. In other words, low energy is
needed at location B1 to force large structures downstream owing to the am-
plification provided by the intrinsic flow dynamics. Moreover, the eigenvalues
shown in figure 5 come in pairs. The corresponding velocity fields (see the first
and the second mode in figure 4) have the same wavepacket structure 90 degrees
out of phase. These modes represent traveling structures (see also Rempfer &
Fasel 1994).

3.2. Observable modes

For a given sensor it is important to determine whether the relevant flow insta-
bilities can be detected, and if so, to which accuracy. The flow fields which can
be most easily detected are called the most observable modes. As in the case
of the controllability Gramian, the observability problem can also be cast as
an optimization problem. We wish to find the initial conditions producing the
largest output energy. The output energy generated by the initial condition
u0, assumed of unit norm, is given by

‖y‖2
L2

= 〈Lou0,Lou0〉L2
= 〈u0,L∗

oLou0〉X =

∫

Ω

uT
0 L∗

oLo
︸ ︷︷ ︸

Q

u0dxdy (33)
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where Q is called the observability Gramian. Using equations (17) and (26b)
we obtain the following expression for Q

Q = L∗
oLo =

∫ ∞

0

T ∗(t)C∗CT (t)dt. (34)

The observability Gramian provides a means to rank states according to their
contribution to the output. The most observable state φo

1 is given by the
eigenfunction of the operator Q corresponding to the largest eigenvalue of,

Qφo
i = λo

iφ
o
i . (35)

The superscript o stands for observable modes. Note that Q is a self-adjoint op-
erator so that its eigenvalues are real and positive and its eigenfunctions mutu-
ally orthogonal. The most observable mode, φo

1, contributes λo
1/

∑∞
j=0 λ

o
j ×100

percent to the total sensor energy, the second most observable mode, φo
2, con-

tributes λo
2/

∑∞
j=0 λ

o
j × 100 percent and so on. In particular, if λo

i = 0, the

corresponding mode φo
i does not make a contribution to sensor output, and is

called an unobservable mode. Note that the observable modes can regarded as
POD modes of the adjoint system.

From the definition of Q in (34) it follows that the observable modes per-
taining a given output can be determined from the impulse response of one ad-
joint simulation (see Appendix B). The results of this simulation, T ∗(t)C∗, can
then be used to build the second order correlation of the flow field, T ∗(t)C∗CT (t),
and thus the Gramian. The eigenvalue problem (35) is solved by using the snap-
shots method as explained above for the case of the controllable modes. Here
we present results for the first output C1 only. Figure 6 shows the instantaneous
adjoint field at four different times

p(x, tj) = T ∗(tj)C∗
1 , (36)

after an impulse from the first output, i.e. C∗
1δ(0). The triggered wavepacket

travels backward in time in the upstream direction with upstream tilted struc-
tures. The adjoint solution can be regarded as the sensitivity of the output
C1 with respect to linear perturbations to the underlying base flow. In other
words, the flow structures excited by C∗

1 and shown in figure 6, are also the
structures to which the sensor C1 is most sensitive. In this context, the nega-
tive time can be interpreted as the delay between the time these structures are
present and the instant they can be measured.

The u-component of the four most observable modes φo
i with respect to C1

are shown in figure 7, while the associated eigenvalues are reported in figure 5a
(black symbols). From the latter figure, we observe that the leading 20 modes
are responsible for nearly the entire output energy. The flow structures in
figure 7 are initial conditions that contribute with the most energy to the sensor
output. These modes are real-valued functions and therefore two of them are
needed to describe traveling flow structures, which explains the appearance of
pairs of eigenvalues in figure 5a. The are two further noteworthy remarks:
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Figure 6. Instantaneous snapshots of the streamwise distur-
bance component at t = −120,−600,−1200 and −1800 of the
adjoint equations.

(i) The spatial support of the observable modes is far upstream, where the
sensitivity of the flow is the largest. Hence, the most observable structures are
spatially disconnected from the most controllable modes. This spatial separa-
tion is also observed between the global eigenmodes of the linearized Navier–
Stokes equations (A) and eigenmodes of the adjoint Navier–Stokes (A∗), where
it is associated to streamwise non-normality of the system (Chomaz 2005).

(ii) The most observable structures are tilted in the upstream direction,
“leaning” against the shear layer and are similar to the linear optimal distur-
bances computed by Åkervik et al. (2008). The optimal disturbance is the
initial condition maximizing the perturbation energy over the entire domain
Ω at a fixed time t = T . On the other hand, observable modes maximize
the time integral of the perturbation energy in the region defined by the out-
put C1. Choosing the sensor location in correspondence to the largest flow
response leads therefore to the similarity between linear optimals and observ-
able modes. As noticed by Butler & Farrell (1992), the upstream tilting of the
optimal initial conditions can be attributed to the wall-normal non-normality
of the governing operator; perturbations extract energy from the mean shear
by transporting momentum down the the mean velocity gradient (the so-called
Orr mechanism).
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3.3. Balanced modes

So far we have identified modes that either characterize the response to forcing
or the sensitivity of an output. In this section we present the balanced modes
(Moore 1981), which take into account both the response behavior and the
output sensitivity. Similar to the previous section, we wish to excite the largest
output energy. However, rather than identifying dangerous initial conditions
using the mapping Lo as in equation (33), we look directly for input signals
which produce the largest output energy via the input-output mapping LoLc

given in (19).

The output energy generated by the input f, assumed of unit norm, is given
at time t by

‖y‖2
L2

= 〈Hf,Hf〉L2
= 〈f,H∗Hf〉L2

=

∫ t

0

fTH∗Hfdt. (37)

If we let the sequence of input vectors fi with unit norm represent the eigen-
functions of H∗H, i.e.

H∗Hfi = σ2
i fi (38)

then the output energy is given by the square of the so called Hankel singular
values (HSV) σi. The most dangerous input vector f1 with ‖f1‖L2

= 1 thus
results in an output signal which has been amplified by σ2

1 . Note that σ1 ≥
σ2 ≥ . . . , so the eigenmodes of the input-output map are ranked according to
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Figure 8. The streamwise velocity component of four first
balanced modes φoc

i .

how much the input signal is amplified as it is filtered by the linear system and
by the output.

Using the controllability operator Lc we obtain the flow structure associ-
ated with the forcing fi,

φoc
i =

1√
σi

Lcfi. (39)

Notice that σ−1/2 is a convenient normalization factor. The modes are denoted
by the superscript oc, which indicates that these modes are both observable and
controllable. The sequence of functions φoc

i are called the balanced modes and
as we show next, they diagonalize the observability Gramian. Computing the
output energy for fi and using (39), we obtain

∫ t

0

fT
i H∗Hfidt =

√
σi〈fi,L∗

cQφoc
i 〉L2

= σi〈φoc
i ,Qφoc

i 〉X = σ2
i , (40)

where the definitions H = LoLc, H∗ = L∗
cL∗

o and Q = L∗
oLo are used. A

diagonal observability Gramian implies that these modes can be regarded as
orthogonal if this Gramian is used as inner product weight matrix. With respect
to inner product defined in (20a) however, these modes are not orthogonal.
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A sequence of functions ψoc
i , referred to as the adjoint balanced modes,

which is bi-orthogonal to φoc
i according to

〈ψoc
i ,φ

oc
j 〉X = δi,j , (41)

is needed to project our system in the basis given by the balanced modes. The
derivation is analogous to φoc

i but now we consider instead the left eigenvectors,
si, of the input-output map H∗H, i.e.

HH∗si = siσ
2
i . (42)

The adjoint balanced modes are then given by

ψoc
i =

1√
σi

L∗
osi. (43)

It is possible to show by the same procedure used in (40) that these modes
diagonalize the controllability Gramian,

〈ψoc
i ,Pψoc

i 〉X = σi. (44)

Furthermore, the diagonal elements are also equal to the HSV. The term balanc-
ing now becomes clear; using φoc

i and ψoc
i the controllability and observability

Gramians become diagonal and equal to the HSV. In other words, the observ-
ability and controllability properties are balanced. This is useful for performing
model reduction as it allows us to discard modes which are both difficult to
measure and difficult to excite by the inputs.

To compute these modes, it is convenient to show that φoc
i are the eigen-

modes of PQ; multiplying (38) with Lc yields

LcH∗Hfi = PQφoc
i = σ2

iφ
oc
i . (45)

The computation of the balanced modes and of their associated adjoints can
again be accomplished using a time-stepper and the snapshot method described
in Appendix B. In this case one combines the sequence of snapshots collected
from the solution of the forward problem (8) with a sequence of snapshots
collected from the adjoint system (27). In this way we can approximate the
eigenvalue problem (45) to obtain the balanced modes (Rowley 2005). The u-
component of four first balanced modes φoc

i with respect to B1 and C1 are shown
in figure 8 and the corresponding adjoint modes ψoc

i in figure 9. The Hankel
Singular values σi are shown in figure 5b. As in the case of the observability
and controllability eigenvalues λc

i and λo
i , the singular values come in pairs,

indicating that the leading balanced modes are traveling structures. The same
observation was made by (Ilak & Rowley 2008) for channel flow.

From figures 8 and 9 we observe that the leading balanced modes appear
also as wavepackets but they are somewhat more spatially extended than the
controllable POD modes (figure 4). Similarly, the adjoint balanced modes have
a larger spatial support than the observable modes (figure 7). As noticed by Ilak
& Rowley (2008) and Ahuja et al. (2007), we can account for both controllability
and observability through the non-orthogonality of the balanced modes. In the
two previous sections we observed that for an input B1 located upstream and
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an output C1 located downstream, the associated controllable and observable
modes are spatially located in different part of the domain. The controllable
subspace and the observable subspace are thus separated in the streamwise
direction. This is a consequence of the convective nature of the instabilities
arising in the Blasius flow where disturbances grow in amplitude as they are
convected in the downstream direction. Essentially, this separation implies that
the distribution of both the input and the output cannot be captured by an
orthogonal projection onto the leading modes of only one subspace. Conversely,
in a bi-orthogonal projection the adjoint balanced modes account for the output
sensitivity and the direct balanced modes for the most energetic structures.

4. Model reduction

Since the disturbances are represented by an input and the objective consists of
minimizing an output signal, capturing the input-output behavior of the system
— described by the mapping LoLc — is sufficient for the design of optimal and
robust control schemes. The flow structures that are neither controllable nor
observable are redundant for the input-output behavior. Moreover, the states
that are nearly uncontrollable and nearly unobservable can be discarded since
they have a very weak influence on the input-output behavior. A systematic
approach of approximating the system given by (1) with a finite-dimensional
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model, which preserves the main input-output behavior is called balanced trun-
cation (Moore 1981). As we show below, balanced truncation amounts to a
projection of state-space system (8) on the leading balanced modes.

We now return to the multi-input multi-output (MIMO) state-space system
with input vector f and output vector y. The measurement noise acts on the
output signal and affects the perturbation dynamics only in the closed loop-
system and is hence not included in the analysis.

4.1. Galerkin projection

Assuming that the balanced modes form a complete basis in X any flow field
u(x, t) can be approximated by

ur(x, t) =
r∑

j=1

qj(t)φ
oc
j (x), (46)

where qj = 〈u,ψoc
j 〉X are the expansion coefficients. Inserting the above ex-

pansion into (8) and taking the inner product with the adjoint balanced modes
ψoc

i , the following r-dimensional state-space form is obtained,

q̇ = Aq +B1w +B2u (47a)

v = C1q + lu (47b)

z = C2q + αg . (47c)

This system is referred to as the reduced-order model (ROM). Note that
since the balanced modes satisfy the boundary conditions and are divergence-
free the pressure gradient term vanishes after projection. The entries of the
matrix A, column vector B1 and row vector C1 are

Ai,j = 〈ψoc
i ,Aφoc

j 〉X (48a)

B1,j = 〈ψoc
j ,B1〉X (48b)

C1,j = C1φ
oc
j (48c)

for i, j = 1, . . . , r. The components of the row vectors C2 and B2 are obtained
in the same manner as for B1 and C1. The evolution operator associated
with (47) is

T (t) = eAt =

∞∑

j=0

(At)j

j!
. (49)

Notice that the balanced modes are computed accounting for all the inputs
(except the measurement noise) and outputs and the Galerkin projection (47)
is performed only once. The projection of A on the balanced modes can be
approximated by the finite-difference method using the time-stepper, i.e.

Aφoc
i ≈ T (δt)φoc

i − φoc
i

δt
. (50)

For the results presented, δt was chosen to be 10−4 after a convergence study.



Input-output analysis, model reduction and control of boundary layers 117

0 10 20 30 40 50 60 70 80 90 100
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

r
0 10 20 30 40 50 60 70 80 90 100

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

r

||G
−

G
r|| ∞

(a) (b)

Figure 10. (a) The Hankel singular values (black symbols)
are compared to the diagonal entries of the controllability and
observability Gramians associated with the balanced reduced-
order system. (b) The H∞ model reduction error. The upper
and lower theoretical bounds are depicted with gray lines and
the actual model reduction error is show with red symbols.

To validate the properties of the snapshot-based balanced truncation, we
construct the reduced-model (47) and compute its controllability and observ-
ability Gramians. The projected system is balanced if and only if its Gramians
are diagonal and equal to the HSV. We found that the first 70× 70 elements of
both Gramians are diagonal. In figure 10 we compare the leading 100 diagonal
elements with the HSV. The first 70 modes are observed to be bi-orthogonal
to each other down to numerical accuracy. However, for higher modes as the
numerical round-off errors increase, the bi-orthogonality condition is gradually
lost and off-diagonal elements are observed in both Gramians. By increasing
the numerical resolution and the number of snapshots it is possible to increase
the number of balanced modes. However, — as noticed by (Moore 1981) — the
ratio σ1/σi serves as a condition number for φoc

1 , and therefore the balanced
modes corresponding to very small HSV can be ill-conditioned independently
of the numerical approximations.

4.1.1. Performance of reduced-order model

In this section the input-output behavior of reduced-order model (47) is com-
pared to the full Navier–Stokes system (8). We begin by comparing the impulse
response from all inputs to all outputs. In figure (11) three signals B1 → C1,
B1 → C2 and B2 → C1 are shown with black lines. The response of C2 to forc-
ing in B2 is zero, since disturbances traveling upstream are quickly damped.
These impulse responses were obtained by using the time-stepper with ∼ 105

degrees of freedom. The impulse responses of the reduced-order model (47)
with r = 50 given by y(t) = CeAtB are shown with red dashed lines. We
observe that reduced-model registers the same signal as the full model from all
inputs to all outputs. The wavepacket triggered by the impulse of B1 reaches
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Figure 11. The impulse response from B1 → C2 (a), B2 → C1

(b) and B1c → C1 (c). The black solid line represents direct
numerical simulations with 105 degrees of freedom and the red
dashed line the balanced reduced-model with 50 degrees of
freedom.

the first sensor C2 after 600 time units and the second sensor C1 after 1500 time
units. The wavepacket triggered from the actuator reaches the second sensor
after 600 time units.

The frequency response of the full system and of the reduced order model
are compared next. The frequency response is related to the Laplace transform
of the impulse response. To see this relation, we insert the complex forcing est

in the formal solution (15) with zero initial condition and obtain

y(t) =

∫ ∞

0

CT (t− τ)BIesτdτ =

∫ ∞

0

CT (τ)BIesτdτ

︸ ︷︷ ︸

R(s)

Iest = RIest. (51)

In the relation above, I is the unit vector of size 3. We can identify the transfer
matrix R of size 2 × 3 as the Laplace transform of the impulse response from
B → C. Due to the linear nature of the equations an input est will generate
an output with the same frequency but with a phase shift φ = Arg{R} and a
different amplitude |R(s)|. Since R(s) is a rectangular matrix, the amplitude
is defined as

|R(s)| = σ1, (52)
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Figure 12. (a) The largest singular value of the transfer func-
tion |R(iω)| from all input to all outputs computed using the
time-stepper is shown with red symbols. The largest response
is for ω = 0.06 with a peak value of 144.6. The frequencies in
the grey domain are amplified. The frequency response of the
reduced model with rank 2 (green), 50 (blue) and 80 (black).

where σ1 is the largest singular value of R(s). The transfer function of the
reduced-model is similarly defined as

R(s) =

∫ ∞

0

CeAτBIesτdτ. (53)

The amplitudes of the transfer functions with s = iω, i.e. the frequency re-
sponse, are displayed in figure 12 for reduced-order models of order r = 2, 50
and 80 and for the full model of order 105. Note that we do not have an explicit
expression of R(iω). The frequency response is obtained from the numerical
simulations by forcing from each input with constant frequency ω and extract-
ing the time periodic signal from the output once the initial transients have
died out.

From figure 12 we observe that the reduced-order model of order 2 captures
the most important aspect of the input-output behavior, which is the response
of the most dangerous frequency, i.e. the peak response of the full model.
The model with 50 modes is able to estimate the gains of all the amplified
frequencies, but fails to capture the damped low and high frequencies. Adding
30 additional modes results in a model that preserves the input-output behavior
correctly for all frequencies. Note that there are no isolated eigenvalues in the
spectrum of the spatially developing Blasius flow (Ehrenstein & Gallaire 2005;

Åkervik et al. 2008) and therefore the frequency response is rather smooth with
no peaks. Low-pass filters of this form cannot be represented with only a few
degrees of freedom.
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Finally, the model reduction error is computed and compared to the the-
oretical bounds given by the Hankel singular values. An attractive feature of
balanced truncation is the existence of error bounds (note that this error bound
is obtained a priori to Galerkin projection),

σr+1 < ‖R −R‖∞ ≤ 2
n∑

j=r+1

σj . (54)

The infinity norm of the transfer function equals the peak value of the fre-
quency response. Estimating the model reduction error (54) amounts to the
calculation of the difference of the peak values of the reduced-order and the
Navier–Stokes system. The error norm for the balanced truncation model is
shown in figure 10b with red symbols. The peak value for the Navier–Stokes
system is 144.60 which is gradually approached by the reduced-order model
until it saturates at a peak value of 144.50. The error norm remains within or
lower than the bounds given by the HSV for the first 50 modes. Note that an
error which is lower than the theoretical bounds can be explained by the fact
that the frequency response of the full system is also numerically approximated.

A thorough comparison between reduced order models obtained with POD
modes and balanced modes can be found in Ilak & Rowley (2008) for the case
of channel flow and in Bagheri et al. (2008) for the Ginzburg-Landau equation.
The latter work also included global eigenmodes of the linearized operator in
the comparison. For globally unstable flows it may be convenient to use the
global eigenmodes as projection basis (Åkervik et al. 2007) for model reduc-
tion since the response to any input is dominated by the unstable eigenmodes
asymptotically.

5. Feedback control

We will now develop a reduced-order feedback controller, which will have the
same dimension as the reduced-order model (e.g. r = 50). The closed-loop
behavior and the objective function z will be investigated and compared to the
uncontrolled flat-plate boundary layer.

5.1. H2 — framework

The main idea of linear feedback control is shown in figure 13. As stated in
the introduction our objective is to find a control signal u(t) such that in the
presence of disturbances w, g the perturbation energy represented by the state
variable u(x, t) is minimized downstream at the location defined by the sensor
C1. This is the H2 control problem.

In the previous section we showed that our reduced model (47) is able to
capture the input-output behavior of the Navier–Stokes system (8). During
the control design process we can assume that the reduced-model is the plant
that we wish to control. Once we have determined the control law for this
approximating model, we will apply it to the full Navier–Stokes system. We
refer to (Anderson & Moore 1990; Zhou et al. 2002; Bagheri et al. 2008) for
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Figure 13. The closed-loop system. The plant represent the
input-output system given by equation (8) subject to external
disturbances w. The controller of order 50 forces the Navier–
Stokes equations with the input signal u based on the noisy
measurements v so that the effect of w on the output signal z

is minimized.

further details on the H2 control algorithm, as we will only outline the main
steps.

Following the notation introduced for the reduced-model (47), the objective
function (7) becomes

‖z‖2
L2

= ‖C1q‖2
L2

+ l2‖u‖2
L2

=

∫ t

0

qTCT
1 C1q + l2uT udτ. (55)

The determination of the control signal is based only on the measurements
from the sensor C2. However, for linear systems — due to the separation princi-
ple (Zhou et al. 2002) — the feedback control law can be determined assuming
that the complete velocity field is known. The forcing needed to reproduce the
flow only from wall measurements can be computed independently. Hence, the
control design of the H2-control is performed in the following three steps:

(i) Compute the control feedback gain K by solving a Riccati equation
(see Appendix D), so that the control signal is of feedback type, i.e.

u = Kq. (56)

This leads to a new system (compared to (47)),

q̇ = (A+B2K)q +B1w, (57a)

z = C1q. (57b)

It is expected that the above perturbated operator A+B2K has dynamics that
results in a smaller amplitude of the output signal z than for the unperturbated
operator A in (47).
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(ii) Compute the estimation feedback gain L by also solving a Riccati
equation (see Appendix D), so that the observer

˙̂q = (A+ LC2)q̂ + Lv (58a)

is asymptotically stable, i.e. ‖q − q̂‖ → 0 as t → ∞. This implies that the
estimated state q̂ based on the measurements v approaches the true state q
exponentially fast.

(iii) The closed-loop controller (figure 13) is finally obtained as

˙̂q(t) = (A+B2K + LC2)q̂(t) − Lv, (59a)

u = Kq̂. (59b)

Given the measurements signal v from the physical flow, the reduced-order
controller provides an optimal control signal u proportional to the estimated
flow q̂.

To apply feedback control in the numerical simulations, an augmented
state-space system with state [u, q̂]T is considered: its dynamics is given by (8)
and (59), inputs [w, g] and with the single output z:

(
u̇
˙̂q

)

=

(
A B2K

−LC2 A+B2K + LC2

)(
u

q̂

)

+

(
B1 0
0 −L

)(
w

g

)

, (60a)

z = C1u (60b)

where u is constrained to be divergence-free, ∇·u = 0. This system is referred
to as the closed-loop system. Note that the feedback gain K and estimation
gain L have the dimension of the reduced model, resulting in a fast online
controller.

The spatio-temporal evolution of the perturbations governed by the closed-
loop system is obtained by solving the system (60) numerically using the time-
stepper described in Appendix C and the small reduced-system in (59) simulta-
neously. The latter system is solved using a standard Crank-Nicholson scheme.

5.2. Performance of closed-loop system

We will now investigate the performance of the closed-loop system (60). In
particular, the output z of the closed-loop — with optimal control signal u —
and of the linearized Navier–Stokes equations without control are considered
in the case of stochastic and harmonic forcing in w.

Three controllers are investigated: (i) cheap control/low noise contamina-
tion with l = 0.1 and α = 0.1, (ii) expensive control/high noise contamination
with l = 10 and α = 10 and (iii) an intermediate case with l = 2 and α = 0.1.

Note that the purpose of the measurement noise g is to account for uncer-
tainties in the sensor measurements during the control design. When evaluating
the closed-loop performance — solving the controlled Navier–Stokes equations
— the system is only forced with w and not with g.

The performance of the control in case (i) is examined first. In figure 14 the
input and output signals are shown. The gray region indicates the time when
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Figure 14. Input and output signals of the closed-loop sys-
tem. The the random forcing w (a), measurements signal v

(b), control signal u (c) and the objective function z (d) is
shown. The cheap controller is active between t ∈ [2500, 7500]
marked with the gray area.

the control is active. As disturbance signal w(t) we choose white noise; the cor-
responding response of the sensor y(t) in figure 14b confirms the amplification
and filtering of the signal as it traverses the unstable domain. The disturbances
reach the second sensor (figure 14d) after about 1500 time units where they
have been amplified by one order of magnitude. The control is activated at
time t = 2500, the actuator immediately begins to force the system with a
control signal (figure 14c) based on the output y, and after a delay of another
1500 time units, the stabilizing effect of the control signal on the output z is
clear. When the control is deactivated (at t = 7500) the disturbances start to
grow again.

The wall-normal maximum of the rms-values of the streamwise velocity
component in cases with and without control are shown in figure 15. The
rms-value grows exponentially downstream in the uncontrolled case until the
fringe region at x = 800. The rms of the controlled perturbation grows only
until it reaches the actuator position where it immediately begins to decay.
At the location of the objective function C1 (x = 750), the amplitude of the
perturbations is one order of magnitude smaller than in the uncontrolled case
for the cheapest controller.
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Figure 15. The rms-values of the uncontrolled system (red
line), cheap controller (solid black), intermediate controller
(dashed-dotted line) and expensive controller (dashed line).
The gray bar represent the size (defined as 99% of the spatial
support) and location of the two inputs, whereas the red bars
correspond to the two outputs.

The rms values in the case of the expensive (case ii) and intermediate con-
trol (case iii) are shown with dashed and dashed-dotted lines respectively. The
expensive control is very conservative as the measurement signals are highly
corrupted and the control effort limited; it results only in a small damping
of the disturbances. The intermediate controller (case iii) is more cautious in
reducing the perturbation energy just downstream of the actuator when com-
pared to the cheap controller. It is interesting to note, however, that at the
location where the objective function is measured, the disturbance amplitude
has decreased nearly as much as with the cheap controller, although the total
perturbation energy is much larger over the entire domain.

In figure 16 the frequency response from w → z of the uncontrolled Navier–
Stokes equations (8) (shown in red) is compared to that pertaining the three
controllers under consideration. The black line corresponds to cheap control,
green line to intermediate control and blue line to expensive control. The two
former controllers suppress the most dangerous frequencies close to ω = 0.6.
Note that compared to the uncontrolled model, the highly damped frequencies
ω > 0.11 have larger gain in amplitudes. This behavior is often observed
in closed-loop physical systems and is related to the “water-bed” effect, i.e.
when certain frequencies are suppressed, the response at other frequencies is
amplified.

6. Conclusions

Model-based feedback control of the instabilities arising in a spatially inhomo-
geneous boundary layer flow is studied. To build a reduced-order model of the
problem, where the application of standard tools from control theory become
computationally feasible also for fluid flow systems, the main features of the flow
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Figure 16. Comparison of the frequency response of open-
loop (red) and closed loop system. The cheap, intermediate
and expensive controllers are represented by the black, green
and blue lines respectively.

behavior are investigated in an input-output framework. The observable, con-
trollable and balanced modes of the system have been identified. The location
and structure of these modes reflect the location of sensors/actuators and the
perturbation dynamics, i.e the observable modes are located upstream, where
the sensitivity to initial conditions is the largest. The controllable modes, con-
versely, are located downstream, where the response to the forcing is largest.
The analysis presented here can be closely related to stability analysis using
global modes and optimal disturbances, except that inputs and outputs are
taken into account. The quantity one wishes to optimize for is now defined by
a sensor output, while perturbations are introduced by the inputs considered
in the model. Furthermore, in view of the control application, the formulation
of the control objective function as an output is particularly attractive in this
input-output setting, since this behavior is well-captured by the reduced-order
model.

Model reduction is achieved by projecting the governing equations on the
leading balanced modes of the system. We show that the input-output behavior
of the flat-plate boundary layer can be captured accurately with a reduced-order
model based on these modes. Finally, the model was used to apply feedback
control based on measurements from one upstream sensor and an actuator
further downstream. The perturbations growth could be reduced efficiently
using the H2 optimal feedback controller.

It is also important to note that the approach followed here requires only
the use of a time-stepper, a numerical code solving the Navier–Stokes equations,
and avoids the use of the large matrices defining the operators governing the
input-output behavior. In addition, the present formulation accounts naturally
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for localized sensors and actuators and therefore, it can be directly applied to
different flow configurations.
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Appendix A. Derivation of adjoint operators

A.1. The adjoint operator T ∗, B∗, C∗ and A∗

For a bounded linear operator between two Hilbert spaces, L : X1 → X2, the
adjoint operator L∗ satisfies

〈Lq,p〉X2
= 〈q,L∗p〉X1

for all q ∈ X1,p ∈ X2. (61)

We begin with deriving the adjoint operator of B, using the identity

〈Bf,u〉X = 〈f,B∗u〉U. (62)

The left-hand side is equivalent to
∫

Ω

(Bf)Tudxdy =

∫

Ω

fTBTudxdy = 〈f,
∫

Ω

BTudxdy〉U ; (63)

using (62) we identify

B∗u =

∫

Ω

BTudxdy. (64)

The adjoint of the output operator can be derived in an analogous manner
by using the identity

〈Cu, y〉Y = 〈u, C∗y〉X. (65)

The left-hand side can be written

〈Cu, y〉Y = (Cu)T y =

∫

Ω

(Ĉu)T y =

∫

Ω

uT ĈT y = 〈u, ĈT y〉X (66)

where Ĉ is the integrand in (13). We can now identify the adjoint output
operator as

C∗y = ĈT y (67)

The evolution operator T was defined in (14). The adjoint of T satisfies

〈T u,p〉X = 〈u, T ∗p〉X. (68)

We begin with taking the inner product of p and σ with the unforced
(f = 0) Navier–Stokes equations 1a and 1b, respectively. By integrating over
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the time domain and applying integration by parts we obtain

0 =

∫ t

0

∫

Ω

(

pT [
∂u

∂t
−Au−∇p] + σ(∇ · u)

)

dxdydt

=

∫ t

0

∫

Ω

(

−uT (
∂p

∂t
+ A∗p+ ∇σ) − p(∇ · p)

)

dxdydt

︸ ︷︷ ︸

1

+

∫ t

0

[B.C.]Ωdt

︸ ︷︷ ︸

2

+

∫

Ω

u(t)Tp(t)dxdy −
∫

Ω

u(0)Tp(0)dxdy

︸ ︷︷ ︸

3

(69)

By requiring the first two terms to be zero we obtain the adjoint Navier–
Stokes equations with boundary conditions. They will be considered after the
boundary terms in time denoted by 3 in (69). We thus require that

∫

Ω

u(t)Tp(t)dxdy =

∫

Ω

u(0)Tp(0)dxdy. (70)

The left hand side can be rewritten as
∫

Ω

(T (t)u(0))Tp(t)dxdy = 〈T (t)u(0),p(t)〉X

= 〈u(0), T ∗p(t)〉X =

∫

Ω

u(0)TT ∗p(t) ,

where we can identify the action of the adjoint evolution operator

T ∗p(t) = p(0). (71)

Now we proceed with deriving the adjoint equations associated with T ∗.
The spatial boundary terms given by the second term in (69) are

∫ t

0

[B.C.]Ωdt =

∫ T

0

[

σu+ u∗p+ UuTp+ pT ∂u

∂x
− uT ∂p

∂x

]Lx

0

+

[

σv + v∗p+ V uTp+ pT ∂u

∂y
− uT ∂p

∂y

]Ly

0

dt = 0.

If boundary conditions (3) on u are used and if we demand the that p = [u∗, v∗],
σ∗, and p satisfies

[σ, p]x=0 = [σ, p]x=Lx
, (72a)

[u∗, v∗]x=0 = [u∗, v∗]x=Lx
, (72b)

[u∗, v∗]y=0 = [u∗, v∗]y=Ly
= 0. (72c)

we observe that the boundary terms vanish.

Finally the first term in (69) define the adjoint Navier–Stokes equations if
we demand that p satisfies the

−ṗ = A∗p+ ∇σ (73a)

0 = ∇ · p (73b)
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with A∗ as given by equation (22). The above equations together with bound-
ary conditions (72b) and (72c) determine the behavior of adjoint flow field p.

A.2. The adjoint operators L∗
c and L∗

o

The adjoint controllability operator is derived using the identity

〈Lcf,u0〉X = 〈f,L∗
cu0〉L2(−∞,0). (74)

We expand the left hand side,

〈Lcf,u0〉X =

∫

Ω

∫ 0

−∞

(T (−t)Bf(t))Tu0dtdxdy

=

∫ 0

−∞

fT (t)(B∗T ∗(−t))u0dt

= 〈f(t),B∗T ∗(−t)u0〉L2(−∞,0).

In the first equality the definitions of B∗ and T ∗ from expressions (64) and (68)
were used. We can now identify

L∗
c(−t)u0 = B∗T ∗(−t)u0 . (75)

In a similar fashion the adjoint observability operator is defined by

〈Lou, y〉L2(0,∞) = 〈u,L∗
oy〉X. (76)

Expanding the left-hand side results in

〈Lou, y〉L2(0,∞) =

∫ ∞

0

(CT (t)u(t))T ydt

=

∫ ∞

0

∫

Ω

(ĈT (t)u(t))T ydxdydt

=

∫ ∞

0

∫

Ω

uT (T ∗(t)C∗y(t))T dxdydt

= 〈u,
∫ ∞

0

T ∗C∗ydt〉X ,

where Ĉ is the integrand in (13). We can identify the adjoint operator as

L∗
o(t)y(t) =

∫ ∞

0

T ∗(t)C∗y(t) dt. (77)

Appendix B. The snapshot method

We will show how to approximate the eigenvalue problems (35),(31) and (45)
in order to compute the observable, controllable and balanced modes.
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B.1. Approximate Gramians

We begin with considering the eigenvalue problem,

Pφc
i = λc

iφ
c
i . (78)

The first step is to rewrite the controllability Gramian P as a covariance op-
erator. To achieve this we define the 2 × 1 vector ū containing the impulse
response of the inputs, i.e.

ū = [u1,u2] = [T B1, T B2]. (79)

Furthermore, we use equation (64) and (68) to rewrite the action of B∗T ∗ on
φc

i as

B∗T ∗φc
i =

∫

Ω

(T B)Tφc
idxdy =

∫

Ω

ūTφc
idxdy. (80)

The controllability Gramian can now be written as a covariance of the impulse
response ū,

P =

∫ ∞

0

T (t)BB∗T ∗(t)dt =

∫ ∞

0

ū

∫

Ω

ūT dxdydt. (81)

We discretize P in space using n grid/collocation points and in time using
m grid-points. If the variable ū(x, t) evaluated at the grid-points (i.e. a n×2m
matrix) is multiplied with the square root of the quadrature coefficients δtj

and
δxj

, of time and space integrals respectively, we get

X =






u1(x1, t1)
√
δt1δx1

. . . u1(x1, tm)
√
δtn
δx1

. . . u2(x1, tm)
√
δtn
δx1

...
...

...

u1(xn, t1)
√
δt1δxn

. . . u1(xn, tm)
√
δtn
δxn

. . . u2(xn, tm)
√
δtn
δxn






(82)
where each column of X is referred to as a snapshot. Note that the quadrature
weights δtj

and δxj
depend on the chosen quadrature rule. For instance in our

case, δxj
consist of the Chebyshev integral weight functions (Hanifi et al. 1996)

in the wall-normal direction and a trapezoidal rule in the streamwise direction.

The expression (78) can now be approximated with XXT φ̂c
i, which results

in following n× n eigenvalue problem

XXT φ̂c
i = λc

i φ̂
c
i, i = 1, . . . , n (83)

where φ̂c
i is a column vector with φc

i evaluated at the spatial grid points.

It is prohibitively expensive to diagonalize the matrix XXT when n ≥ 105.

In the method of snapshots (Sirovich 1987), the modes φ̂c
i can be approximated

by diagonalizing the 2m× 2m matrix XTX instead. This is efficient when the
product of the number of snapshots and the number of inputs is much smaller
than the number of grid-points.

In the method of snapshots the modes, φ̂c
i are expanded in snapshots, i.e.

the columns of matrix X. The expansion can be formulated in matrix form as

φc
i = Xai i = 1, . . . , 2m, (84)
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with the column vector ai containing the expansion coefficients.

The above expansion is inserted to the large eigenvalue problem (83) which
results in the 2m× 2m eigenvalue problem

XTXai = λc
iai i = 1, . . . , 2m. (85)

The eigenvalues λc
i are the same as the original eigenvalue problem and the

controllable modes are recovered from equation (84). The orthonormal set of
controllable modes are given by

φ̂c
i =

1√
λi

Xai, φ̂cT

i φ̂
c
j = δij . (86)

There are some important computational issues which should be com-
mented at this point: (i) The Gramian 29 is defined as an infinite integral,
which means that in order for the approximate Gramian XXT to be a suffi-
ciently good approximation, we should take snapshots for a long time. There
are no restrictions on how to distribute the snapshots in time and it is prudent
to store many snapshots when the flow energy is large. (ii) Due to numer-
ical round–off errors, often not all modes are orthogonal. In our case with
2m = 3200, the first 150 modes were orthogonal down to numerical accuracy
(i.e (φc

i )
Tφc

i ≈ 10−15), whereas for higher modes the orthogonality condition
is gradually lost due to rounding errors. The ratio µi = λ1/λi can be used
as a condition number of the corresponding mode φc

i . Very large values of µc

indicate poor orthogonality due to numerical inaccuracy.

The observable modes are computed in a similar manner, but now the
snapshots are taken from impulse responses of the adjoint equations for each
output, i.e. p̄ = [p1,p2]

T = [T ∗ĈT
1 , T ∗ĈT

2 ]T with Ĉ as the integrand in (13).
The approximate observability Gramian is

Q =

∫ ∞

0

T ∗C∗CT dt =

∫ ∞

0

p̄

∫

Ω

p̄T dxdydt ≈ Y Y T , (87)

where Y is the n× 2m matrix

Y =






p1(x1, t1)
√
δt1δx1

. . . p1(x1, t1)
√
δt1δxn

. . . p2(x1, tm)
√
δtn
δx1

...
...

...

p1(xn, t1)
√
δt1δxn

. . . p1(xn, t1)
√
δt1δxn

. . . p2(xn, tm)
√
δtn
δxn




 .

(88)
The observable modes are computed in an analogous manner as the controllable
modes with Y replacing X in equations (84)–(86).

B.2. Snapshot-based balanced truncation

To obtain the balanced modes, we must diagonalize the matrix PQ, which can
approximated using the matrices X and Y , i,e.

PQφoc
i ≈ XXTY Y T φ̂oc

i = σ2
i φ̂

oc
i (89)



Input-output analysis, model reduction and control of boundary layers 131

We expand the balanced modes as linear combinations of the columns of X,
with ai = [a1, . . . , am]T as the expansion coefficients. Inserting this expansion
in (89), we get

0 = XXTY Y TXai −Xaiσ
2
i = X(XTY Y TXai − aiσ

2
i ), (90)

To solve the above problem we can equivalently diagonalize XTY Y TX or form
the singular value decomposition (SVD) of Y TX. The latter decomposition is
preferred since it is numerically more stable, i.e.

Y TXbi = σiai, i = 1, . . . , 2m (91)

The normalized balanced modes and the associated adjoint balanced modes are
recovered from

φ̂oc
i =

1√
σi
Xbi, ψ̂oc

i =
1√
σi
Y ai (92)

where ψ̂ocT

i φ̂
oc

j = δji.

The method can be summarized in three steps; (i) compute the impulse
response of each input, collect snapshots of the response and construct X (82)
(ii) compute the adjoint impulse response of each output, collect snapshots of
the response and construct Y (88) (iii) form the matrix Y TX, compute its
SVD and recover the balanced modes from (92). See Rowley (2005) for further
details on the method.

Appendix C. Time-stepper

The time-stepper used in this work for both the forward and adjoint equations
is a spectral code described in detail in Chevalier et al. (2007b).

If f(x, y, t) is a velocity component then the discrete approximation is the
Chebyshev-Fourier series

f(t) =

ny∑

l=0

Tl(y)

nx/2
∑

m=−nx/2

eiαmxûlm + c.c. (93)

where Tl is the lth Chebyshev polynomial, αl = 2mπLx and nx = 768 and
ny = 101 the number of collocation points in each direction. The coefficients
ûlm are complex functions. The associated collocation grid is defined by yl =
cos(πl/ny) and xm = mα/nx. The discretized system of equations is projected
onto a divergence-free space by transforming to v−η formulation and integrated
in time using a third-order semi-implicit scheme.

To retain periodic boundary conditions, which is necessary for the Fourier
discretization, a fringe region is added at the end of the physical domain where
a forcing is applied so that the flow smoothly changes from the outflow velocity
of the physical domain to the desired inflow velocity. For the linearized equation
the desired inflow condition is zero, so the fringe forcing is of the form F =
λ(x)u, where

λ(x) = −λmax

[

S

(
x− xstart

∆rise

)

− S

(
x− xend

∆fall

)]

. (94)
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Here λmax is the maximum strength of the damping, xstart to xend the spatial
extent of the region where the damping function is non-zero and ∆rise and
∆fall the rise and fall distance of the damping function. The smooth “step”
function S(x) rises from zero for negative x to one for x ≥ 1. We have used the
following form for S, which has the advantage of having continuous derivatives
of all orders,

S(x) =







0 , x ≤ 0 ,
1/

(
1 + e(1/(x−1)+1/x)

)
, 0 < x < 1 ,

1 , x ≥ 1 .
(95)

Appendix D. Riccati equations

We briefly outline the full-information control and estimation problems and
their solutions. The reader is directed to Anderson & Moore (1990); Lewis &
Syrmos (1995); Bagheri et al. (2008) for derivations of the solutions.

The first step in the design of an H2-compensator involves the solution of
an optimal control state-feedback problem. The full-information problem is to
find a control u(t) as a linear function of the flow state q(t) that minimizes the
deterministic cost functional

J =
1

2

∫ ∞

0

qTCT
1 C1q + l2uT u dt, (96)

while satisfying the initial value problem

q̇ = Aq +B2u, q(t = 0) = q0. (97)

The optimal control signal is given by

u(t) = − 1

l2
BT

2 X
︸ ︷︷ ︸

K

q(t), (98)

where X is a solution of the Riccati equation

0 = ATX +XA− 1

l2
XB2B

T
2 X + CT

1 C1 (99)

The solution to this equation provides the optimal steady feedback gain via the
relation (98).

The second step in the design of an H2-compensator involves the minimiza-
tion of the estimation error qe = q − q̂ given by the estimator

q̇e = Aqe +B1w + L(v − v̂), q̂(t = 0) = 0 (100)

v̂ = C1q̂ (101)

v = C1q + g , (102)

where w and g are temporal white noise signals. The solution is the feedback
gain L that minimizes the objective functional

J =

∫ T

0

qT
e qe. (103)
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The functional (103) can be minimized if L is chosen as

L = − 1

α2
PCT

2 . (104)

where P is a solution of the Riccati equation,

0 = AP + PAT − 1

α2
PCT

2 C2P +B1B
T
1 . (105)
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The global stability of the jet in crossflow
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Internal report

The global stability of the jet in crossflow is investigated by numerical sim-
ulation. The Navier–Stokes equations are linearized around a fully three-
dimensional steady-state solution, computed numerically using the Selective
Frequency Damping (SFD) method. Using the Arnoldi method and a DNS
code as a time-stepper the most unstable eigenmodes of the linearized system
are computed. The flow is found globally linearly unstable for a velocity ra-
tio R = 3, defined as ratio of the centerline jet velocity and crossflow. The
temporal frequency of the obtained eigenmode is in good agreement with the
dominant frequency observed in the nonlinear DNS simulations.

1. Introduction

In hydrodynamic stability theory, spatially developing flows can be categorized
according to their response to forcing. Certain flows, such as the wake behind
circular cylinder (Giannetti & Luchini 2007), flow over a cavity (Åkervik et al.
2007) and a backward-facing step (Barkley et al. 2002) are in specific parameter
ranges insensitive to external forcing and may sustain synchronized periodic
oscillations. Other flows such as co-flow mixing layers (Huerre & Monkewitz
1990) and boundary layers (Ehrenstein & Gallaire 2005) act as noise amplifiers
and can be very sensitive to external forcing. In particular, constant-density
free jets (Huerre & Monkewitz 1990) belong to the latter class whereas hot
jets (Nichols et al. 2007) and swirling jets (Gallaire & Chomaz 2003) belong
the former. In this paper we show that the jet in crossflow is able to sustain
periodic oscillations. To the authors knowledge this is the first linear stability
analysis of the viscous jet in crossflow and in particular of a flow configuration
where all three spatial directions are inhomogeneous.

The jet in crossflow is ubiquitous in industrial applications, such as film
cooling, fuel injection etc. The flow structures, mixing properties and dynamics
has therefore been the subject of numerous experimental and computational
studies. In general four main coherent structures (see e.g. Fric & Roshko (1994);
Kelso et al. (1996); Smith & M.G. (1996); Yuan et al. (1999); Cortelezzi &
Karagozian (2001); Muppidi & Mahesh (2007); Megerian et al. (2007) and
references therein) characterize the jet in crossflow; (i) the counter-rotating
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vortices pair which seem to originate in the near field and dominate the flow
field far downstream; (ii) shear layer vortices which take the form of ring-like
or loop-like shapes (iii) horseshoe vortices formed by the flat-wall boundary
layer (iv) “wall-vortices/upright vortices” which lie above the flat wall and are
vertically oriented shedding vortices.

Recent advanced in computational methods has enabled global stability
analysis of flows with arbitrary complexity, i.e. flows that are not required to
vary slowly in the streamwise direction. In particular, recent methods for com-
puting steady-states and very large eigenvalue problems based on the minimal
modifications of existing Navier–Stokes codes, have enabled the study of the
disturbance dynamics of complex flows. Using the selective frequency damping
(SFD) method introduced by (Åkervik et al. 2006) steady-state solution to the
Navier–Stokes equations can be found for unstable flow configuration by in-
cluding a simple forcing term. The eigenmodes of the linearized Navier–Stokes
equations can also be computed by using a simulation code (Barkley et al.
2002) in combination with the Arnoldi method, for which the software library
ARPACK (Lehoucq et al. 1998) is available.

The paper is organized as follows. Section 2 introduces the numerical
setup together with the relevant parameters used in the present study. A short
description of the flow structure taken from a direct numerical section is also
given. Section 3 deals with the linear three-dimensional stability analysis. First,
the method and the resulting velocity field pertaining to a steady state solution
of the jet in crossflow are described, followed by an analysis of a linear impulse
response developing on this steady state. The section ends with the numerical
method based on a time-stepper approach to extract fully three-dimensional
eigenmodes. Conclusions and an outlook are given in section 4.

2. Numerical method and discretization

2.1. Flow configuration

The stability of the jet in crossflow is analyzed via fully-resolved direct nu-
merical simulation based on the incompressible Navier–Stokes equations. The
computational domain employed here consists of a rectangular box containing
the crossflow boundary layer under zero pressure gradient, starting at a finite
Reynolds number Reδ∗

0
downstream of the leading edge. Here, the Reynolds

number is based on the displacement thickness δ∗0 of the undisturbed lami-
nar Blasius profile. The jet is then discharged via non-homogeneous boundary
conditions of the wall-normal velocity component at the lower wall (y = 0)
at a distance downstream of the inlet xjet. The inflow condition of the jet is
described in section 2.2 below.

The simulation code (see Chevalier et al. (2007)) employed for the sim-
ulations presented here uses spectral methods to solve the three-dimensional
time-dependent incompressible Navier–Stokes equations over a flat plate. The
streamwise, wall-normal and spanwise directions are denoted by x, y and z,
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respectively, and the corresponding velocity vector is u = (u, v, w)T ,

∂u

∂t
+ (u · ∇)u = −∇p+

1

Reδ∗

0

∇2u+ F (u) , (1)

∇ · u = 0 , (2)

with the pressure p. The volume forcing F (u) is described further below. The
algorithm is based on Fourier discretization in the streamwise and spanwise di-
rections, and the wall-normal direction is expanded in Chebyshev polynomials.
For efficiency reasons, the nonlinear convection terms are evaluated pseudo-
spectrally in physical space using fast Fourier transforms; the corresponding
aliasing errors from the evaluation of the nonlinear terms are removed by the
3/2-rule in the wall-parallel x/z plane. In the wall-normal direction, it has
been chosen to increase resolution instead rather than to use polynomial de-
aliasing. The time is advanced using a standard four-step low-storage third-
order Runge–Kutta method for the nonlinear terms and volume force terms
F (u), and a second-order Crank–Nicholson method is employed for the lin-
ear terms. The code is fully parallelized for efficient use on both shared and
distributed-memory systems.

To correctly account for the downstream growth of the boundary layer of
the crossflow, a spatial technique is necessary. This requirement is combined
with the periodic boundary conditions in the streamwise direction by adding
a fringe region, similar to that described by Bertolotti et al. (1992), see also
Nordström et al. (1999). In this region, located at the downstream end of the
computational box, the flow is forced to a desired solution v through the forcing
(Chevalier et al. 2007),

F (u) = λ(x)(v − u) . (3)

The desired in- and outflow velocity vector v may depend on the three spatial
coordinates and time. It is smoothly changed from the laminar boundary-layer
profile at the beginning of the fringe region to the prescribed inflow velocity
vector. In the present case, this is chosen as the laminar Blasius boundary-
layer profile, but may also contain desired inflow disturbances. In the spanwise
direction, periodic boundary conditions are used, in accordance with the Fourier
discretization in that direction.

All quantities are non-dimensionalized using the (constant) free-stream ve-
locity U∞, the viscosity ν and the displacement thickness at the inlet of the
crossflow into the computational box δ∗0 (x = 0). The computational Reynolds
number is thus Reδ∗

0
= U∞δ

∗
0/ν. For the undisturbed Blasius solution, the

99%-boundary-layer thickness δ99 ≈ 2.85δ∗.

2.2. Jet boundary conditions and simulation parameters

The computational domain is a rectangular box containing the boundary layer
of the crossflow. Due to the spectral discretization method employed, it is not
directly possible to adapt the computational grid in such a way to include a
discretized model of the jet nozzle in the flat plate. The jet discharging into
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Parameter Definition Parabolic profile eq. (5) Yuan et al. (1999)
R(vj) vj/U∞ 3 4.3
R(v̄j) v̄j/U∞ 1 3.3
δ∗0/D 0.33 0.17
δ∗nozzle/D 0.39 0.22
D 3 5.7
Reδ∗

0
U∞δ

∗
0/ν 165 184

ReD U∞D/ν 500 1050
Box size (x, y, z) (75,20,30) (72.4,45.6,51.3)

Table 1. Parameters and comparison with Yuan et al. (1999).
Note that the latter reference employed a turbulent inflow pro-
file. The numerical resolution is (Nx, Ny, Nz) = (256, 201, 144)
collocation points in physical space.

the crossflow boundary layer is therefore modelled by imposing inhomogeneous
boundary conditions of the wall-normal v velocity component on the flat plate.
This simplified model of course does not allow for any interaction of the cross-
flow with the nozzle (see e.g. Yuan et al. (1999)). However, the instabilities
explored in the present study focus mainly on the interaction of the crossflow
and the shear layer further away from the wall. At that position, the influence
of the immediate nozzle interactions can be assumed to be small.

On the flat plate, homogeneous boundary conditions for the wall-parallel
velocity components u and w are prescribed, corresponding to the no-slip
boundary conditions. The main parameters of the jet are the position of the
center of the jet orifice (xjet, zjet), the jet diameter D and the inflow ratio

R =
vjet
U∞

(4)

of the centerline velocity vjet and the crossflow velocity U∞.

The jet discharging into the crossflow is imposed by a wall-normal velocity

v(r, y = 0) = R(1 − r2)e−(r/0.7)4 , (5)

with r being the distance from the jet center (xjet, zjet), normalized with the
jet diameter D,

r = (2/D)
√

(x− xjet)2 + (z − zjet)2 . (6)

This inflow profile corresponds to a (laminar) parabolic velocity profile of the
pipe flow, smoothened with a Gaussian function to allow for an efficient treat-
ment with the spectral discretization of the simulation code. Note that the
wall-normal velocity component v corresponds to the inflow ratio R in the jet
center, and is less than 10−5R for D/2 > 1.276. For the boundary condition
given in equation (5) the relation between the bulk and the maximum velocity
in the center of the jet is approximately 3.

Although physically the boundary layer is assumed to extend to an infinite
distance from the wall, the discretization requires a finite domain. Therefore,
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Figure 1. Snapshot of the velocity field in a fully-developed
state at t = 151 based on the unsteady Navier–Stokes equa-
tions. The blue isocontours correspond to vortical structures
visualized with the λ2 criterion (Jeong & Hussain 1995) at a
level λ2 = −0.11.

an artificial boundary condition is applied in the free-stream at wall-normal
position yL via a Neumann condition

∂u

∂y

∣
∣
∣
∣
y=yL

=
∂v

∂y

∣
∣
∣
∣
y=yL

. (7)

Various physical and computational parameters of the present simulations
are summarized in table 2.1 in comparison with the large-eddy simulations
presented by Yuan et al. (1999) for a turbulent inflow profile. Note that for the
present simulations the Reynolds number was chosen slightly lower, however,
fully resolved DNS is used instead of applying a subgrid-scale model.

The computations presented here were performed with a resolution of
(Nx, Ny, Nz) = (256, 201, 144) grid points. Due to the dense distribution of
the Chebyshev collocation points close to the wall and the strong wall-normal
velocity component, the time step had to be chosen rather small ∆T ≈ 3 ·10−4.
The simulations were run on a Linux cluster; one iteration took on 48 cores
(clock rate 3GHz) approximately 3 seconds.

2.3. Direct numerical simulation

The simulation of the jet in crossflow is initiated from a laminar Blasius profile
above the flat plate. At time t ≥ 0, the inhomogeneous boundary condition
(5) is imposed to release the jet into the computational domain. After approx-
imately 50 non-dimensional time units, a statistically stationary state can be
observed.

A snapshot at t = 151 of the flow development is shown in figure 1, where
isocontours of the λ2 vortex-identification criterion (Jeong & Hussain 1995) are
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Figure 2. Crossplanes of the streamwise velocity component
u pertaining to the unsteady DNS simulation at t = 151. The
center of the jet nozzle is indicated by the cross ×. The stream-
wise location of the planes correspond to x = 11.7, 32.3 and
58.8, respectively.

displayed. Although both the boundary layer of the crossflow as well as the
incoming flow pertaining to the jet are laminar, the resulting interaction results
in a highly unsteady flow field. Vortical motion as depicted in figure 1 resulting
from the interaction of the vorticity of both the jet profile and the boundary-
layer shear layer are first advected nearly in vertical (y) direction, only slightly
deflected in the streamwise direction. At the upstream edge of the jet body,
where shear layer is the strongest, a flow instability is clearly developing and
consequently leading to a breakup of the laminar flow into a sequence of finer-
scale, half-ring shaped vortex rolls. As these structures convect downstream
their direction gradually aligns with the free-stream and they dissipate due to
viscous effects.

Careful inspection of the velocity fields of the unsteady direct simulations
further reveal well-known distinct flow features as discussed in e.g. Fric &
Roshko (1994): Wrapping around the jet nozzle, a number of horseshoe-shaped
vortices, located essentially in the crossflow boundary layer, can be detected. In
addition, the core of the discharged jet is composed of two large-scale counter-
rotating vortices (see section 3 further down), on which the shear-layer vortices
develop. These vortices are the most obvious structures in figure 1. On the
other hand, the wake vortices connecting the crossflow boundary layer and the
jet body, being reminiscent of the vortex street behind bluff bodies, are not
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Figure 3. Time signals corresponding to the (streamwise) u-
component of two probes in the flow field. In the upper graph
the probe is located within the upper shear layer, whereas in
lower diagram it is placed a short distance downstream of the
orifice close to the wall. The red line represents the (unsteady)
DNS simulation, whereas the blue line corresponds to the sim-
ulation stabilized with SFD, active for t > 100 (see section 3).
The dashed lines indicate the time-averaged values of the DNS
simulation.

visible in the present setup. As stated by Fric & Roshko (1994) these vortices
appear preferably with higher inflow ratios. At lower R, the spanwise symmetry
of the flow field is sustained as in the present case.

Another view of the unsteady DNS results is provided in figure 2 for the
same time instant as figure 1. The modulation of the crossflow boundary layer
downstream of the jet nozzle is clearly visible; namely the two legs of the
horseshoe vortices transport fluid from the outer region closer to the wall,
leading to a high-speed region in the symmetry plane z = 0. This region is
widening as the boundary layer is growing in the downstream direction.

In figure 3 time signals of two probes in the flow are presented; one probe is
located within the jet shear layer slightly upstream of the jet body at a distance
from the wall y = 3D, and the other probe is positioned downstream of the
jet orifice close to the wall. The time signals clearly show the transient phase
up to t ≈ 50 in which the flow field develops. Two distinct frequencies in both
time series can be detected; in the jet shear layer a period T1 ≈ 5.7 can be
estimated, whereas in the wake of the jet a much longer period of T2 ≈ 60 is
present. The Strouhal number, defined as St = D/(Tvjet), associated with the
two frequencies is St = .17 and St = 0.016 respectively.
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It is interesting to note that the velocity signal recorded by the second probe
is negative u ≈ −1.1. This indicates that shortly downstream of the jet nozzle
an extended region of separated flow exists. The signal recorded in that region
oscillates at a comparably low frequency. However, this separation bubble
appears to only oscillate in a spanwise-symmetric manner, as the symmetry of
the flow field in the near field of the jet nozzle is never broken. As mentioned
above, with the present setup no upright wake vortices shed away from the jet
body are to be detected.

On the other hand, the frequency measured in the jet shear layer corre-
sponds to the incipient vortical structures caused by the presence of the in-
flowing jet. However, even in the shear layer the lower frequency present in
the wake downstream of the nozzle is clearly felt, manifesting itself as a slow
modulation of the probe signals. This indicates that the whole jet is oscillating
with that long period T2.

The direct simulations of the jet and the analysis of the corresponding ve-
locity fields demonstrate that an accurate simulation of the flow case is possible.
In particular, the results show that the modeling of the jet as an inhomogeneous
boundary condition rather than the more costly discretization of the nozzle and
the attached pipe is indeed able to reproduce the main characteristics of the
flow case. The main dominant features and instabilities are all present in our
data. However, the direct interaction of crossflow boundary layer and jet nozzle
is certainly an important aspect if the aim of the study is to predict statistical
quantities related to a specific setup of the problem (Reynolds number, inflow
ratio etc. as e.g. discussed by Yuan et al. (1999)). On the other hand, the
present study focuses on the stability of the jet-in-crossflow problem arising
mainly from the shear-layer vortices located further away from the wall, for
which the present setup is found to be adequate.

3. Linear stability analysis

In the present section we investigate the evolution of infinitesimal perturbations
u′ to a base flow ju which is a steady solution to Navier–Stokes equations (1).
The governing equations of these perturbations are found by inserting u =
U + ǫu′ and p = P + ǫp′, where p′ is the pressure perturbations, into (1)
and neglecting the terms of order ǫ2. The resulting linearized Navier–Stokes
equations (LNS) are,

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = −∇p′ + 1

Reδ∗

0

∇2u′ + F (U,u′) , (8)

∇ · u′ = 0 . (9)

These equations are solved subject to the same boundary conditions in x, y and
z as (1). Note that since the LNS describe the perturbation dynamics, the jet
boundary condition is no longer imposed.



The global stability of the jet in crossflow 147

Discretizing the equations (8) in space and enforcing the incompressibility
condition1 the partial differential equation can be represented by the initial
value problem

∂u

∂t
= Au, (10)

u(t = 0) = u0 . (11)

The discretized and linearized Navier–Stokes equations including boundary
conditions are represented by the action of the matrix A on u. Note that the
matrix A is never explicitly constructed and that the LNS are solved according
to the description given in section 2. If the base flow is a steady solution, the
equations (11) are autonomous and the eigenmodes of A are of the form

u(x, t)′ = eλjtφj(x) , (12)

where both the eigenvalues λj and eigenmodes φj are complex functions.

With the use of the DNS code described in section 2 the stability analysis
is performed in two steps; we begin with computing a steady solution to equa-
tions (1) using the selective frequency damping method (Åkervik et al. 2006),
then continue by computing the eigenmodes of A using the Arnoldi algorithm
via the parallel ARPACK library (Lehoucq et al. 1998).

3.1. Steady solution

3.1.1. Selective frequency damping (SFD)

When a flow under consideration is either globally unstable or strongly con-
vectively unstable, the computation of a steady-state solution u of the Navier–
Stokes equations (1) poses is a challenging task. Alternatively, the class of
Newton iteration methods, which require heavy computational resources for
large systems, might be applied. However, such methods rely on a specialized
numerical code to perform the iteration; additionally, for large numbers of de-
grees of freedom the convergence of the Newton iteration is yet unclear. There-
fore, to obtain a steady state to the jet in crossflow, another method termed
selective frequency damping (SFD), recently proposed by (Åkervik et al. 2006)
is employed. This method consists of the inclusion of an additional forcing
term in the governing equations, which is effectively damping the most dan-
gerous frequencies present in the flow and thus quenching the corresponding
instability. The idea of SFD is to continuously force the velocity field towards
a temporally low-pass filtered state, denoted û. Such a forcing is given by

−χ(u− û) , (13)

with a model coefficient χ to be determined. A convenient way to compute
a temporal low-pass filtered velocity field is obtained by using the differential

1This is equivalent to projecting the flow field on divergence-free subspace. In our case
it is accomplished by transformation of the primitive variable to wall-normal velocity and
vorticity.
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Figure 4. Crossplanes of the streamwise velocity component
u pertaining to the steady state obtained by SFD. The center
of the jet nozzle is indicated by the cross ×.

form of the exponential (causal) filter (Pruett et al. 2003),

∂û

∂t
=

1

∆
(u− û) , (14)

with a filter width ∆, which has to be chosen in such a way that the lowest
unstable frequencies are sufficiently dampened. Further details on the choice
of the two model parameters χ and ∆ are given in (Åkervik et al. 2006). For
the present case, the damping factor was chosen to be χ = 1, and the filter
width was set to ∆ = 2. The associated period for which the transfer function
of temporal filter (14) is (1/2) is given by Tc = 2π∆ ≈ 12.6; this value for the
filter width is in good agreement with the measured period of the shear-layer
vortices T1 ≈ 5.7.

figure 3 shows the filtering effect of SFD on the flow solution. The SFD run
is started from the unsteady flow field at t = 100. The oscillations present in the
flow are quickly damped. It is noteworthy that both the oscillations in the jet
shear layer and the ones in the wake of the jet are equally quenched, although
they are characterized by different frequencies. At later times the SFD solution
clearly shows no oscillations anymore, and a steady state is gradually reached.
Note that when the SFD has converged to a steady solution û the forcing
in equation (13) is zero, yielding a steady state solution to the unmodified
Navier–Stokes equations (1).
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(a) (b)

Figure 5. Numerical simulation of the linearized Navier–
Stokes equations. The gray isocontours indicate the steady
base flow. In (a) the red isocontours represent the initial per-
turbation upstream of the jet at t = 0. As the perturbation is
convected downstream it travels on the shear layer and wraps
around the CVP as shown t = 24 in (b).

3.1.2. Steady state and the counter-rotating vortex pair

The velocity fields pertaining to the steady state after convergence of the SFD
method is displayed in figures 4 and 5 and can be compared to the corresponding
visualizations of the unsteady DNS, figures 1 and 2.

Cross planes of the streamwise velocity component are given in figure 4.
Compared to the unstabilized case there is little difference in the near-wall
region, i.e. the structure of the horseshoe vortices and the subsequent impact
of the jet onto the deformation of the boundary layer appears to not be time-
dependent even in the unsteady case. On the other hand, the inner structure
of the jet (planes 2 and 3 in figure 4) appears fairly different comparing the
steady and instantaneous solution. In particular, the counter-rotating vortex
pair is only clearly detectable in the SFD field. This indicates that the motions
along the CVP are highly instationary.

A three-dimensional impression of the steady state obtained by SFD can
be gained from figure 5(a), showing isocountours of the λ2 criterion. Naturally,
the unsteady development of vortices in the jet shear layer, clearly visible in
the snapshot of the DNS in figure 1, is not present anymore in the steady state.
Similarly, unsteady wake vortices do not develop.

On the other hand, the (steady) counter-rotating vortex pair (CVP) is
evident as two distinct tubes of negative λ2, deflected along the jet trajectory
and slowly decaying in the streamwise direction. It is interesting to note that
the CVP does not directly start at the jet nozzle, but rather becomes apparent
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approximately at a wall-normal height of 3D; closer to the wall there is a
vortex sheet wrapped around. Physically, the appearance of the CVP can
be explained by the accumulation of the azimuthal vorticity related to the
discharging jet fluid, which is redirected in the direction of the jet trajectory
due to the interaction with the crossflow (Fric & Roshko 1994).

Additionally, the steady state features the horseshoe shaped vortex forming
around the jet nozzle. Due to this vortex, a small separated region is formed
just upstream of the jet nozzle. Streamlines released close to the axis of the
horseshoe vortex will be curved around the jet nozzle, and continue their swirly
motion downstream of the jet exit, aligned with the streamwise direction; how-
ever not leaving the boundary layer. Moreover, a larger region with negative
streamwise velocity is formed at the downstream edge of the nozzle related to
entrainment of fluid from the crossflow into the jet.

The steady state obtained by SFD satisfies the steady Navier–Stokes equa-
tions,

(u · ∇)u = −∇p+
1

Reδ∗

0

∇2u+ F (u) , (15)

∇ · u = 0 . (16)

On the other hand, the unsteady fields from DNS can also be averaged in
time to obtain the solution to the Reynolds-averaged Navier–Stokes (RANS)
equations,

(〈u〉 · ∇)〈u〉 = −∇〈p〉 +
1

Reδ∗

0

∇2〈u〉 + F (〈u〉) + ∇ · T , (17)

∇ · 〈u〉 = 0 . (18)

The Reynolds stresses T are defined based on the fluctuations around the mean
ui = 〈ui〉 + u′i as

Tij = 〈u′iu′j〉 . (19)

It is obvious that u 6= 〈u〉 since T 6= 0 due to the unsteady formation of vor-
tices in both the jet shear layer and the wake region. This difference is further
exemplified in figure 3 in which the time signals of the probes pertaining to the
(unsteady) DNS are clearly different than those obtained from the converged
SFD solution. In particular, the solution of the RANS equations exhibits in-
creased momentum diffusion due to the Reynolds stresses; in consequence, the
jet trajectory obtained via SFD is reaching up to a greater wall-normal distance
than the one related to the averaged solution, as can be seen by comparing fig-
ures 2 and 4.

We like to emphasize that the time-averaged mean flow is not an equilib-
rium point of the Navier–Stokes equations, in contrast to steady-state solutions
or limit cycles. Therefore, it is not a suitable choice for a base flow, since the
resulting critical bifurcation points obtained from the stability analysis might
not reflect the actual instability transitions present in the flow.
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Figure 6. Comparison of the most unstable global eigenmode
and the asymptotic evolution of perturbation. The energy of
the disturbance is compared to the growth rate σ = 0.08 given
by the global eigenvalue analysis.

3.2. Linear impulse response

The global stability or instability is defined as the long-time behaviour of the
base flow to an initial impulse at t = 0. The spatially developing flow is said
to be globally unstable if the response grows without bound as time goes to
infinity. We introduce an initial pulse of a Gaussian-type function inside the
boundary layer upstream of the jet nozzle, see figure 5(a). In figure 5(b) the
response of the base flow to the impulse is shown after 24 time units. The initial
condition has triggered a wavepacket which grows in amplitude as it is travels
along the base flow. In figure 6(a) the temporal evolution of the perturbation
energy extracted from the shear-layer vortex is shown with logarithmic vertical
axis. After an initial transient growth, we observe the asymptotic exponential
growth of the disturbance. The base flow is therefore deemed linearly globally
unstable and according to linear theory the impulse response for t → ∞ is
dominated by the most unstable linear mode.

3.3. Global stability analysis

3.3.1. Time-stepper technique

In this section, we demonstrate how the global eigenmodes of the linearized
Navier–Stokes equations given in equation (11) are computed using a “time-
stepper” technique. We wish to solve the following eigenvalue problem

AΦ = ΛΦ , (20)

where A represents the action of the linearized Navier–Stokes operator, the
columns of Φ contain the global eigenmodes, Φ = [φ1, . . . , φn] and Λ is a diag-
onal matrix containing the eigenvalues of A, i.e. Λ = diag{λ1, . . . , λn}. Even
with iterative methods, such as the Arnoldi method, it is in general not possible
to explicitly solve the eigenvalue problem (20). The reason is that the matrix
A cannot be stored in memory due to its large dimension, which is on the order
of 107 × 107 for the present numerical resolution.

Instead we make use of our DNS code and a time-stepper technique similar
to that described by Barkley et al. (2002). First, we observe that the global
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(a) (b)

Figure 7. The real part of the most unstable global eigen-
mode is shown with red and the base flow with gray isocon-
tours of λ2. The associated non-dimensional growth rates and
frequencies are 0.08 and 1.1, respectively.

eigenmodes are invariant under the transformation eAt (for fixed time t)

eAtΦ = ΦΣ , (21)

where Σ = eΛt. Second, we recognize that the action of the matrix exponential
on the velocity field u(t)

u(t+ ∆t) = eA(t+∆t)u(t) (22)

represents integrating the linearized Navier–Stokes equations over a time inter-
val ∆t. In the time-stepper approach we solve the eigenvalue problem (21) for
Φ using an iterative method and recover the eigenvalues of A from

Λ =
1

∆t
log(Σ) . (23)

In general, the iterative technique is based on the orthogonal projection
of the large matrix onto a lower dimensional subspace, which will result in
a significantly smaller system that can be solved using direct methods. A
particularly useful subspace is the Krylov subspace spanned by snapshots taken
from the evolving flow field at every ∆t

V = [u(x, 0),u(x,∆t),u(x, 2∆t), . . . ,u(x, (m− 1)∆t)] , (24)

where u(x, 0) is an initial guess that contains at least one component in the
direction of leading eigenmodes. Note that instead of collecting snapshots from
one simulation of length (m − 1)∆t and then orthogonalizing the columns of
V , we perform m− 1 DNS simulations of length ∆t in time and between each
DNS simulation a snapshot is orthogonalized with all the previous snapshots
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using the Gram-Schmidt method. The former method can yield a very ill-
conditioned matrix V , since the columns of V all tend to approximate the
dominant eigenmodes.

Once this Krylov subspace is constructed we solve the small m×m eigen-
value problem

eHtS = ΣS , (25)

where columns of S contain the the eigenvectors of eHt and eHt is the projection
of matrix exponential onto V ,

eAt = V eHtV T . (26)

The global eigenmodes can then be recovered from Φ = V S.

3.3.2. Global eigenmodes

We have used the parallel ARPACK software (Lehoucq et al. 1998) to solve
equation (21), which implements an algorithmic variant of the Arnoldi process
called the Implicitly Restarted Arnoldi Method (IRAM). The number of Krylov
subspace was chosen as 12 and the integration time ∆t = 2. Note that the
choice of ∆t should reflect the time scales of the physical structures in the flow.
It should be small enough to allow for the eigenmodes associated with high
frequencies to be captured (i.e. satisfying the Nyquist criterion). On the other
hand if ∆t is too small the consecutive column vectors of V are nearly parallel
since the flow has not evolved significantly.

In figure 7 the eigenmode with the largest growth rate is shown with red iso-
contours of λ2 together with the steady base flow in gray. The non-dimensional
growth rate and Strouhal number of this dominant mode is σ = 0.04 and
St = .175. The Strouhal number obtained from the global analysis is in good
agreement with the one observed in our DNS simulation (see figure 3). Note
that it is only in the neighbourhood of the critical point that the Strouhal num-
ber of the dominant global mode can be associated with the Strouhal number
of the vortex shedding in the shear layer. This indicates that R = 3 is close
to the critical point. The velocity ratio at which the onset of instability oc-
curs is currently under investigation. In particular the recent experimental
results of Megerian et al. (2007) indicate (for different flow parameters) that
the onset to instability is close to R = 3.5 and that larger values of R yield a
noise-amplifying behavior.

The mode in figure 7 takes the shape of a localized wave packet wrapped
around the counter-rotating vortex pair. From the DNS simulation, we could
observe a specific location where the periodic vortices where being shed away
into the downstream direction. This region is located on the shear layer, ap-
proximately 2-3 jet diameters from the nozzle along the jet trajectory. Note
that the global eigenmode is located further downstream on the trajectory,
where the vortex loops traveling downstream are the largest. For other glob-
ally unstable flows, such as the cylinder wake (Giannetti & Luchini 2007) and
hot jets (Nichols et al. 2007), a specific spatial region can be identified which
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acts as a wavemaker providing a precise frequency-selection criterion. This is
related to a region of local absolute instability (Huerre 2000). We are pursu-
ing further investigations in order to find whether the jet spatially transitions
from absolute to convective instability, i.e. the existence of a pocket of abso-
lute instability near the jet inlet followed by a region of convective instability
downstream of the jet trajectory.

4. Conclusions and outlook

The occurrence of self-sustained synchronized oscillations of a jet in crossflow
has numerically been observed for a velocity ratio of R = 3 by means of global
stability analysis. The steady state with three inhomogeneous spatial direc-
tions is significantly different from the temporally averaged velocity field, both
in terms of flow structures and trajectory. The steady solution is thus an impor-
tant step for determining the true physical mechanisms of the observed vortical
structures in the flow, in contrast to the traditional approach which is based
almost entirely on the mean velocity field. In this work, we have recovered the
evolution of the jet shear-layer vortices from a global linear analysis. However,
it is expected that weaker instabilities are also present which can be associ-
ated with the wake vortices behind the jet connecting it with the boundary
layer or even other vortical structures observed in literature, such as “hanging
vortices” formed in the skewed mixing layers on the lateral edges of the jet
(Yuan et al. 1999). These vortical structures could be represented by global
modes with smaller growth rates than the dominant mode presented in this
paper. Furthermore, a more complete stability analysis is in progress in order
to determine the critical velocity ratio for the onset to instability.
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The stabilizing effect of finite amplitude streaks on the linear growth of un-
stable perturbations (TS and oblique waves) is numerically investigated by
means of the nonlinear Parabolized Stability Equations. We have found that
for stabilization of a TS-wave, there exists an “optimal” spanwise spacing of
the streaks. These streaks reach their maximum amplitudes close to the first
neutral point of the TS-wave and induce the largest distortion of the mean flow
in the unstable region of the TS-wave. For a such distribution, the required
streak amplitude for complete stabilization of a given TS-wave is considerably
lower than for β = 0.45, which is the optimal for streak growth and used in
previous studies. We have also observed a damping effect of streaks on the
growth rate of oblique waves in Blasius boundary layer and for TS-waves in
Falkner-Skan boundary layers.

1. Introduction

In boundary-layer flows, the transition from a laminar state to a turbulent one
is usually caused by growth and breakdown of small amplitude perturbations.
For a long time the common understanding has been that any kind of flow
perturbation inside the boundary layer has a promoting effect on transition.
However, a number of recent studies (Saric et al. 1998; Cossu & Brandt 2002;
Fransson et al. 2005, 2006) has indicated that certain types of perturbations
inside the boundary layer can postpone the laminar-turbulent transition. Gen-
eral feature of these perturbations seems to be a modification of mean velocity
profile to a more stable one. In two-dimensional mean flows, these are streaky
structures which create regions of alternating negative and positive streamwise
velocity perturbations. Streaks are usually found inside the boundary layers
subjected to high free-stream turbulence. A damping effect of moderate am-
plitude free-stream turbulence on Tollmien-Schlichting (TS) waves have been
observed in some experiments (Boiko et al. 1994). Numerical investigations of
Cossu & Brandt (2002) showed a clear stabilizing effect of streaks on growth
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of TS waves in Blasius flow. They reported an increasing damping effect with
increasing streak amplitude. These results were later verified by experimental
works of Fransson et al. (2005) who, generated the streaks by means of small
roughness elements. Recently Fransson et al. (2006) also showed that these
streaks can truly delay the transition. Here, the transition was triggered by
means of high amplitude two-dimensional disturbances generated through ran-
dom suction and blowing at the wall. These new results have received great
attention, e.g. Choi (2006). However, in all these studies, both experimental
and numerical, a single spanwise spacing (β = 0.45) of streaks has been used,
which corresponds to the most growing streaks. Therefore, we aim to investi-
gate whether other distributions of streaks are more efficient for stabilizing TS-
waves, so that a lower streak amplitude would be required for transition delay.
This is important because the amplitude of the streaks should not exceed the
threshold for secondary instability and instead promoting the transition to tur-
bulence. The present work is based on a parametric study of the streak spacing.
The feasibility of such a study, requires a relative fast computational method,
such as the nonlinear Parabolized Stability Equations (PSE)(Bertolotti et al.
1992).

2. Numerical Procedure

We consider flow disturbances which are periodic in time t and spanwise direc-
tion z. These disturbances are decomposed in Fourier modes as

q(x, t) =
M∑

m=−M

N∑

n=−N

q̃mn(x, y) exp(inβ0z − imω0t).

Here,

q̃mn = q̂mn(x, y) exp(i

∫

αmndx) (1)

is the amplitude function of the mode (mω0, nβ0) (referred to as (m,n)), where
β0 denotes the fundamental spanwise wavenumber, ω0 the fundamental fre-
quency and α is the complex-valued streamwise wavenumber. Further, x and
y are the streamwise and wall-normal coordinates, respectively. The evolution
of each mode is described by the nonlinear PSE as given e.g. Bertolotti et al.
(1992). In addition, we use a scaling proposed by Ori & Henningson (2003) to
modify the PSE to correctly describe the evolution of streaks. These equations
are then discretized using a fourth-order compact scheme for the wall-normal
derivatives and first- or second-order backward Euler for the streamwise deriva-
tives. It is well known that original PSE suffer from numerical instability for
small streamwise step-size. Here, we use the technique proposed by Anders-
son et al. (1998) to stabilize the numerical integration. As initial condition for
the streak, we use optimal disturbances (Andersson et al. 1999) at the leading
edge, which in a linear framework lead to the maximum perturbation energy
at a certain downstream position. These are computed with a spectral code
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Figure 1. (a) Comparison of DNS and PSE simulations of
the non-linear downstream development of three streaks with
increasing amplitudes. (b) The evolution of the TS-wave in
presence of streaks. (c) The mean-flow distortion at Re = 640
caused by streaks.

used in Ori & Henningson (2003) based on an adjoint optimization technique
described in Andersson et al. (1999).

The procedure of the simulations is as follows. An optimal disturbance
is initiated close to the leading edge. Its linear downstream development is
followed up to a specified streamwise position, where the nonlinear calculations
begin by the assignment of an initial amplitude, defined as

As =
1

2

(

max
y,z

{us} − min
y,z

{us}
)

.

Here, us is the sum of the streamwise velocity component of all (0, n)-modes. At
this location, a single exponential disturbance is initialized, (m,n)-mode, with
an amplitude sufficiently low to insure its linear behavior. Unless otherwise
stated, this location is upstream of the first neutral point of the exponential
disturbances at Re0 =

√

x0Ue/ν = 250, where Ue is the streamwise velocity
at the edge of the boundary layer and ν the kinematic viscosity. The length
scale used here is

√

νx0/Ue. Usually, 20−30 modes were sufficient to correctly
describe the evolution of the disturbances.

3. Results

3.1. Validation

The results obtained using the procedure described above, is verified against
the direct numerical simulations of Cossu & Brandt (2002). As in Cossu &
Brandt (2002), we consider the instability of a TS-wave of frequency F =
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(ω0/Re) × 106 = 131.6 in the presence of a set of streaks (β0/Re = 6.36E − 4)
with different amplitudes (figure 1a). The initial profiles of the streaks are
optimized for maximum growth at Re = 707 and the nonlinear calculations
begin at Re0 = 272. As reported in Cossu & Brandt (2002) and shown in figure
1b, the stabilizing effect on the TS-wave is observed for all streak amplitudes.
Here, the following norm of the disturbance

E =

(∫ ∞

0

u · u∗ dy

)1/2

,

is used as a measure of the TS-wave size. In figure 1b, case A corresponds to
zero streak amplitude. For moderate streak amplitudes (B,C) a damping of
the growth of the TS-wave is observed, whereas for a sufficiently large streak
amplitude (D) the TS-wave is completely stabilized. In figure 1c, the mean-
flow distortion u00, i.e. streamwise velocity component of the (0, 0)-mode, is
shown. This is induced by streaks and it modifies the velocity profile into a
“fuller” shape close to the wall. This seems to be the main mechanism behind
the stabilization effect of the streaks (Cossu & Brandt 2002).

3.2. Effects of the spanwise wavenumber of the streak

Previous studies (Cossu & Brandt 2002; Fransson et al. 2005, 2006) have solely
been focusing on the effects of the streak amplitude. As the development of
streaks also depends on its spanwise wavelength, it is of interest to investigate
its effects on TS-wave instability. Therefore, we vary the spanwise wavenumber
of streaks in the range [0.1, 1]. The initial profiles of these streaks are optimized
for maximum growth at Re = 400. Assigning the same initial amplitude for
each of them results in streaks with different maximum amplitudes. Since
the stabilizing effect depends strongly on the streak amplitude, it is difficult
to draw a definite conclusion about the significance of different values of β.
Therefore, it seems reasonable to compare streaks with different β but same
maximum amplitude. Here, for each streak we choose an appropriate initial
amplitude such that the maximum amplitudes, A∗

s , of each of them is 10% of the
free-stream velocity. To illustrate the effect of streak parameter β, we begin
by investigating the stability of a two-dimensional TS-wave with frequency
F = 131.6 in the presence of the two streaks shown in figure 2a. The streaks, A
and B, have the spanwise wavenumbers, βA = 0.45 and βB = 0.65 respectively
and fixed maximum amplitude, A∗

s = 10%. In figure 2b, we show that in the
absence of streaks the TS-wave (dotted line) grows exponentially (with a rate
predicted by the linear theory) as it enters the unstable domain at branch I,
the shaded domain, and decays as it is propagated downstream away from
the domain. In the presence of streaks a damping effect is observed, which is
larger for streak B (dashed line) than for streak A (solid line), despite the fact
that streak A maintains a larger amplitude in the most part of the unstable
domain of the TS-wave. Streak B, on the other hand, attains its maximum
amplitude close to the location of branch I of the TS-wave, and then rapidly
decays downstream. This can be explained if the distortion of the mean flow,
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Figure 2. (a) Evolution of amplitudes of two streaks with
β = 0.45 (solid) and β = 0.65 (dashed). (b) TS wave with
F = 131.6 in absence (dotted) and presence (dashed,solid) of
streaks. (c) The maximum value of the mean flow distortion
caused by the streaks.

(0, 0)-mode, induced by these two streaks are compared. In figure 2c, the
development of the maximum mean-flow distortion, i.e. u+ = maxy{u00}, for
streaks A and B is shown. It is apparent that streak B modifies the flow
considerably more than streak A, between branch I and II, due to larger values
of u+. This is caused by the larger amplitude of streak B upstream of branch
I.

As a measure of the amplification of the TS-waves, we compute the N-
factor, defined as

N(x) = ln(E(x)/E(xI)).

In figure 3a, N(xII) for the TS-wave with F = 131.6 is plotted as a function
of the spanwise wavenumber of the streaks, β. Here the maximum streak
amplitudes are kept constant, A∗

s = 10%. As shown in figure 3a, N(xII) attains
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Figure 3. (a) The N-factor at branch II of the TS-wave (F =
131.6) as a function of the spanwise wavenumber of streaks.
The maximum amplitudes of the streaks have been fixed at
A∗

s = 10%. (b) The averaged shape factor H̄ as a function of
the same set of streaks as in (a).

a minimum value for β ≈ 0.65. This indicates that there exists an optimal
streaky boundary layer, when the objective is to minimize the amplification of
the TS-wave. It should be mentioned that, due to nonlinear effects, there is
a slight upstream shift of the location of the A∗

s with increasing initial streak
amplitude (see figure 1a). Therefore, the “optimal” β depends weakly on the
streak amplitude. In order to relate the total modification of the mean flow
caused by streaks, to their stabilization effects we compare the N-factor with
the averaged shape factor H̄. Here, H̄ is averaged in the streamwise direction
between branch I and II of the TS-wave. In figure 3b, H̄ is plotted as a
function of β. In the absence of streaks, the shape factor of a Blasuis profile is
H̄ = 2.59, whereas in the presence of streaks H̄ is smaller, indicating a fuller
velocity profile. Furthermore, H̄ attains a minimum value in the presence of
streaks with β = 0.6, i.e. close to the β which minimizes the N-factor of the TS-
wave (shown in figure 3a). This indicates that the commonly used streak with
β = 0.45 is not the most efficient stabilizing streak. This value of β corresponds
to the vortices generated at the leading edge which experience the largest linear
growth (Andersson et al. 1999). We have performed the same parametric study
of β for two other frequencies, F = 170 and 90. For both frequencies the N-
factor, N(xII), attains a minimum at approximately the spanwise wavenumber
(0.9 and 0.45 respectively), for which the streamwise averaged shape-factor is
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Figure 4. The maximum growth rate σ∗ of TS-waves, F =
131.6 in (a) and F = 170 in (b), in the presence of streaks.

the smallest. Again, the streak which is the most efficient for stabilizing a
TS-wave attains its maximum amplitude close to branch I of that TS-wave.

Now we aim at finding the minimum streak amplitude necessary for the
complete stabilization of a TS-wave. We consider two different streaks: the
optimal growing streak (β = 0.45) and a streak with β = 0.65, chosen such
that the maximum streak amplitudes are close to branch I of the given TS
wave. The maximum amplitudes are varied between 0−25% and the maximum
growth rates σ∗ = maxx{σ} of the TS-wave are computed for each streak. The
physical growth rates are calculated from the relation (Bertolotti et al. 1992)
σ = −αi + ∂

∂x ln(E). When σ∗ < 0 the TS-wave is completely stabilized. For
complete stabilization of a TS-wave with F = 131.6, the necessary amplitude of
the streak with β = 0.65 is As = 15%, whereas for β = 0.45 the corresponding
amplitude is As = 20%, see figure 4a. For F = 170, the necessary amplitude is
reduced from As = 22% to As = 0.12%, when β is increased from 0.45 to 0.9,
see figure 4b. As the TS-wave frequency is decreased, the location of the branch
I moves downstream and consequently streaks with smaller β are required to
stabilize the flow.

3.3. Stabilization of oblique waves

The focus of previous investigations (Cossu & Brandt 2002; Fransson et al.
2005) has been on reducing the linear growth of two-dimensional TS-waves,
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Figure 5. (a) The downstream development of oblique
waves (F = 131.6) in the absence (solid) and the presence
(dashed) of streaks. (b) The downstream development of a
TS-wave (F = 131.6) in the absence (solid) and the presence
(dashed) of streaks in boundary layer with adverse, zero and
favorable pressure gradient.

as these disturbances are the first to become unstable in a Blasius boundary-
layer. However, certain transition scenarios (Bertolotti et al. 1992), require
the existence of oblique waves. Here, we choose two unstable oblique waves
with frequency F = 131.6 and spanwise wavenumbers β0 = 0.09 and 0.1123,
respectively. For these values of β0, a streak with a spanwise wavenumber β =
0.45 is initiated at Re0 = 272 as modes (0, 5β0) and (0, 4β0), respectively. The
oblique disturbances are initiated as a pair of modes (1,±1) with sufficiently
small amplitude to insure a linear behavior. The results are shown in figure 5a,
where we compare the norm E of the oblique waves in the presence (dashed
line) and the absence (solid line) of a streak with the maximum amplitude
A∗

s = 10%. Similar to TS-waves, the linear growth of the oblique waves is
found to be damped when streaks are present.

3.4. Effects of pressure gradient

We have also investigated the effects of streaks on the linear growth of exponen-
tial disturbances in boundary-layer flows with pressure gradients. In particu-
lar, boundary layers with the free-stream velocities given as Ue = U∞x

m, m =
βH/(2 − βH), where βH is the Hartree parameter. In figure 5b, the evolu-
tion of a TS-wave with frequency F = 131.6 in boundary layers with favorable
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(βH = 0.1), zero (βH = 0) and adverse pressure (βH = −0.1) gradients are
shown by the solid lines. By introducing a streak at Re0 = 278 with spanwise
wavenumber β = 0.45 and amplitudes As ≈ 13− 16%, the growth of TS-waves
is damped (shown by dashed lines).

4. Conclusions

We have found that the stabilization effect of streaks on the linear growth of
TS-waves in Blasius boundary layer, observed in previous studies, to also apply
to three dimensional disturbances and Falkner-Skan boundary-layer flows. We
have also found that by distributing the streaks “optimally” in the spanwise
direction, it is possible to completely stabilize a TS-wave, with considerably
lower streak amplitudes. For the TS-waves with high frequencies a reduction
of the maximum streak amplitude of almost a factor two can be achieved. The
streaks which most efficiently reduce the growth rate of a given disturbance
attain their maximum amplitudes close to the branch I of that disturbance.
These streaks generate a “fuller” velocity profile in the unstable domain of the
TS-waves. By computing the streamwise averaged shape factor of the modified
boundary layer, one can estimate the stabilization effect of streaks without
actually calculating the interaction with the targeted TS (or oblique) waves. It
should also be mentioned that the optimal growing streak, often associated with
the spanwise wavenumber β = 0.45, is not the most efficient one to suppress
TS-waves of all frequencies.
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