Global Stability of a Jet in Crossflow

Shervin Bagheri
Philipp Schlatter & Dan Henningson
Linné Flow Centre, KTH Mechanics
Stockholm, Sweden

Peter Schmid
LadHyx, Ecole Polytechnique
Palaiseau, France

7th Euromech Fluid Mechanics Conference
University of Manchester
September 14-18, 2008
Jet in Crossflow

- Is the flow linearly globally unstable?
- What is the type of instability?

\[R = \frac{V}{U} \]
History & Applications

- Previous work:
 - Smith & Mungal (1996)
 - Kelso et al. (1996)
 - Fric & Roshko (1994)

- Industrial applications:
 - V/STOL
 - Smoke stacks
 - Fuel injection/ Film cooling

Counter-rotating vortices
Shear layer vortices
Horseshoe & Wake vortices
Stability Analysis via timestepping technique

1. Simulate flow with DNS: Identify structures and regions
 \[u(x, t) = T u_0(x) \]

2. Compute baseflow: Steady-state solution
 \[u_s(x) = T u_s(x) \]

3. Compute impulse response of baseflow: Globally unstable
 \[u(x, t) = T_{linear}(u_s) u_0(x, t) \]

4. Compute global spectrum of baseflow: Growth rates/ frequency
 \[u(x) \lambda = T_{linear}(u_s) u(x) \]
Observations from DNS

- **DNS:**
 - Fully spectral (Fourier/Chebychev) & parallelized (MPI/OpenMP)
 - Parabolic jet profile imposed as boundary condition
 - $R=3$ & $Re=165$

- **Unsteady structures:**
 - Shear layer vortices
 - Wake vortices

λ_2 Vortex identification criterion
Three-Dimensional Base Flow

- **SFD:**
 - Selective frequency damping (Åkervik et al. 2006)
 - Solution of the steady Navier-Stokes eqs
 - Alternative to Newton’s Method
 - Damp unstable frequencies

- **Steady structures:**
 - Counter-rotating vortex pair (CVP)
 - Horseshoe vortices

\[\lambda_2 \text{ Vortex identification criterion} \]

![Probe 1: Shear layer](image.png)
Linear Impulse Response

- **Initial pulse:**
 - Gaussian type inside boundary-layer upstream of jet

- **Response of base flow:**
 - Formation wave packet traveling on shear layer

- **Linearly globally unstable**
 - Asymptotic energy growth of perturbation

![Graph showing perturbation energy over time](image)

- Perturbation energy vs. time
- Steady state
- Perturbation at $t=0$ and $t=24$
Global Eigenmodes

- **Timestepper approach:**
 - Matrix-free & Arnoldi method: DNS + ARPACK Library
 - Three inhomogenous directions
 - Storage of Jacobian matrix: 360 Terabyte

- **Global eigenmodes:**
 - Localized wavepackets wrapped around CVP

Low-frequency mode

High-frequency mode
Global Spectrum

- 20 first Global eigenmodes:
 - Highly unstable
 - Shear-layer modes
 - Fully three-dimensional
Global Spectrum

- 20 first Global eigenmodes:
 - Highly unstable
 - Shear-layer modes
 - Fully three-dimensional
Outlook & Conclusions

- We found self-sustained synchronized oscillations at R=3:
 - Observed in Direct Numerical Simulation
 - Linear impulse response of steady-state base
 - Linear 3D global stability analysis

- Future work:
 - Bifurcation analysis: Find critical velocity ratio
 - Sensitivity to forcing (adjoint global modes)
 - Optimal disturbances