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The aim of the presentation

• How to make use of Navier-Stokes solver for stability 
analysis and control design

• Modal and non-modal stability using DNS

• Input-output (I/O) formulation for model reduction and 
control

• The flat-plate boundary layer is considered
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The flat-plate

• Control: Reduce growth of small-amplitude 
perturbations

• Stability: Behavior of small-amplitude perturbations
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Global approach

• Linearized Navier-Stokes equations about a baseflow

• Initial value problem

• Solution

• Investigate the properties of matrix exponential 
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Dimension of discretized system

• Matrix A very large for spatially developing flows

• Use Navier-Stokes solver (DNS) or any CFD code to 
approximate the action of exponential matrix:

• Time-stepper technique: Never store matrices and use 
only velocity fields

DNS
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Modal and non-modal stabilility

• Asymptotic behavior:

uj global eigenmodes

Determine growth/decay as t→ ∞

• Short-time behavior:

uj optimal disturbances

Determine growth/decay at fixed time t

globally unstable
globally stable

short-time growth
monotonic decay
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Iterative eigenvalue methods

• Eigenvalue problem

• Construct a small subspace from snapshots

• Solve small eigenvalue problem 

– Orthonormalize (e.g. Arnoldi) 

– Project operator

– Solve small eigenvalue problem
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Global eigenmodes

• The eigenvalue problem

• Subspace

• Basis vector: snapshots of flow fields separated by 
constant time

• Eigenvalues of A recovered from 
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Global spectrum

• Timestepper in red

• Globally stable

• Spatial support downstream

• Tollmien-Schlichting 
wavepackets
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Optimal disturbances

• The eigenvalue problem

• Subspace

• Basis vectors: snapshots of adjoint flow fields separated 
by a fixed time

• Modes are orthogonal

DNS

ADNS
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Spectrum of optimal disturbances

• Time = 1800

• Eigenvalues come in pair

• Suboptimal have order of 
magnitude smaller energy

• Spatial support upstream

• Tilted upstream direction
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Non-modal growth

• Repeat different times: Δ t

• 104 transient growth
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Inputs and outputs

• B1is disturbance – volume forcing
• uw is actuator - blowing/suction at wall
• C1 and C2 are sensors - shear stress at wall
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Lifting procedure

• Wall actuation is inhomogenous boundary condition

• Split solution into:

• Find any particular solution, e.g. steady solution:

• ”Lift” boundary term to volume forcing



15

Linné Flow Centre
KTH Mechanics

Shervin Bagheri

Toulouse, October 20. 2008

H2 – Feedback controller

controller

cost function

uyw zg
(noise)

• Add measurement noise (α) and control penality (l)

• Objective function 

• Find control signal ψ(t) based on the measurements y(t) such 
that the influence of external disturbances w(t) and g(t) on the
output z(t) is minimized.
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Standard State-space formulation

• State-space with control penalty and measurement noise

• Three inputs, w=(w,g,ψ)T :

• Two outputs, z=(z,y)T 

• Feed-trough

• Standard state-space formulation
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Model reduction

• Approximate the large system

with a small system

so that the I/O behavior is preserved:

• One systematic approach is balanced truncation (Moore 1981)

n>105

r<100



18

Linné Flow Centre
KTH Mechanics

Shervin Bagheri

Toulouse, October 20. 2008

Controllability

• Flow states most easily excited by input

• Diagonalize the correlation matrix of the flow

• POD modes
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Observability

• Flow states that will most easily excite output

• Diagonalize the correlation matrix of adjoint flow

• Adjoint POD modes
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Balancing

• Controllability 

• Observability

• Balanced modes
Diagonalize both controllability and observability Gramian
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The snapshot method

Snaphots of direct simulation                 Snapshots of adjoint simulation

DNS ADNS
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The snapshot metod

• Singular value decomposition of size: (pm x rm)

• Balanced modes                                  Adjoint balanced modes  
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Performance of reduced system

DNS: n=105

ROM: m=50

Disturbance Sensor

Actuator Objective

Disturbance Objective
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Model reduction error

• Frequency response
All inputs to all outpus
Order 2 capture the I/O behavior
Order 80 captures all frequencies

• Theoretical error bounds

DNS: n=105

ROM: m=80
m=50
m=2
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Performance of controller

• Disturbance input white-noise

• Energy minimized at sensor 2

No control
Cheap control
Interm. control
Expensive control

cost function
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Control of disturbance

No control:
104 growth

Linear control:
102 growth

Control
No control
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3D disturbances in flat-plate

• Disturbances: 
– Free-stream turbulence
– Streaks

• Rows of inputs and outputs
– Size and shape
– Spacing

• Apply linear controller
to nonlinear flow

• Robustness

• KTH/MTL 
windtunnel
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The snapshot method

• If number of inputs (p) and ouputs (r) are small, e.g. <10-50

• Extention: Output projection (Rowley, 2005) if either number 
of inputs or ouputs is large

DNS

ADNS

DNS

ADNS
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3D balanced modes

First Balanced mode

First adjoint Balanced mode
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Balanced modes by iteratively 
techniques

• The eigenvalue problem

• Subspace

• Basis vector snapshots of flow fields separated by 
constant time

• Backward to compute adjoint modes

DNS

ADNSADNS

DNS
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Conclusions

• Existing CFD codes can be used for modern stability 
analysis and control design

• Computational cost of the same order as numerical 
simulations

• Swept wing, Seperated flows, Flows over steps and 
cavities, Flows in ducts and corners, Wake-vortex flows 
and bluff bodies
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Jet in crossflow

Horseshoe
vortices

Wake region

Counter rotating vortex 
pair

Shear layer
vortices

V
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Direct Numerical Simulation

DNS simulation                   Steady-State (SFD)
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Fully 3D global eigenmodes

S1

S2 W1
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Nekton 5000

• Spectral element code by Paul Fischer, Argonne National 
Laboratory

• 80,000 lines of f77 (some C)
• Structured grid – rectangular elements
• Curved geometries
• Massively parallel – 32 000 cores 
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Extra slides


