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Delaying transition

• Laminar flows are ordered and predictable

• Turbulent flows are chaotic and unpredictable

• Drag-force on surface is smaller for laminar than turbulent flows

Experiment

Numerics

Laminar TurbulentTransition
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Promoting transition

• Fluid injected through orifice (jet flow)

• Turbulent jets are more efficient in mixing jet fluid with ambient 
fluid than laminar flows

Laminar TurbulentTransition
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Stability analysis

1. Receptivity

2. Disturbance behavior

3. Breakdown/transition

4. Turbulence

• Behavior of small-amplitude disturbances in space and time
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Control design

• Systematic approach

• Feedback control 

• Model reduction
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Outline

I. Stability analysis
Global modes
Optimal disturbances

II. Control design
Model reduction
Control perfomance

Spatially developing flows:
Ginzburg-Landau equation (1D)
Flat-plate boundary layer (2D)
Jet in Crossflow (3D)
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Stability analysis
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Disturbance behavior

Amplifiers:
• Sensitive to disturbances
• Flat-plate, jets

Oscillators:
• Self-sustained oscillations
• Cylinder, hot/swirling jets, cavity

Large roughness height Acoustic waves + small 
roughness height



9

Linné Flow Centre
KTH Mechanics

Shervin Bagheri

Licentiate Seminar, June 05, 2008

Global approach

• Linearized Navier-Stokes equations

• Initial value problem

• Solution

• Investigate the properties of matrix exponential 
• Matrix exponential is computationally expensive to evaluate
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Dimension of discretized system

• Matrix A very large for spatially developing flows

• Use Navier-Stokes solver (DNS) or any CFD code to 
approximate the action of exponential matrix:

• Time-stepper technique: 
Never store matrices 
Use only velocity fields at different times
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Quest for eigenmodes

• Asymptotic behavior:

uj called global eigenvectors

• Transient behavior:

uj called optimal disturbances

• Time-stepper and iterative methods to compute modes

globally unstable
globally stable

convectively unstable
convectively stable
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Previous work

• Global modes
Backward-facing step (Barkley et.al., 2002)
Flat-plate boundary layer (Ehrenstein et.al., 2005)
Smooth cavity (Åkervik et.al., 2007)
Cylinder wake (Gianetti & Luchini, 2007)
Recirculation bubble (Marquet et.al., 2008)

• Optimal disturbances  
Swept Hiemens flow (Guegan et.al., 2007)
Backward-facing step (Barkley et.al., 2008)
Recirculation bubble (Marquet et.al., 2008)

• Current/future work: Jet in crossflow
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Jet in crossflow

Horseshoe
vortices

Wake region

Counter rotating vortex 
pair

Shear layer
vortices

• Most of work experimental and no stability analysis
• Velocity Ratio

• Reynolds number

• Smoke stacks, 
film cooling etc.

V
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1. Simulate flow with DNS: Identify structures and regions

2. Compute  baseflow: Steady-state solution

3. Compute impulse response of baseflow:

4. Compute global modes of baseflow:

Stability analysis – 4 steps
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Direct numerical simulations

• DNS: Fully spectral and parallelized

• Self-sustained global oscillations

• Probe 1– shear layer

• Probe 2 – separation region

λ2 Vortex 
identification criterion

1

2
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Impulse response

• Steady state computed using the SFD method (Åkervik et.al.)

• Asymptotic energy growth of perturbation

Unsteady 
Time-averaged
Steady-state

Steady state

Perturbation
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Global eigenmodes

• Global eigenmodes computed using ARPACK

• Growth rate: 0.08 

• Strouhal number: 0.16

Perturbation energy
Global mode energy

1st global mode

time
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Control design
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Flat-plate boundary layer

• 2D disturbances
(TS-type/wavepackets)

• Convectively unstable
(amplifier)

• Reynolds number:
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Inputs and outputs

• Inputs: 
Rougness, free-stream turbulence, acoustic waves, 

blowing/suction etc.

• Outputs: 
Measurements of pressure, skin friction etc.

• Setup for modern control design: 
Minimize effects of disturbances on second sensor using first 

sensor and actuator
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Reduced modelcontroller

1. Construct  plant: Flow, inputs, outputs

2. Construct reduced model from the plant using balanced truncation

3. Design controller using the reduced-model (LQG/H2)

4. Closed-loop: Connect sensor to actuator using the reduced controller

5. Run small controller online and evaluate closed-loop perfomance

Control design – 5 steps

Performance?
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Input-output behavior

w

B – Inputs 

C – Outputs 

w – Input signal

z - Output signal

• State-space formulation:

• Solution:

B C

timetime
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Model reduction

• Approximate the large system

with a small system

so that the I/O behavior is preserved:

• One systematic approach is balanced truncation (Moore 1981)

n>105

m<100
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Balancing

• Controllability 
Flow states most easily excited by input
Solution: POD modes
Diagonalize the correlation matrix of the flow 

• Observability
Flow states that will most easily excite output
Solution:  adjoint POD modes
Diagonalize correlation matrix adjoint system

• Balanced modes
Diagonalize both controllability and observability Gramian
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Balanced modes

• Computed using snapshot method (Rowley 2005):
Collect snapshots of forward and adjoint simulation + small eigenvalue problem

• Balanced modes (u-velocity):

• Oblique projection onto balanced modes to obtain reduced system 
(ROM):
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Reduced system vs. Full system

DNS: n=105

ROM: m=50

Impulse response

Frequency response

DNS: n=105

ROM: m=80
m=50
m=2
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Performance of controlled system

Noise

Sensor

Actuator

Objective

Control on Control off

time
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Performance of controlled system

Noise Sensor Actuator Objective

Control off
Control on

• Disturbance amplitude efficiently damped
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Summary

• Time-stepper technique necessary for modern stability 
analysis and control design of complex flow systems

• Stability – Both long and short time analysis possible 
using time-steppers

• Model reduction – Input-output is preserved using 
balanced truncation

• Control design – Using reduced-order models 
optimal/robust control schemes become applicaple to 
complex flow systems
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Outlook

• Jet in crossflow
Bifurcation analysis
Find critical velocity ratio
Sensitivty to forcing (adjoint global modes)
Optimal disturbances

• Flat-plate boundary layer
Three dimensional disturbance
Realistic actuators and sensors
Delay transition to turbulence


