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Input-Output Analysis and Control
Design Applied to a Linear Model
of Spatially Developing Flows
This review presents a framework for the input-output analysis, model reduction, and
control design for fluid dynamical systems using examples applied to the linear complex
Ginzburg–Landau equation. Major advances in hydrodynamics stability, such as global
modes in spatially inhomogeneous systems and transient growth of non-normal systems,
are reviewed. Input-output analysis generalizes hydrodynamic stability analysis by con-
sidering a finite-time horizon over which energy amplification, driven by a specific input
(disturbances/actuator) and measured at a specific output (sensor), is observed. In the
control design the loop is closed between the output and the input through a feedback
gain. Model reduction approximates the system with a low-order model, making modern
control design computationally tractable for systems of large dimensions. Methods from
control theory are reviewed and applied to the Ginzburg–Landau equation in a manner
that is readily generalized to fluid mechanics problems, thus giving a fluid mechanics
audience an accessible introduction to the subject. !DOI: 10.1115/1.3077635"

1 Introduction
Whereas stability theory has long occupied a central role in

fluid mechanics research, control theory has only recently been
applied to fluid systems. Despite its long history, stability theory
has undergone remarkable changes over the past decades. The
incorporation of short-term instabilities into a traditionally
asymptotic stability concept, the equal treatment of stability and
response behavior within the same mathematical framework, and
the use of system-theoretical tools to probe the disturbance behav-
ior of fluid systems have reinvigorated hydrodynamic stability
theory and developed it into a modern tool of fluid dynamic re-
search. Especially the formulation of the governing equations in
state-space form combined with an input-output viewpoint of the
perturbation dynamics has brought the two fields of stability and
control theory closer together. Whereas stability theory is con-
cerned with all aspects of the open-loop dynamics of the govern-
ing equations, control theory connects the output to the input and
focuses on the closed-loop characteristics—including optimal de-
sign and performance analysis—of the underlying dynamical sys-
tem. These two closely related disciplines, and the unifying for-
mulation that connects them, are the subjects of this review. Due
to the vastness of these two fields, we restrict ourselves to con-
cepts of direct relevance to fluid dynamical systems and to a
simple model equation. The Ginzburg–Landau equation, a well-
known model equation displaying a great variety of phenomena
observed in fluid systems, will be used to demonstrate and exem-
plify the concepts and techniques from stability, systems, and con-
trol theory.

The recognition that short-term instabilities play an important
role in fluid dynamical systems can be traced back nearly 2 de-
cades when scientists searched for disturbances that optimize en-
ergy amplification over a finite-time span !1–4". These distur-
bances did not resemble the most unstable eigenvectors of the
system, which led to the development of a theoretical foundation
to describe short-term nonmodal phenomena !5–8". In fact, even if
the flow is asymptotically stable, substantial amplification of the
input signal #initial condition or external forcing$ into an output
signal #energy$ can occur. By now, the associated theory has ma-
tured into an important component for understanding the transi-

tion process from laminar to turbulent fluid motion and has been
able to explain a variety of observed fluid structures in transitional
and turbulent shear flows !7". In a further step, an input-output
framework has been suggested !9", which brings the analysis of
stability characteristics closer to a system theoretic interpretation,
with impulse response, frequency response, and transfer functions
as the principal tools of investigation.

At the same time, flow control based on control theory has
emerged as a new discipline of fluid mechanics #!10–19"$. Starting
with simple feedback control laws and full-state information con-
trol, it has progressed toward more realistic configurations by in-
corporating the estimation problem and partial-state information
control. During the control design process, a strategy is deter-
mined that feeds information from the measurements #sensors$
back to the input signal #actuators$ such that a given control ob-
jective is achieved. The accompanying theoretical basis, adapted
from control theory !20–23", to determine these strategies has
evolved substantially, and flow control has advanced into an inde-
pendent and active field of fluid dynamics. Comprehensive ac-
counts on recent progress in the rapidly expanding field of flow
control can be found in Refs. !24–27".

The input-output framework provides not only a convenient
way of analyzing stability and receptivity characteristics !28,29"
of fluid systems, but it also represents the natural starting point for
control design. Stability and receptivity analysis and control de-
sign can thus be accomplished within the same formal setting.
This unified analysis shall be exemplified in this review article by
investigating the stability and response properties of the
Ginzburg–Landau equation and by devising effective control strat-
egies including the evaluation of their efficiency and performance.
The Ginzburg–Landau equation has frequently been used as a
model for instabilities in fluid systems, see, e.g., Refs. !30,31". We
will use it here with two different sets of parameters: one set to
model globally unstable flows #so-called oscillators$ and another
set to describe convectively unstable flows #so-called noise ampli-
fiers$. The Ginzburg–Landau equation has also been the subject to
several flow control studies !32–36".

The review is organized as follows #see also Fig. 1$: We start
with a summary of stability results for the Ginzburg–Landau
equation in Sec. 2 where the results for both asymptotic behavior
and transient growth will be presented. In Sec. 3, we investigate
the input-output behavior of linear systems in general, and the
Ginzburg–Landau equation, in particular. The response to impul-
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sive, harmonic, and stochastic forcing will be considered, and the
concepts of controllability and observability will be introduced. In
Sec. 4, we review the projection method of model reduction using
global eigenmodes, proper orthogonal decomposition #POD$
modes, and balanced truncation. Section 5 deals with the control
design for the Ginzburg–Landau equation. We present a detailed
derivation of the linear quadratic Gaussian #LQG$ control frame-
work, raise the important issue of actuator and sensor placement,
and conclude by discussing robust control. Concluding remarks
and a summary of the presented material are offered in Sec. 6.

2 Asymptotic and Transient Behaviors

2.1 Parallel Flows: Fundamental Concepts. Before apply-
ing modern techniques of hydrodynamic stability theory !7" to the
full Ginzburg–Landau model describing spatially varying flows,
we will first introduce and analyze a simpler version of the
Ginzburg–Landau equation. By neglecting the spatial dependence
of the flow, thus arriving at the parallel #i.e., constant-coefficient$
Ginzburg–Landau equation, we will apply concepts of linear sta-
bility analysis to describe the growth and decay of disturbances in
time and/or space.

The parallel Ginzburg–Landau equation on the infinite interval
−!"x"! reads

!q

!t
= Aq = %− #

!

!x
+ $

!2

!x2 + %&q #1a$

q#x,t$ " ! as x → & ! #1b$

with initial condition q#x ,0$=q0#x$ and A as the Ginzburg–
Landau operator. The solutions q#x , t$ are functions in C with the
inner-product defined as 'f ,g(=)−!

! g!fdx. We occasionally refer
to this norm as the energy norm. The superscript “*” denotes the
complex conjugate. The convective and the dissipative nature of
the modeled flow are represented by the complex terms #=U
+2icu and $=1+ icd, respectively. The above equation is of
convection-diffusion type with an extra real-valued term %=%0
−cu

2 to model the presence of exponential instabilities. The signifi-
cance of the complex terms cd and cu will become clearer when
we decompose the system into wavelike solutions.

We first investigate the linear stability of the parallel Ginzburg–
Landau equation, i.e., the spatiotemporal evolution of the pertur-
bation q#x , t$ about the basic state qB#x , t$=0. As introduced by
Briggs !37", this spatiotemporal evolution of perturbations in fluid
flow can be described by three basic types of local behavior: #i$
stable, #ii$ convectively unstable, and #iii$ absolutely unstable.
Our model equation, in fact, has by construction the minimum
number of required terms to give rise to a successive transition
through the three types of instability.

The three types of disturbance behavior can be probed by com-
puting the response to a spatially and temporally localized pulse
as this pulse evolves in space and time. Figure 2 demonstrates the
three types of responses that may be observed. First, the amplitude
may asymptotically decay in time throughout the entire domain
#see Fig. 2#a$$. In this case, the basic flow is deemed linearly
stable. Second, a convectively unstable flow is shown in Fig. 2#b$;
in this case, the perturbation grows in time but is convected away
from the location at which it was generated, so that the response
eventually decays to zero at every spatial location. Finally, for an
absolutely unstable flow #see Fig. 2#c$$ the perturbation is ampli-
fied both upstream and downstream of the location; it was gener-
ated and thus contaminates the entire spatial domain over time.

The response behavior to a '-function applied at #x , t$= #0,0$ is
equivalent to the Green’s function or impulse response of the
complex Ginzburg–Landau equation. We will return to this con-
cept in Sec. 3 of this review. In what follows, we will first exploit
the homogeneity in space and time and seek solutions in the
wavenumber/frequency #Fourier$ space. The dispersion relation
linking wavenumber and frequency then fully describes the evo-
lution of wavelike #and by superposition$ nonwavelike solutions.
Criteria for stability or instability of the solutions, as well as the
type of instability, follow easily from the dispersion relation.

Fig. 1 Overview of the open-loop and closed-loop analyses
performed in this review. The response in terms of the flow
state, kinetic energy, and sensor signal to impulse, and har-
monic and stochastic inputs of the parallel, nonparallel, con-
vectively unstable, and globally unstable Ginzburg–Landau
equation is investigated in Secs. 2 and 3. Model reduction of
the system is performed in Sec. 4 followed by optimal „LQG…,
robust „H!…, and reduced-order control design in Sec. 5.

Fig. 2 Local stability concepts based on the linear response of the parallel Ginzburg–Landau equation to a temporally
and spatially localized pulse at t=0 and x=0, displayed in the x-t-plane. „a… Stable configuration "0(0: The solution at
t= t1>0 is damped everywhere. „b… Convectively unstable configuration 0<"0<"t: The solution at t= t1 is amplified but is
zero along the ray x / t=0. „c… Absolutely unstable configuration "t("0: The state is amplified at t= t1 and nonzero along
the ray x / t=0.
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We express the solutions q#x , t$ as a superposition of normal
modes q̃#k ,)$exp#ikx− i)t$ with wavenumber k, frequency ), and
#complex$ amplitude q̃. The imaginary part of k and ) determines
the stability of the associated solution, whereas the real part de-
scribes the oscillatory behavior in x and t, respectively. Introduc-
ing this normal mode decomposition into Eq. #1$ results in the
dispersion relation, D#k ,) ;%0$=0, which takes the form

) = Uk + cdk2 + i#%0 − #k − cu$2$ #2$

Within the temporal framework, an initial periodic perturbation
with real wavenumber k grows exponentially in time when %0 in
Eq. #2$ exceeds #k−cu$2, i.e., when exponential growth exceeds
diffusion. In this case, )i#k$*0 and the associated normal mode q̃
exhibit exponential temporal growth. Furthermore, we observe a
finite interval k! !cu−*%0 ,cu+*%0" of unstable spatial wave-
numbers. A simple criterion for linear stability of the flow can be
deduced by considering the growth rate )i=)i,max of the most
unstable wave k=kmax in this interval. For the dispersion relation
#2$, we observe that kmax=cu and the corresponding growth rate is
)i,max=%0. Thus, the condition for a local linear instability be-
comes

%0 ( 0 locally stable #3a$

%0 * 0 locally unstable #3b$

In Fig. 3, the neutral curve, defined by )i,max=0, is displayed as a
function of %0 and k. We see that the range of unstable wavenum-
bers increases as %0 increases.

To further investigate the two types of locally unstable
configurations—convectively unstable and absolutely unstable—it
is instructive to consider perturbations that consist of a superpo-
sition of normal modes near k=cu, which form a traveling wave-
packet. From the dispersion relation #2$, we conclude that indi-
vidual wave components of this wavepacket travel at the phase
velocity

)r/k = U + cdk #4$

whereas the wavepacket itself, and therefore the perturbation,
travels at the group velocity

Umax =
!)

!k
= U + 2cdcu #5$

In general, the group velocity is complex but carries a physical
meaning when it is real, which is always the case for the most
unstable wavenumber cu.

The disturbance behavior in the unstable region depends on the
competition between convection and instability. For the
Ginzburg–Landau equation, we find that the flow is convectively
unstable if Umax*2*%0+$+, i.e., when the group velocity exceeds
the exponential instability of the unstable region #for constant dif-
fusion$. This means that, for convection-dominated flows, pertur-
bations grow as they enter the unstable domain but are quickly
convected downstream, beyond the unstable region where they
decay, and the basic state relaxes back to its original state #see Fig.
2#b$$. However, when %0 exceeds the critical value of

%t =
Umax

2

4+$+2
#6$

there exists an unstable wavelength with zero group velocity. As
the perturbation is amplified in the unstable domain, it will gradu-
ally contaminate the entire physical domain and render the flow
absolutely unstable. In Fig. 4, the neutral curve, defined by %t
=0, is displayed as a function %0 and Umax. The critical value %t is
obtained by considering a wavepacket with a zero group velocity
!) /!k=0 #see Ref. !38" for an exact derivation$. The associated
growth rate )i=)i,0 is the absolute growth rate. Unlike for our
case, the absolute frequency )0 for realistic flow configurations
can seldom be found in analytic form. Instead, one has to resort to
Briggs’ method !37" #see also Ref. !38"$, which amounts to locat-
ing pinch points in the complex k-plane. In addition to the crite-
rion of zero group velocity, one must ensure that the two spatial
branches k+#)$ and k−#)$ #for real )$ in Eq. #2$ originate from the
upper and lower halves of the complex k-plane.

2.2 Spatially Developing Flows: A Global Approach. De-
spite the limitations of a parallel flow assumption, the above
results carry over to weakly nonparallel flows as described in
Refs. !31,39–41". Within a Wentzel–Kramers–Brillouin–Jeffreys
#WKBJ$ approximation, one can draw conclusions about the glo-
bal stability behavior from investigating the dispersion relation
locally. Many realistic flows, however, are strongly nonparallel,
which requires us to resort to a global stability analysis. In this
section, we will adopt this global point of view to investigate the
stability properties of a simple model flow, which depends on the
flow direction x. We will see that a rich disturbance behavior is
uncovered, which has its roots in the non-normality of the under-
lying evolution operator !42–44". As a first step, one solves a
global eigenvalue problem. Assuming completeness, any pertur-
bation can then be decomposed into the global eigenfunctions of
the governing operator. If there exists an unstable global mode, it
is amplified until it saturates due to the nonlinearity and may lead
to self-sustained oscillations in the flow #Fig. 5$. The short-time,
or transient, behavior can also be captured by global modes
!46,47", if one considers a superposition of them. For non-normal
stability operator with corresponding nonorthogonal global
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Fig. 3 The neutral stability curve for the parallel Ginzburg–
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modes, a superposition of decaying global modes can result in a
large transient amplification of perturbation energy #Fig. 6$. As
demonstrated by Cossu and Chomaz !46", this transient behavior
often corresponds to a localized convective instability when using
a local approach.

The linear complex Ginzburg–Landau equation serves as a
simple model for capturing both the short-time and long-time evo-
lution of small perturbations q#x , t$ in spatially developing flows.
We will use this model equation to illustrate fundamental concepts
of linear global stability analysis. If the parameter %, responsible
for the local instability in Eq. #1$, is now taken as a function of x,
the Ginzburg–Landau equation becomes a variable-coefficient
partial differential equation modeling nonparallel flows !48". The
Ginzburg–Landau equation with % as a linear function in x can be
used to mimic flows on the interval !0,!$, as shown in Ref. !49".
We will adopt the commonly used quadratic function !46,48"

%#x$ = #%0 − cu
2$ + %2

x2

2
, %2 " 0 #7$

The flow is now susceptible to instabilities only when %#x$*0,
which defines a confined unstable region in the x-direction given
by −*−2#%0−cu

2$ /%2"x"*−2#%0−cu
2$ /%2. The upstream and

downstream edges of the unstable domain are referred to as
branches I and II, respectively, and are indicated by the two black
dashed lines in Figs. 5 and 6. The extent of this region depends on
the parameter %2, which can be interpreted as the degree of non-
parallelism of the flow. The operator A in Eq. #1$ with q#x , t$
bounded for x= &! is non-normal if both the term involving %2
and the convection term # are nonzero. As demonstrated in Refs.
!30,46", the smaller %2 and/or the larger #, the stronger the non-
normality of the operator A. The parameter %2 thus plays a dual
role: For large values of %2, the system is strongly nonparallel but

weakly non-normal, while for very small values of %2 the system
represents weakly nonparallel but strongly non-normal flow. For
the latter case, a local analysis may be more appropriate as the
resulting global eigensystem is rather ill conditioned !30,44".

A global mode of the Ginzburg–Landau equation is defined as

q#x,t$ = +#x$exp#,t$ #8$

and is a solution to the eigenvalue problem

,+#x$ = A+#x$ +#x$ " ! as x → & ! #9$

where A is the operator defined in Eq. #1$. The flow is globally
unstable when the real part of any eigenvalue , is positive, which
results in self-excited linear oscillations in the flow of a frequency
given by the imaginary part of ,. For the case %2"0, the eigen-
value problem #9$ for the Ginzburg–Landau equation #1$ can be
solved analytically !50". One obtains

,n = #%0 − cc
2$ − ##2/4$$ − #n + 1/2$h #10a$

+n#x$ = exp,##/2$$x − -2x2/2-Hn#-x$ #10b$

with h=*−2%2$, n=0,1. . ., and Hn as the nth Hermite polyno-
mial, scaled with -= #−%2 /2$$1/4. Global instability is determined
by the sign of the first eigenvalue #n=0$, which yields the crite-
rion for global instability as %0*%c, where

%c = %t +
+h+
2

cos%Arg $

2
& #11$

and %t is the threshold value for absolute instability #6$. The term
Arg denotes the phase angle of $. We therefore conclude from Eq.
#11$ that the threshold for a global instability is higher than the
one for an absolute instability. Formulated in another way, an
absolute instability is a necessary condition for a global instability.

The short-time behavior of a disturbance cannot be predicted by
studying individual eigenmodes. Instead, a more detailed analysis

Fig. 5 „a… The spatiotemporal evolution of a disturbance in a
globally unstable flow. The disturbance grows exponentially
until the cubic nonlinear term −.q.2q „see Refs. †30,45‡ for de-
tails of the nonlinear Ginzburg–Landau equation… causes the
disturbance to saturate and oscillate. „b… The energy that cor-
responds to the evolution in „a… is shown in red, and the linear
exponential growth for the linear Ginzburg–Landau equation is
shown in dashed black.

Fig. 6 „a… Linear transient growth of a perturbation in space
and time: An optimal initial perturbation grows as it enters the
unstable domain at branch I at x=−8.2 until it reaches branch II
at x=8.2. The two dashed lines depict branches I and II. „b… The
corresponding optimal energy growth of the convectively un-
stable flow in „a….
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of the properties of the stability operator A is necessary. When
%2"0 and #"0, the Ginzburg–Landau operator A is non-self-
adjoint !42", i.e., 'q1 ,Aq2(" 'Aq1 ,q2(. As a consequence, the glo-
bal modes are nonorthogonal '+n ,+m("'nm, and although they
may form a complete basis, they are nearly collinear and their
superposition may lead to large transient growth #Fig. 6#b$$. We
will study this issue in more detail by considering an expansion in
global modes. To this end, we find the adjoint global modes as

.n#x$ = exp,#− #!/$!$x-+n
!#x$ #12$

which satisfy the adjoint eigenvalue problem

,n
!.n#x$ = A+.n#x$ #13$

where

A+ = #! !

!x
+ $! !2

!x2 + %!#x$ #14$

with boundary condition .n#x$"! as x→ &!. The superscript
“*” denotes the complex conjugate. The adjoint global modes .n

are bi-orthogonal to the global modes #9$ according to

'.n,+m( = Nnm'n,m #15$

with Nnm as a normalization factor that we choose such that
/+n/= /.n/=1. The adjoint mode #12$ distinguishes itself from its
direct counterpart #10b$ mainly by the sign of the basic flow con-
vection term #. This manifests itself by a characteristic separation
of the direct and adjoint global modes in space. In Figs 7#a$ and
7#b$, the two first direct and adjoint global modes of the
Ginzburg–Landau equation are shown where the separation in x is
seen to increase for higher modes, until the support of the direct
and adjoint modes is nearly disjoint. Consequently, Nnn
= '+n ,.n( becomes increasingly small, a phenomenon we shall
investigate further in what follows.

We continue by stating that a sequence of global modes ,+n-n=0
!

forms a basis if any solution of the Ginzburg–Landau equation has
a norm-convergent expansion

q#x,t$ = 0
n=0

!

/n+n#x$exp#,nt$ #16$

where the expansion coefficients /n are obtained using the adjoint
global modes and the initial condition q0 according to

/n =
'q0,.n(
'+n,.n(

#17$

The denominator of the above expression, i.e., Nnn, becomes very
small when the direct and adjoint global modes have nearly dis-
joint spatial support. In this case, the expansion coefficients #17$
of q become large. Although the amplitude of all stable global
modes decreases monotonically in time, their superposition pro-
duces a wavepacket that transiently grows in time as it propagates
in space.

Although it is possible !10,47,51,52", in practice the short-time
amplification of disturbances is rarely computed using global
modes. Instead one computes the norm of the exponential matrix
!53", /eAt/, as we shall demonstrate next.

2.3 Optimal Energy Growth and Resolvent Norms. For
sufficiently large transient amplifications, nonlinear effects can no
longer be neglected, and, in real flows, more complex instabilities
or transition to turbulence are often triggered. For this reason, it
seems important to investigate the most dangerous initial condi-
tion that results in a maximum energy amplification over a speci-
fied time interval !2–5,55,56".

For simplicity, we will formulate and present results using the
discrete Ginzburg–Landau operator A. See Appendix for details of
the numerical approximation of the operator A. The continuous
approach can be found in Ref !44". The values of the Ginzburg–
Landau parameters used in the computations that follow can be
found in Table 1.

The discrete energy norm given by Eq. #A3$ can, after a
Cholesky decomposition of the energy weight matrix M =FHF, be
related to the standard Euclidean norm of a disturbance by

E#t$ = /q/M
2 = /Fq/2

2 #18$

We can now define the maximum transient growth of the per-
turbation energy at time t as

Emax#t$ = max
/q0/*0

/q#t$/M
2

/q0/M
2 = max

/q0/*0

/FeAtq0/2
2

/Fq0/2
2 = /FeAtF−1/2

2 = 01
2

#19$

where 01 is determined from a singular value decomposition
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Fig. 7 The first „a… and second „b… global „black lines… and
adjoint eigenmodes „red lines… of the Ginzburg–Landau equa-
tion with the absolute value shown in solid and the real part in
dashed. The gray area marks the region of instability.

Table 1 Parameters ˆ"0 ,"2‰ and ˆ$ ,#‰ of the Ginzburg–Landau
equation given in Eqs. „1… and „7…. The critical values for global
and absolute stabilities are "c=0.3977 and "t=0.32, respec-
tively. External disturbances „B1…, sensor „C2…, and actuator
„B2… are Gaussian functions „see Eqs. „A4…… with mean given by
xw, xs, and xu, respectively, and a width of s=0.4. Design pa-
rameters ˆR ,W ,G ,#0‰ for the LQG and H!-compensators are
the control penalty „R…, the covariance of the disturbance „W…
and sensor noise „G…, and a bound on the !-norm, „#0….

Subcritical Supercritical

,%0 ,%2- ,0.38,−0.01- ,0.41,−0.01-
,# ,$- ,2+0.2i ,1− i- ,2+0.2i ,1− i-
,xI ,xII- ,&8.2- ,&8.2-
,xw ,xs ,xu ,s- ,−11,0 ,−3,0.4- ,−11,9 ,−9,0.1-
,R ,W ,G ,$0- ,1,1.,0.1/1.0,9- ,1,0.1,9-
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FeAtF−1 = U1VH, 1 = diag,01, . . . ,0n- #20$

The above expression contains an optimization over all possible
initial conditions, and the peak value of 01

2#t$ is the maximum
energy amplification over time. Optimal initial disturbances can
be calculated according to q0=F−1V1 where V1 is the right prin-
cipal singular vector of the SVD in Eq. #20$. The maximum
growth and the corresponding optimal disturbance can also be
obtained from power iterations !7,54".

The optimal initial disturbance of the Ginzburg–Landau equa-
tion shown in Fig. 8 is located at the upstream boundary of the
unstable domain. As the time evolves, it traverses the unstable
domain #gray region$, where it can exhibit either decay, transient
growth, or asymptotic exponential growth, as illustrated in Fig. 9,
depending on the value of bifurcation parameter %0 #i.e., the Rey-
nolds number for Navier–Stokes equations$. The optimal energy
growth curves shown in Fig. 9 correspond to stable #S$, convec-
tively unstable #CU$, and globally unstable #GU$ flow configura-
tions. Note that, for both S and CU configurations, all global
modes are stable. However, only for the latter case do we have
%0*0 yielding a locally convectively unstable spatial region.
Consequently, a transient energy growth of two orders of magni-
tude can be observed before asymptotic decay sets in Ref. !46".

To conclude this section, we investigate the effect on global
modes and on the global spectrum as the operator A is discretized.

The spectrum of A is displayed in Fig. 10 by the green symbols
using the analytical expression #10a$. The spectrum of the dis-
cretized Ginzburg–Landau operator A is shown by the blue sym-
bols. A characteristic split of the eigenvalue branch is observed,
which is rather common in finite-precision stability computations
of strongly non-normal flows. The reason for this split is the in-
sufficient resolution to accurately capture the increasingly oscilla-
tory behavior of the associated eigenfunctions. These observations
are closely related to the notion of pseudospectra !44".

It is misleading to assume that if A+1s+, then s is close the
spectrum of A. If s is taken as an approximate eigenvalue in the
sense that /A+−s+/M "2/+/M, we can conclude that, for normal
systems, 2 can be as chosen as small as one wishes. For non-
normal systems, however, the minimum value of 2 can become
very large. This observation suggests the definition of the pseu-
dospectrum of A as the sets in the complex plane such that

,s ! C:/R#s$/M = /#sI − A$−1/M * 2−1- #21$

The pseudospectrum of A #shown in Fig. 10$ is visualized as a
contour plot of the norm of the resolvent

/R#s$/M = /FR#s$F−1/2 = 01#s$ #22$

where 01#s$ is the largest singular value of FR#s$F−1. It is then
straightforward to conclude that the eigenvalues of the discretized
Ginzburg–Landau operator A are, in fact, 2-pseudoeigenvalues for
2 equal to machine precision and thus align with the 1015 contour
of the resolvent norm in Fig. 10. For an alternative approach to
characterize the system sensitivity, see Ref. !57".

The resolvent contours moreover give an indication of the ex-
istence of non-normal effects, since the amount by which the con-
tours protrude into the unstable half-plane can be used to estimate
the maximum transient growth of energy !6,44". We will return to
this concept and use the resolvent norm from an input-output
viewpoint in Sec. 3.1, where we generalize the resolvent to trans-
fer functions—one of the most central concepts in the design of
control strategies.
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Fig. 8 Shape of an optimal disturbance with the absolute
value shown in black, the real and imaginary parts shown in
blue and red, respectively. The gray region marks the unstable
region, where disturbances grow exponentially. The maximum
value of the optimal disturbance is located close to branch I.
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Fig. 9 Optimal energy growth, Emax, as a function of time. S
configuration "0<0: The perturbation energy decays exponen-
tially for all time. CU configuration 0<"0<"c: The perturbation
energy is amplified initially but decays to zero asymptotically.
GU configuration "c<"0: The perturbation energy grows expo-
nentially asymptotically. The values of the parameters used in
the computations are listed in Table 1.
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Fig. 10 Global spectrum of the subcritical Ginzburg–Landau
equation „see Table 1…, where all the eigenvalues „blue dots…
are in the stable half-plane. The unstable domain is in gray and
the exact global spectrum is indicated in green. The numeri-
cally computed global eigenvalues „blue dots… exhibit a char-
acteristic split, aligning with the resolvent contour that approxi-
mately represents machine precision. The resolvent norm
contours range from 10−1 to 1015.
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2.4 Stability of Supercritical and Subcritical Flows. Based
on the global and local stability concepts introduced in Secs.
2.1–2.3, we are now in a position to define two fundamentally
different scenarios that model the behavior of disturbances in a
large number of flows.

The first model is known as the supercritical case, in which any
flow disturbance will grow exponentially until it saturates due to
nonlinearities, as shown in Fig. 5. A global analysis shows at least
one unstable eigenmode of A, yielding a globally unstable flow.
This type of scenario prevails when the bifurcation parameter %0
of the Ginzburg–Landau equation is larger than the threshold %c.
A local analysis confirms an absolutely unstable region since %c
*%t in Eq. #11$ with %t as the threshold for a local absolute
instability #given by Eq. #6$$. For more details on how the abso-
lutely unstable region acts as a “wavemaker” that sheds waves in
the downstream and upstream direction, see Ref. !30". Here, we
will simply state the fact that linear local stability theory can
predict the occurrence of unstable global modes and provide an
estimate of the frequency at which these modes oscillate. The
Karman vortex street behind a circular cylinder is a generic su-
percritical flow configuration, and a global and local analysis of
the cylinder wake can be found in Refs. !58,59". It was first shown
!60" that the transition in a wake behind a cylinder close to the
critical Reynolds number is described by the Landau equation,
i.e., the nonlinear Ginzburg–Landau equation without diffusion
term. Since then, the Ginzburg–Landau equation #often in its non-
linear form$ has been used extensively to model cylinder wakes,
see Refs. !32,34,61–63". Other globally unstable flow examples
that have been investigated as to their self-sustained oscillatory
behavior are, among others, hot jets !64,65" and a separated
boundary layer flow over a bump !66".

The second model is known as the subcritical case and de-
scribes the behavior of disturbances in convectively unstable
flows #Fig. 6$. As a result of the non-normality of A, a global
analysis reveals the presence of transient energy growth #Fig.
6#b$$, which cannot be captured by considering individual eigen-
modes of the operator A. Instead, one has to consider a superpo-
sition of global modes or the norm of the exponential matrix to
accurately describe this short-term phenomenon. Transient growth
is observed for the Ginzburg–Landau equation when 0"%0"%c.
A local analysis shows that this corresponds to a region where the
flow is convectively unstable. The wavepacket in Fig. 6 travels
with a group velocity #Umax$ composed of a dominant wave #cu$,
which is associated with the local dispersion relation #2$ analyzed
in Sec. 2.1. Prototypical convectively unstable flow configurations
contain, among others, the boundary layer on a flat plate !51,52",
homogeneous jets, and mixing layers !67".

The Ginzburg–Landau parameters ,# ,%0 ,%2 ,$- for modeling
the linear stability of a subcritical or supercritical flow are listed in
Table 1. The critical value, which delineates the two scenarios, is
%c=0.4.

3 Input-Output Behavior
Input-output analysis is a type of analysis of linear systems that

is commonplace in systems theory !68". It is concerned with the
general response behavior to various excitations of the linear sys-
tem. In its generality, it goes beyond the concept of classical sta-
bility theory commonly practiced in fluid dynamics, as it is not
only concerned with issues of stability #i.e., the response to vari-
ous initial conditions$ but also with the short-term dynamics, the
response to external #deterministic or stochastic$ excitations, and
the influence of uncertainties in the underlying system !9". As
such, it is thought of as an extension of stability analysis and helps
reveal a more complete picture of the behavior of disturbances
governed by the linear system.

The temporal response of the Ginzburg–Landau equation to ini-
tial conditions #both short-term transient and long-term
asymptotic$ has been considered in Sec. 2. In this section, we
recast the Ginzburg–Landau model into an input-output frame-

work. The analysis is applied to the convectively unstable case
only, since these types of flows are sensitive to forcing and act as
noise amplifiers !38". Globally unstable flows behave as flow os-
cillators with a well-defined frequency that is rather insensitive to
external forcing.

This framework will build the foundation for the subsequent
design of control schemes, since it allows the quantitative descrip-
tion of the open-loop dynamics, i.e., the response to, for example,
excitation in the freestream or to blowing/suction at the wall. We
will denote the input sources by u#t$ and the measured outputs by
y#t$. In many realistic flow cases, the output y#t$ will only be a
subset of the state variable q#t$. For example, only shear or pres-
sure measurements at the wall #or another specific location$ will
be available.

The common format for an input-output analysis is given by the
state-space formulation

q̇#t$ = Aq#t$ + Bu#t$ #23a$

y#t$ = Cq#t$ #23b$

q#0$ = q0 #23c$

where A represents the discrete Ginzburg–Landau operator, the
matrices B and C govern the type and location of the inputs u#t$
and outputs y#t$, respectively, and q0 stands for the initial condi-
tion. For the state-space formulation of the linearized incompress-
ible Navier–Stokes equations see Refs. !9,69".

The continuous equations are discretized in space using a spec-
tral Hermite collocation method described in the Appendix. The
inputs B= ,B1 , . . . ,Bp- and outputs C= ,C1 , . . . ,Cr-H have spatial
distributions of the form of Gaussian functions given by Eq. #A4$.
In what follows, we will formulate and present results based on
matrices and the discrete Ginzburg–Landau operator A.

The corresponding adjoint state-space equations of Eq. #23$,
describing the evolution of adjoint state variable r#t$, can be writ-
ten as #see also Ref. !70"$

ṙ#t$ = A+r#t$ + C+v#t$ #24a$

z#t$ = B+r#t$ #24b$

r#0$ = r0 #24c$

The discrete adjoint matrices are not simply the complex conju-
gate transpose #in other words, #A+ ,B+ ,C+$" #AH ,BH ,CH$$, un-
less the inner product used to derive the adjoint operator #13$ has
an associated weight M, which is unity. For the more general case,
M " I, we have

A+ = M−1AHM #25a$

B+ = BHM #25b$

C+ = M−1CH #25c$

where M is a positive definite and Hermitian weight matrix. In
this work, M is chosen such that the inner product produces the
energy of the state variable #see Appendix$.

The system of Eq. #23$ has the formal solution

y#t$ = CeAtq0 + C2
0

t

eA#t−3$Bu#3$d3 #26$

where we identify the first part of the right-hand side with the
homogeneous solution and the second part with the particular so-
lution stemming from the forcing term Bu. Having covered the
homogeneous solution #for C= I$ in detail in Sec. 2, we now turn
our attention to the particular solution. Setting q0=0 leaves us
with the input-output relation
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y#t$ = C2
0

t

eA#t−3$Bu#3$d3 #27$

from which we will develop tools to capture and characterize
aspects of the transfer behavior of an input signal u#t$ as it is
passes through the linear system given by A.

Before analyzing the above input-output relation in all general-
ity, a first simple numerical experiment shall demonstrate the re-
sponse behavior of the convectively unstable Ginzburg–Landau
equation #see Fig. 11$. As an input signal u#t$, we choose white
noise—drawn from a normal distribution with zero mean and unit
variance—introduced at a location just upstream of the unstable
region; the corresponding response y#t$=Cq#t$ is extracted at the
two boundaries of the unstable domain, i.e., at branches I and II.
The first observation confirms the amplification of the signal as it
traverses the unstable domain and the emergence of a distinct
frequency from the noisy input. The system, thus, seems to act as
both a noise amplifier !31" and a filter. These two characteristics
will be analyzed in more detail below.

3.1 Impulsive and Harmonic Forcing. The above introduc-
tory example has shed some light on the response behavior of the
Ginzburg–Landau equations to external forcing. Even though the
signal has demonstrated amplification and frequency selection of
the linear system, a more general analysis is pursued that param-
etrizes the input-output behavior more precisely.

For this reason, we will consider two distinct input signals: an
impulsive signal applied at a specified location xw=−11, which
will trigger what is referred to as the impulse response, and a
harmonic signal, again applied at a given location, which yields
the frequency response of the linear system.

For the impulse response we thus assume

u#t$ = '#t$ #28$

which, according to Eq. #27$, results in

y#t$ = CeAtB = g#t$ #29$

The spatial localization of the impulsive input signal is con-
tained in the matrix B #see Eq. #A4a$$. For C= I, the above solu-
tion #29$ represents the Green’s function of the Ginzburg–Landau
equation. It forms the fundamental solution of the linear system
since particular solutions to more general external excitations can
be constructed by a simple convolution of the input signal with

the Green’s function. The input-output system #23$ is defined as
stable if and only if the impulse response #29$ decays as time
tends to infinity. Consequently, the convectively unstable flow is
input-output stable, which is in contrast to the globally unstable
flow where an impulse will trigger the growth of an unstable
global mode with a well-defined frequency. For the convectively
unstable case, the state impulse response q#t$=eAtB for a pulse
introduced at xw=−11 is displayed in Fig. 12#a$; the impulse re-
sponse #29$ is shown in Fig. 12#b$. We observe the rise of a
wavepacket with a distinct spatial wavenumber and propagation
speed. As expected from the introductory example #Fig. 5$, the
amplitude of the wavepacket grows throughout the unstable do-

Fig. 11 Example of the input-output behavior of the Ginzburg–Landau equation with one input
and two outputs. In „a… the evolution in space and time of the state when forced by random noise
is shown. The region between the dashed lines is convectively unstable. The locations of the
forcing B „x=−11…, the first output C1 „at branch I…, and the second output C2 „at branch II… are
marked by arrows. In „b… and „c…, the output signals y1=C1q and y2=C2q are shown, and in „d… the
input signal u is shown. Note that in „c… the amplitude of the output signal y1 is less than 1, but
further downstream in „b…, the second output signal y2 has an amplitude close to 10. This illus-
trates the amplifying behavior of the system.

Fig. 12 Impulse response of the Ginzburg–Landau equation:
„a… The state response to an impulse introduced at t=0 and
xw=−11. „b… The impulse response at branch II. The convective
character of the instability is evident: A wavepacket grows as it
enters the unstable domain but is gradually convected away
from this domain before it begins to decay.
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main before it decays as the wavepacket passes branch II. For
larger times, only the remnants of the wavepacket near branch II
are observed.

The impulsive signal u#t$='#t$ contains all temporal frequen-
cies with equal amplitude. It is thus ideally suited to extract and
analyze a frequency selection behavior from an unbiased input.
On the other hand, we could choose an input signal with only one
frequency #rather than all frequencies$, i.e.,

u#t$ = est, s ! C #30$

Inserting the above input into Eq. #27$, assuming A is globally
stable and t=!, yields

#31$

We can identify the transfer matrix of dimension r4 p

G#s$ = C#sI − A$−1B, s ! C #32$

as the Laplace transform of the impulse response g#t$. Due to the
linear nature of the Ginzburg–Landau equation, an input est will
generate an output with the same frequency but with a phase shift
+=Arg G#s$ and an amplitude of +G#s$+. Since G#s$ is usually a
rectangular matrix, the amplitude is defined as

+G#s$+ = 01 #33$

where 01,·- denotes the largest singular value of G#s$. The trans-
fer function G#s$ fully describes the input-output behavior of the
system, whereas the state-space formulation #23$ describes the
dynamics of flow.

The transfer function can be regarded as a generalization of the
resolvent #21$ introduced earlier. In fact, the pseudospectra in Fig.
10 are contours of +G#s$+ for the case B= I, which corresponds to a
uniform distribution of the input, and C=F #where M =FHF$,
which corresponds to the measurement of the flow energy. As
discussed in Sec. 2.3, the contours represent locations in the com-
plex plane where approximate eigenvalues of A can be found for a
given error norm #2=1 / +G#s$+$. Figure 13 displays the pseu-

dospectra of the input-output system with B defined as in Eq. #A4$
and C=F. In this case, the contour levels correspond to the re-
sponse amplitude of the output for a unit amplitude input of the
form est.

As an example, we will concentrate on a purely harmonic forc-
ing and set s= i). The response of the linear system to this type of
excitation is given by the expression

G#i)$ = C#i)I − A$−1B, ) ! R #34$

and the largest response to a harmonic input can be defined as the
maximum value of +G#i)$+,

/G/! = max
)

+G#i)$+ #35$

A remark on the choice of notation seems necessary: In Sec. 2.3,
we defined the energy norm of the state vector q#t$ as /q/M

2

=qHMq, whereas the definition #35$ of /G/! represents a norm of
all stable transfer functions in the complex frequency space.

For normal systems the largest response to harmonic forcing is
proportional to the distance of the real part of the largest eigen-
value of A to the imaginary axis, i.e.,

/G/! 3 1/+Re#,1$+ #36$

For non-normal systems, however, the response of the system can
be substantial even though the forcing frequency is nowhere close
to an eigenvalue. The largest response /G/!, in this case, is pro-
portional to the largest value of the contour +G#s$+ that crosses the
imaginary axis.

This feature is exemplified on the Ginzburg–Landau equation in
Figs. 13 and 14. The state response #i.e., the special case with C
= I$ to spatially localized harmonic forcing at xw=−11 is shown in
Fig. 14#a$. The largest response is obtained for a frequency of )

−4 −3 −2 −1 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s
i

s r

Fig. 13 Input-output pseudospectra where the black transfer
function contour levels are ˆ100,101,103,104,105,106‰. The red
contour „with level 208… represents the largest contour value
that crosses the imaginary axis. The blue symbols indicate the
eigenvalues of A.

Fig. 14 „a… The state response to harmonic forcing located
upstream of branch I „lower of the two dashed lines…. The larg-
est response is at branch II „upper dashed line… for %=−0.65.
„b… The frequency response, where the output is a Gaussian
function „see Appendix…, is located at branch II. In the gray
area, all forcing frequencies are amplified in the unstable do-
main, and all other frequencies are damped illustrating a filter-
ing effect. This response corresponds to the thick dashed line
representing the imaginary axis in the pseudospectra plot in
Fig. 13, and the peak value ‖G‖!=208 corresponds to the red
contour level.
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=−0.65, and the location of the most amplified response in space
is—not surprisingly—in the vicinity of branch II. In Fig. 14#b$,
the frequency response +G#i)$+ is shown, which corresponds to
the dashed line in the contour plot of Fig. 13. The peak of this
response /Gc/!=208 is associated with the red contour in the
pseudospectra plot #Fig. 13$. The response computed from the
distance to the nearest eigenvalue #36$ has a value of only 56. It is
thus confirmed that the frequency response for non-normal sys-
tems is substantially larger than what can be inferred from the
distance of the forcing frequency to the nearest eigenvalue.

3.2 Stochastic Forcing. Under realistic conditions, we rarely
possess the exact knowledge of the disturbances influencing the
flow system, and it is therefore essential to account for a certain
amount of uncertainty. In this section, we present fundamental
techniques to characterize the response behavior within a statisti-
cal framework. This framework also gives insight into inherent
stability properties of the flow !6,71", as, for example, in the case
of channel flow studied in Refs. !9,69,72" and boundary layer
!73". When a fluid system is externally excited by stochastic dis-
turbances, its response is best characterized by the state statistics,
for instance, the root mean square #rms$ values of the velocity
components, the mean energy, or two-point correlations. In the
context of aerodynamic flows, stochastic excitation can be attrib-
uted, among others, to freestream turbulence, wall roughness, or
incident acoustic waves.

A naive statistical analysis may consist of performing a large
number of simulations by choosing sample realizations of the
forcing and by subsequent averaging of the resulting flow quanti-
ties to obtain the desired statistics. A more direct approach in-
volves the derivation of evolution equations for the statistical
properties, e.g., two-point correlations, of the flow quantities. For
linear systems, it is possible to solve directly for the two-point
correlations of the flow quantities in terms of the two-point cor-
relations of the external excitation. The key equation relating
second-order statistics of the excitation to second-order statistics
of the state is the Lyapunov equation. In this section, we will
derive the Lyapunov equation and give examples of how to extract
relevant information from its solution.

An introductory example can be seen in Fig. 15#a$ where the
temporal evolution of the state energy is displayed as a random
forcing with zero mean and unit variance applied upstream of
branch I. The results of five simulations are shown. Due to the
stochastic nature of forcing, each simulation yields different re-
sults but, nevertheless, reveals a general trend: No energy is ob-
served at the beginning of each simulation #since the initial con-
dition is identically zero$, but considerable energy levels are
reached after an initial transient of approximately 100 time units
and a quasisteady regime in which the energy fluctuates about a
mean value are established. Because of this observed noise ampli-
fication, convective unstable flows are also referred to as noise
amplifiers. Furthermore, the dashed line shows the average of 50
simulations, representing the evolution of the mean energy. This
curve is compared to the mean energy #red solid line$ computed
from the algebraic Lyapunov equation; this means energy level is
increasingly better approached as the number of simulations com-
prising the average is increased.

Although the above experiment already demonstrates the am-
plification behavior of a convectively unstable linear system
driven by stochastic forcing, the relation between the forcing co-
variance and the resulting state covariance will be established
next.

We again consider the linear system given by Eq. #23$, now
driven by a stochastic process u#t$, i.e., a random time-varying
input signal. We assume that A is globally stable but convectively
unstable. To simplify the analysis, we also assume that the random
variable u is normally distributed, i.e., that the probability density
function of the stochastic process is Gaussian, completely charac-
terized by its mean and its variance.

To represent the mean and the variance of a random variable,
we introduce the expectation operator E. The mean of a scalar
random variable 5 is then m=E,5-; its variance is the quadratic
expression 0=E,55H-. From a statistical point of view, E can be
thought of as an averaging operator #for example, the action of an
integral in time.$

We can similarly characterize the covariance of two random
variables 5 and 6 as P56=E,56H-. The covariance of two random
variables gives information about the degree of similarity of the
two signals. The above definition of the covariance is readily ex-
tended to vectors of random variables. The covariance of two
random vector variables f#t$ and g#t$ of dimension n is simply the
n4n matrix,

Pfg#t$ = E,f#t$g#t$HM- #37$

Using the energy weight matrix M, we recover the kinetic energy
of a state by simply taking the trace of the covariance matrix,

E#t$ = E,tr#q#t$q#t$HM$- = tr#Pqq$ #38$

Furthermore, the diagonal elements of Pqq are the variance of the
individual elements of q#t$. In particular, we define the rms value
of the disturbance as

qrms#t$ = *diag,Pqq- #39$

From Eqs. #38$ and #39$, it is clear that the covariance of the
state contains all the essential statistics that is necessary for evalu-
ating the response to stochastic forcing. We now return to our
dynamical system #23$ and derive an explicit expression of the
state covariance in terms of the forcing covariance. For simplicity,
we will assume that the applied forcing is uncorrelated in time,
that is, it is a temporal white-noise process:
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Fig. 15 The response to stochastic forcing. „a… The evolution
of the state energy for five different simulations „black lines…,
the mean state energy given by the solution of the algebraic
Lyapunov equation „red solid line…, and the energy averaged
over 50 simulations „thick dashed line…. „b… The thick red line
shows the rms value of the Ginzburg–Landau equation when
excited by random forcing w at the location marked with an
arrow. Five representative snapshots of the response to this
forcing are shown by black thin lines; the average over 50
simulations is displayed by a thick blue dashed line.
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E,u#t$u#t!$HM- = WM'#t − t!$ #40$

where t and t! are the two instances in time, and W denotes the
spatial covariance of u. For example, if u is a vector of random
variables, Wij =E,uiuj

H-.
To derive an evolution equation for the covariance of the state,

we start with the expression describing the time evolution of the
state forced by u #i.e., Eq. #27$ with C= I$,

q#t$ =2
0

t

eA#t−t!$Bu#t!$dt! #41$

As before, we have assumed a zero initial condition q0=0.
We begin with the definition of the covariance matrix Pqq of the

state at time t:

#42$

where we have used the fact that u is uncorrelated in time and
omitted the subscript “qq.” We can differentiate this last expres-
sion in Eq. #42$ with respect to time to obtain an evolution equa-
tion for P of the form

Ṗ = AP + PA+ + BWB+, P#0$ = 0 #43$

In this expression Ṗ denotes the time derivative of the covariance
matrix. The above equation is referred to as a differential
Lyapunov equation. Given the covariance W of the forcing term u,
we obtain the time evolution of the state covariance P. If the
system A is asymptotically stable and, furthermore, A, W, and B
are time independent, the stochastically driven system relaxes af-
ter an initial transient into a statistical steady state. To obtain this
steady state, we set Ṗ=0 and recover the algebraic Lyapunov
equation

AP + PA+ + BWB+ = 0 #44$

This statistical steady state is of interest if we study a system that
is exposed to external forcing for a long-time horizon, e.g., the
flow over a wing under cruise conditions. We like to emphasize
that despite the presence of a steady statistical state, the state
vector of the system, as well as the external forcing, is varying in
time.

To illustrate the above statistical description of the system dy-
namics, we revisit the Ginzburg–Landau equation forced at the
upstream edge of the convectively unstable region where we ap-
ply the external excitation of Gaussian form shown in Eq. #A4a$,
with u#t$ as a scalar white-noise process with zero mean and unit
variance W=1. The covariance of the state obtained by solving the
algebraic Lyapunov equation !74" is depicted in Fig. 16. The rms
value of this state covariance is shown with a red line in Fig. 15#b$
and the gray area marks the region of convective instability. In
addition, we have represented the instantaneous state of five real-
izations of the forcing and the mean of 50 of these realizations, as
we did in Fig. 15#a$ for the total energy evolution in time. We see
that the average of 50 realizations is close to the mean obtained
from the Lyapunov equation, but a sample set of 50 realization is
not yet enough for a converged statistical result. We will see more
examples of this kind in the control section where we will quan-
tify the performance of the controller using mean energy.

We conclude this section by stressing that transient growth
mechanisms in hydrodynamic stability theory and the spatiotem-
poral evolution of disturbances can be recast into an input-output

framework. For example, in this framework, the output signal y#t$
to random, impulsive, or harmonic inputs shown in Figs. 11, 12,
and 14, respectively, exhibits an initial growth in time before the
signal either decays to zero or stabilizes around a steady state.

3.3 Controllability and Observability. An important issue in
the analysis of linear systems in state-space form concerns the
mapping between input signals and the state vector and between
the state vector and the output signals. Since for many realistic
configurations the matrices B and C are rectangular, reflecting the
fact that we force the system only at a few points in space and/or
measure the system only at a limited number of sensors, we need
to address the topic of controllability and observability !68".

In this section, we will characterize the controllability and ob-
servability of a system in terms of covariance matrices of the state
and the adjoint state, which in this context are called Gramians.
We will continue to consider one input and one output and assume
that A is stable #subcritical Ginzburg–Landau equation$, even
though the theory extends to unstable systems as well !75".

3.3.1 Controllability: The POD Modes. The controllability of
a system is concerned with finding the flow states most easily
influenced by a given input. It can be shown !22,76" that the
minimum amount of input energy /u/2

2 to bring the state from zero
to the given initial condition q0 is given by the expression

q0
HP−1q0 #45$

where P is the unique n4n matrix

P =2
0

!

eA3BB+eA+3d3 #46$

referred to as the controllability Gramian #for a derivation of this
result in terms of an optimal control problem, see Ref. !22"$ Also
note that the adjoint operators with superscript “+” are related to
the conjugate transpose H according to Eq. #25$.

Fig. 16 The state covariance/controllability Gramian P of the
Ginzburg–Landau equation. The Gramian describing how the
state components are influenced by an input corresponds in a
stochastic framework to the state covariance for white noise as
input. The red circle signifies the forcing location „xw=−11…,
and the dashed box marks the region of instability. The states
that are most sensitive to forcing, and thus controllable, are
located downstream, at branch II.
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Since for linear systems the state for an impulsive input at any
given time is q#t$=eAtB, we recognize that the controllability
Gramian #46$ equals an infinite-horizon state covariance #42$ with
covariance W= I. This is not very surprising since one can inter-
pret white noise as a set of impulse inputs that are uncorrelated in
time. Furthermore, assuming A is stable, the controllability
Gramian can be computed by solving the algebraic Lyapunov
equation #44$. In Fig. 16, the controllability matrix of the
Ginzburg–Landau equation is shown graphically. The state com-
ponents that respond to an input located just upstream of the un-
stable region are situated downstream of the unstable domain.

By diagonalizing the matrix P, we obtain a measure of control-
lability for each component of the state vector. The diagonaliza-
tion of the covariance matrix or, in the linear framework, the
controllability Gramian is commonly referred to as the POD !77"
but is also known as empirical eigenfunction #EOF$ decomposi-
tion, Karhunen–Loève decomposition, or principal component
analysis #PCA$. The eigenvectors and eigenvalues of P are given
by

P+i = ,i+i, ,1 7 ¯ 7 ,n 7 0 #47$

Since P is positive semidefinite, the eigenvalues are real and posi-
tive and the eigenvectors are orthogonal. The first two POD
modes of the Ginzburg–Landau equation are shown in Fig. 17.
Traditionally, the interpretation of these modes is that they repre-
sent decorrelated energy-ranked flow states. For example, the first
POD mode +1 is the most energetic structure in the flow contain-
ing ,1 /0i=1

n ,i of the total flow energy. From a linear system’s
point of view, POD modes can be considered as the most control-
lable structures of the system for a given input. In this case the
eigenvalue ,i is a measure of how much the state +i is influenced
by the input. In particular, if P is rank deficient, there exists a zero
eigenvalue, ,i=0, which would mean according to Eq. #45$ that
the energy required to influence the corresponding state is infinite.
If P is not rank deficient, we say that #A ,B$ is controllable.

3.3.2 Observability: The Adjoint POD Modes. The POD
modes capture the response to input and thus span a controllable
subspace of the state space. Equally important in the input-output
analysis is to take into account the observable subspace by con-
sidering the relation between the outputs and flow states. A similar
analysis as in Sec. 3.3.1 for POD modes is thus performed, but

this time for the adjoint system #24$. Comparing the direct state-
space equations #23$ with their corresponding adjoint state-space
equations #24$, we observe that the output of the direct equations
is related to the input of the adjoint equations.

The observability of a system is concerned with finding the
initial conditions q0 that will produce the largest output energy.
For zero input, the solution to the state-space equations is

y = CeAtq0 #48$

The output energy is then given by

/y/2
2 = q0

HQq0 #49$

where the observability Gramian

Q =2
0

!

eA+3C+CeA3d3 #50$

is a unique matrix of dimension n4n.
If we note that the impulse response of the adjoint state-space

equations #24$ is given by

r#t$ = eA+tC+ #51$

the observability Gramian can be written as the state correlation
matrix of the adjoint system

Q = E,rrHM- #52$

and the Gramian can be computed by solving the algebraic
Lyapunov equation

A+Q + QA + C+C = 0 #53$

In Fig. 18, the observability matrix of the Ginzburg–Landau equa-
tion is shown. The observable components of the state vector are
located upstream of the unstable domain when the output location
is at branch II #red dot in Fig. 18$.

By diagonalizing the observability Gramian,

Q.i = ,i.i, ,1 7 ¯ 7 ,n 7 0 #54$

we obtain an orthogonal set of functions called the adjoint POD
modes or the most observable modes. These modes are flow struc-
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Fig. 17 The first „a… and second „b… POD modes obtained from
an eigenvalue decomposition of the controllability Gramian in
Fig. 16. Note that these modes are orthogonal. The absolute
value is shown in solid and the real part in dashed. The gray
area marks the region of instability.

Fig. 18 The observability Gramian Q of the Ginzburg–Landau
equation. The red circle marks the location of the output C at
branch II. The initial states that contribute most to the output
are located upstream, at branch I.

020803-12 / Vol. 62, MARCH 2009 Transactions of the ASME

Downloaded 18 Mar 2009 to 128.112.38.159. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tures that are ranked according to their contribution to the output
energy. The corresponding eigenvalues ,i provide a means to
measure how observable the corresponding eigenvectors are. If
there exist zero eigenvalues, ,i=0, Q is rank deficient, which
means according to Eq. #49$ that the corresponding adjoint POD
mode does not contribute to sensor output. If Q has full rank, we
say that #C ,A$ is observable.

It should be evident that in order to build an effective control
system, both sufficient controllability and observability have to be
established. Only in this case will the actuation have an appre-
ciable effect on the flow system whose response, in turn, will be
detectable by the sensors. Without adequate controllability or ob-
servability the flow of information from the system’s output to the
system’s input will be compromised, and any control effort will be
futile. Within the LQG-based feedback control framework, the
controller will always stabilize the system if the unstable global
eigenmodes are both controllable and observable. We will show
how the controllability and observability of global eigenmodes
can be determined in Sec. 4.

4 Model Reduction
Any type of significant flow control applied to the discretized

two- or three-dimensional Navier–Stokes equations requires some
form of model reduction. Model reduction is concerned with the
transformation of a system with a large number of degrees of
freedom to an approximately equivalent system of markedly
smaller size. The term “approximately equivalent” is often diffi-
cult to quantify and usually encompasses a measure of preserva-
tion of important system characteristics under the model reduction
transformation. In this sense, model reduction becomes problem
dependent: for example, a transformation that preserves the inher-
ent dynamics of the system may be inappropriate in capturing the
input-output behavior.

Model reduction techniques for fluid systems typically rely on
physical insight into the specific flow situation rather than on a
systematic approach detached from the application. For instance,
for spatially invariant systems, it is possible to decouple the linear
state-space equations in Fourier space. Control, estimation, and
other types of optimization can then be performed independently
for each wavenumber and then transformed back to physical
space. This approach has been adopted in Refs. !12–16,19".

The model reduction #or projection$ technique !76,78" dis-
cussed in this paper involves three steps.

The first step consists of finding an expansion basis ,+i-i=1
r that

spans an appropriate subspace of order r of the state space of
order n, with r8n. We will present and compare three different
subspaces using the Ginzburg–Landau equation: the subspace
spanned by the least stable global eigenmodes, POD modes, and
the balanced modes #described in Secs. 4.1–4.3$.

In a second step, the state-system given by Eq. #23$ is projected
onto this subspace yielding the reduced-order model

/̇#t$ = Â/#t$ + B̂u#t$ #55a$

y#t$ = Ĉ/#t$ #55b$

/#0$ = /0 #55c$

When the expansion basis is nonorthogonal, we can use a set of
adjoint modes ,.i-i=1

r associated with ,+i-i=1
r , to obtain the entries

of /, Â, B̂, and Ĉ,

/̂i =
'q,A+i(
'.i,+i(

#56a$

Âi,j =
'.i,A+ j(
'.i,+i(

#56b$

B̂i =
'.i,B(
'.i,+i(

#56c$

Ĉi = C+i #56d$

with i , j=1, . . . ,r. The term '.i ,+i( is a normalization factor that
we choose such that /+n/= /.n/=1 and is smaller than 1 if the
modes are nonorthogonal, that is, .i"+i. The subscript M in the
above inner products is omitted for brevity and we have assumed
that B is a column vector and C is a row vector, i.e., we continue
to consider one input and one output.

The third and final step consists of estimating the error of the
reduced-order model #55$. For control purposes, it is not neces-
sary for the reduced-order model to capture the entire dynamics
described by the general state-space formulation #23$, rather it
suffices to accurately capture the input-output behavior described
by the transfer function G#s$=C#sI−A$−1B. It thus seems reason-
able to estimate the error of a reduced-order system by comparing
the norms of the transfer function #34$ of the full system G and
the reduced system Gr= Ĉ#sI− Â$−1B̂, e.g., /G−Gr/! !23,78,79".
This is equivalent to calculating the difference of the peak values
of the frequency response between the two models.

4.1 Global Modes and Input/Output Residuals. Global
modes #Figs 7#a$ and 7#b$$ preserve the dynamical characteristics
of the system matrix A. Model reduction using global modes sim-
ply consists of an expansion of the state vector q into the leading
global eigenmodes #10b$, where eigenmodes with substantial de-
cay rates will be neglected. By this process, the resulting new
system matrix Â in Eq. #55$ will consist of a diagonal matrix of
the retained global eigenvalues. The new reduced state vector / is
given by the eigenfunction expansion coefficients, and the expan-
sion coefficients of B #56c$ and C #56d$ are called the controlla-
bility modal residuals and the observability modal residuals, re-
spectively #see also Ref. !11"$.

It is clear that if '.i ,B( is zero in Eq. #56c$, we will not be able
to act on the corresponding state component /i and therefore on
the global mode +i. Thus, we can use the controllability modal
residual as a measure of controllability of the global mode by
considering the amount of overlap between the support of the
input and the support of the corresponding adjoint global mode. If
this overlap is zero, the global mode is not controllable !30,34".

A similar derivation based on Eq. #56d$ shows that in order for
#C ,A$ to be observable, the spatial support of the sensor and the

support of the global mode must overlap. If Ĉi=C+i is zero, we
will not be able to detect the eigenmode +i using a sensor char-
acterized by C. This eigenmode is thus unobservable.

Owing to the term '.i ,+i( in the denominator of Eq. #56c$,
additional attention has to be paid to the system’s sensitivity due
to non-normal effects: the forcing response or controllability of +i
is inversely proportional to '.i ,+i(, i.e., the separation of global
and adjoint modes. This separation is illustrated in Fig. 19#a$,
where the spatial support—defined as the region where the ampli-
tude of a particular mode is larger than 2% of its maximum am-
plitude #see also Ref. !33"$—of the first 20 global and adjoint
modes is shown. We see that the global modes only span a small
part of the domain, which is located near and downstream of the
unstable domain #green dashed line$, whereas the corresponding
adjoint modes are located upstream of the unstable domain #red
dashed line$; this results in a large sensitivity, '.i ,+i(81.

In Fig. 20, we display the controllability as the number of glo-
bal modes is increased, together with the numerator and denomi-
nator of expression #56c$. Whereas the numerator represents a
measure of overlap between the input and the adjoint global
modes, the denominator measures the degree of non-normality.
The marked rise in controllability as more global modes are added
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is thus a compound effect of these two components. It illustrates
that non-normal systems can be very sensitive to the external per-
turbation environment and that it is possible to manipulate the
flow using very small actuator effort.

An upper limit of the error for reduced-order models based on
global modes is given by !76,80"

/G − Gr/! ( 0
i=r+1

n
+ĈiB̂i+

+Re#,i$+
#57$

From the above expression, it is evident that choosing a sub-
space based on the criterion of dominant eigenvalues may not be
appropriate if one wishes to approximate the input-output behav-
ior. The reason is that the error norm #57$ depends on the matrices
B and C. Although the eigenvalues may exhibit substantial decay,
for highly non-normal systems B̂ is large yielding a large model
reduction error, as shown in Fig. 21 using green circles.

In Fig. 22, we compare the frequency response of the full
model +G#i)$+ of order r=220 #blue dashed line$ to the frequency
response of the reduced models +Gr#i)$+ of order r=2, 4, and 6
#green solid line$. As before, the input B #at branch I$ is located
upstream and the output C #at branch II$ downstream. The fre-
quency response of the reduced models shows a large deviation
from the true frequency response, even as the number of included
modes is increased.

4.2 POD Modes. For an improved transfer behavior of the
reduced model, we can base our subspace on the response of the
linear system to external forcing. In this case, both the system
matrix A and the control matrix B determine the dynamics of the
driven system. To reduce a driven model, we will expand the state
vector into the POD modes #47$ #Fig. 17$. The expansion in POD
modes will be truncated at a convenient level that results in a
significantly lower-dimensional system matrix but still retains the
most energetic structures. These modes are ideal in detecting and
extracting coherent fluid structures in a hierarchical manner that is
based on their contribution to the overall perturbation energy of
the flow. However, for control and input-output behavior, low-
energy features that are not captured by this expansion may be
critically important.

We like to point out that the controllable subspace adequately
spans the response to inputs but not necessarily the inputs them-
selves. This is illustrated in Fig. 19#b$, where the spatial support
of the first 20 POD modes are shown. The first POD modes cap-
ture the largest structures, located at branch II; however, in con-
trast to the global modes, the higher modes eventually cover the
entire unstable domain including our input location. For this rea-
son, the error norm shown with black circles in Fig. 21 is not
decreasing for the first three POD modes; only when the fourth
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Fig. 19 The spatial support of the first 20 global „a…, POD „b…,
and balanced modes „c…. The spatial support is defined as the
region where the amplitude of a particular mode is larger than
2% of its maximum amplitude. The location of the input „just
upstream of branch I… and output „at branch II… is marked with
red and green dashed lines, respectively. The global modes
span only the region around branch II. The first POD modes „b…
are located at branch II, even though the higher modes quickly
recover the input. The balanced modes „c… cover the region
between the input and output with only two modes. The areas
marked with light gray in „a… and „c… represent the spatial sup-
port of the adjoint modes for the global and balanced modes.
The spatial separation in x of the direct and adjoint modes,
shown in „a… for global modes, is absent in „b… for the balanced
modes.
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Fig. 20 The controllability modal residuals „black line… of the
first 20 global modes given by Eq. „56c…, which is the product of
the overlap of the actuator and adjoint mode Š&i ,B‹ „red… and
the sensitivity defined by „Š&i ,'i‹…−1 „blue…. Although the over-
lap of the spatial support of the actuator decreases for higher
modes, the controllability still increases due to the rapid
growth of the receptivity of higher modes to forcing, quantified
by the inverse of Š&i ,'i‹.
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Fig. 21 Model reduction error of the POD „black…, balanced
„red…, and global „green… modes. For the balanced modes, the
error always decays by increasing the number of modes, in
contrast to the error of POD modes. The error does not decay
at all for the first 50 global modes due to the failure to project
the input B located upstream of branch I onto the global eigen-
modes located close and downstream to branch II.
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mode, which captures some of the input structure, is included in
the expansion basis does the error norm begin to decrease. An
explicit error estimate does not exist for POD modes; only after
computing the frequency response of the two systems can one
determine the error #given by the difference of the peak values in
the frequency response$.

Finally, in Fig. 22 the frequency response of the POD-based
reduced model #black line$ +Gr#i)$+ of order r=2, 4, and 6 is
observed to gradually approach the response of the full model.

4.3 Balanced Modes. The third subspace is based on balanc-
ing the system and involves the three matrices A, B, and C. It is
based on the idea of reducing the dimensions of the original sys-

tem by #i$ removing the redundant states for characterizing the
input-output behavior—the uncontrollable and unobservable
states—and #ii$ by removing the states that are nearly uncontrol-
lable and unobservable. This technique of model reduction is re-
ferred to as balanced truncation !81".

The balanced modes ,+i-i=1
r are defined as the eigenvectors of

the product of the two Gramians,

PQ+i = +i0i
2, 01 7 ¯ 7 0r 7 0 #58$

The eigenvalues 0i are called the Hankel singular values #HSVs$.
First two balanced modes are shown in Fig. 23.

To illustrate what balancing refers to, let us consider the pro-
jection of the Gramian matrices P and Q on a set of modes, for
instance, any of the modes introduced in this section. The pro-
jected matrices, denoted by P̂ and Q̂, have the elements

P̂i,j = '.i,P. j( #59a$

Q̂i,j = '+i,Q+ j( #59b$

where .i denotes the adjoint mode associated with +i. Balancing
refers to the fact that if P̂ and Q̂ are obtained from a projection
onto balanced modes, they become diagonal and equal to the Han-
kel singular values, i.e.,

P̂ = Q̂ = 1 = diag#01, . . . ,0r$ #60$

The balanced modes are flow structures that are ranked according
to their contribution to the input-output behavior. These modes are
influenced by the input and, in turn, influence the output by the
same amount, given by the corresponding Hankel singular values
0i.

A very attractive feature of balanced truncation is the existence
of an a priori error bound that is of the same order as the lowest
bound achievable for any basis,
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Fig. 22 Comparison of the frequency response of the full
Ginzburg–Landau equation with three reduced-order models.
The blue dashed lines represent the full model of order n
=220. The performance of reduced-order models based on r
=2, 4, and 6 modes are shown in the „a…, „b…, and „c…, respec-
tively. The red lines represent the balanced modes, the black
lines represent the POD modes, and green lines represent the
global eigenmodes. We observe that the balanced modes cap-
ture the peak value of the frequency response, which repre-
sents the main characteristic of the input-output behavior. The
approximation of the frequency response for the open-loop
case is unsatisfactory for POD models of orders 2 and 4 and for
all global-mode models.

−30 −20 −10 0 10 20 30

−1

−0.5

0

0.5

1

x

−30 −20 −10 0 10 20 30

−1

−0.5

0

0.5

1

x

(a)

(b)

Fig. 23 The first „a… and second „b… balanced modes. The
modes are nonorthogonal and the adjoint balanced modes are
shown in red. The absolute value is shown in solid and the real
part in dashed. The gray area marks the region of instability.
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0r+1 " /G − Gr/! ( 2 0
j=r+1

n

0 j #61$

In contrast to Eq. #57$, the above error norm is independent of the
input and output matrices B and C. The error norm for the bal-
anced truncation model in Fig. 21 shows a rapid decay. In Fig. 22,
we notice that the performance of balanced reduced-order models
#red lines$ +Gr#i)$+ is very good, and only two balanced modes are
required to capture the peak response of the full system.

In summary, we would like to recall that each of the three sets
of basis vectors #global modes, POD modes, and balanced modes$
span different subspaces of the state space and are therefore suit-
able for different applications. The spatial support is shown in Fig.
19 for the first 20 modes of each of the three sets. The balanced
modes #right plot$, by construction, cover the region between the
input and the output with very few modes and are thus the appro-
priate set of functions to accurately capture the input-output be-
havior of our linear system.

4.4 The Snapshot Method. To compute the POD modes or
balanced modes, we must first solve Lyapunov equations. This
becomes prohibitively expensive as n exceeds approximately 105,
which usually is the case when discretizing the Navier–Stokes
equations in two or three dimensions. Recently, numerous itera-
tive methods to solve these equations have appeared !76,82".

A different approach to approximate the Gramians without
solving the Lyapunov equations—the so-called snapshot-based
balanced truncation—has recently been introduced !83,84". It is
based on the snapshot technique first introduced by Sirovich !85"
for computing the POD modes. We will demonstrate the method
for one input and one output, see Ref. !83" for additional details.

We begin with collecting r snapshots q#tj$ at discrete times
t1 , . . . , tr of the response of the system #23$ to an impulse '#t$.
These snapshots are gathered as columns in an n4r matrix X, i.e.,

X = !eAt1B,eAt2B, . . . ,eAtrB"*9r #62$

where 9r stands for the quadrature coefficients of the time integral
in equation #46$. Instead of solving the Lyapunov equation #44$,
we can approximate its solution, i.e., the controllability Gramian
P with

P 1 XXHM #63$

If we observe that eA+tC+ is the impulse response of the adjoint
state-space equation #24$, we can construct an approximation of
the observability Gramian Q

Q 1 YYHM #64$

by collecting a sequence of snapshots of the adjoint impulse re-
sponse in the n4r matrix

Y = !eA+t1C+,eA+t2C+, . . . ,eA+trC+"*9r #65$

In the method of snapshots, instead of solving the large n4n
eigenvalue problem #58$, one can form the singular value decom-
position of the r4r matrix,

YHMX = U1VH #66$

The approximate HSVs are given in the diagonal matrix 1. The
normalized balanced modes and the associated adjoint balanced
modes are recovered from

T = XV1−1/2, S = YU1−1/2 #67$

Usually the number of snapshots r is significantly smaller than
the number of states n, which makes this method computationally
tractable for systems of very large dimensions.

Figure 24 shows the HSVs for the exact balanced truncation
#solving two Lyapunov equations$ and the approximate HSVs #us-
ing the snapshot method$. For improved results, more snapshots

may be taken during periods of large transient energy growth and
fewer snapshots as the energy decreases. Snapshot-based balanced
truncation has been applied to channel flow !86" and to the flow
around a pitching airfoil !87".

5 Control
The natural extension to the investigations of Secs. 2–4—the

response behavior of a linear system to initial conditions and ex-
ternal excitations—is concerned with attempts to manipulate the
inherent dynamics of a system or to control it. A substantial body
of literature on flow control has accumulated over the past decade,
with topics ranging from laminar flow control !88" to control of
turbulence !89", and from opposition control !90" to suboptimal
!91" and nonlinear control !92–94". Reviews on the subject of
flow control can be found in Refs. !24–27,95,96".

The framework laid out in Secs. 5.1–5.6 falls in the category of
linear feedback control !20,21,23,80,97". In particular, our objec-
tive is to minimize the perturbation energy resulting from
asymptotic or transient instabilities of the uncontrolled system
during the transition process in order to suppress or delay turbu-
lence !11,15,17". Since the disturbance energy growth is initially a
linear process !7", it seems prudent to design control schemes for
the linearized governing equations. However, linear control has
also been applied with considerable success to the full Navier–
Stokes equations !12", and attempts have been made to relaminar-
ize a fully developed turbulent flow !16".

We will consider two fundamentally different stability scenarios
for the evolution of perturbations q governed by the nonparallel
Ginzburg–Landau equation: #i$ local convective instabilities and
#ii$ global instabilities. The parameters for the two cases are listed
in Table 1.

5.1 The Concept of Feedback. The actuation on the flow can
be accomplished by various means, for example, the injection of
fluid through blowing/suction holes in the wall. Within the region
of validity of our underlying physical model, it is possible to
compute a control strategy in advance that will retain the flow in
a laminar state. This procedure is referred to as open-loop control.
However, under the presence of uncertainty over the exact distur-
bance environment #or the validity of our physical model$, open-
loop control will fail. Instead, one can monitor the flow through
measurements and adjust the actuation accordingly such that pre-
defined objectives are met. A control setup of this type is known
as closed-loop control. It uses feedback to establish a connection
between the output from the system #i.e., the measurement signal$
and the input to the system #i.e., the control signal$. Under realis-
tic conditions, we are faced with a wide range of unknown varia-
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Fig. 24 Hankel singular values of the approximate balanced
truncation are marked with colored symbols and the exact bal-
anced truncation with black symbols. The number of singular
values that are correctly captured increases with the number of
snapshots „red: 1000; green: 500; blue: 70 snapshots….
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tions, such as modeling errors or sensor noise, and a feedback-
type control system is required to efficiently compensate for these
uncertainties.

The main idea of linear feedback control is shown in Fig. 1.
The entire system is described in state-space form as follows:

q̇ = Aq + B1w + B2u #68a$

z = C1q + Du #68b$

y = C2q + g #68c$

This set of equations is commonly referred to as the plant. The
first equation #68a$ describes the dynamics of our linear system
captured in the system matrix A as external forces, modeled by
B1w and B2u, are applied. We have decomposed the input into two
terms with B1w#t$ describing the effect of external sources of
excitations and B2u#t$ representing the control input. The variable
z#t$ given by the second equation #68b$ represents the objective
function as described below. The third equation #68c$ describes a
connection between the state q and the measurements y, where the
additional term g accounts for noise contaminating the measure-
ments. In general, the objective is to find a control signal u#t$ such
that the influence of the external disturbances w and g on the
output z is minimized. The above set of equations #68$ has been
discretized using a Hermite collocation method as described in
Appendix.

Our objective is to find a control signal u#t$ such that the per-
turbation energy contained in the state variable q#t$ is minimized.
Furthermore, the energy input expended by the control must be
smaller than the amount of energy gained by it. Thus, in addition
to focusing on the perturbation energy, we also have to penalize
our control effort. This results in an objective #or cost$ functional
of the form

#69$

where M and R are positive semidefinite matrices; we have fur-
thermore assumed that DH!C1 D "= !0 I " in order to get zero
cross terms !23". It is important to realize that the 2-norm in the
above expression is defined both over time and space. Note that if
C1 is chosen as F in Eq. #18$ then the kinetic energy of the
disturbance will be minimized. In the above setup, we have as-
sumed that the full-state q is known, but for realistic flow situa-
tions the complete instantaneous velocity field is not available for
determining an appropriate feedback. We thus have to estimate the
full-state vector resulting in an approximate state vector q̂, recon-
structed from the measurements y#t$ via an estimation problem. A
controller based on an estimated state vector is known as an out-
put feedback controller or a compensator.

5.2 The LQG Framework. If we assume that the unknown
disturbance noise w and the measurement noise g are given by
white-noise stochastic processes with zero mean and respective
covariances W and G, a compensator can be found that minimizes
the cost functional #69$. In addition, the closed-loop control is
guaranteed to be stable, if the plant is both observable and con-
trollable. In fact, a sufficient condition for a global minimum
value of Eq. #69$ is that the system is stabilizable and detectable.
A system is stabilizable #detectable$ if all unstable global modes
are controllable #observable$.

The control will be optimal in minimizing Eq. #69$ which
stems, in one part, from the optimal filtering of noise that has
corrupted our signal !98" and, in another part, from the optimal
control when the entire state vector is assumed to be available.
These two separate problems—the estimation problem and the
full-information problem—can then be combined to construct a

compensator. This two-step procedural framework matured in the
1960s into what we now refer to as LQG control !20,21". The
assumption that w#t$ and g#t$ are white-noise stochastic processes
may be far from reality in some applications; it is, however, pos-
sible to describe a plant with colored-noise input in terms of an
augmented system with white-noise input !22".

In applications, LQG control is particularly successful when the
system operator A #in our case the Ginzburg–Landau equation$
accurately describes the modeled physical phenomenon. The re-
maining uncertainties in the overall model are thus restricted to
the inputs represented by stochastic disturbances with known sta-
tistical properties. For this reason, the LQG framework is appro-
priate when we can rely on an accurate plant, while a precise
knowledge of external disturbances and the degree of noise con-
tamination of the measurements are not available.

If the external disturbances are stochastic variables, the state
will as well be a stochastic process, and the objective function
#69$ can therefore be written as

/z/2
2 = E,qHMq + uHRu- #70$

As alluded to above, we will determine the optimal control u#t$
in Eq. #68$ based on noisy measurements y#t$ such that the cost
functional #70$ is minimized. The first step in constructing such a
compensator is to estimate the full-state q#t$ given only the noisy
measurements. After the state has been successfully estimated, we
assume, in a second step, that the control u#t$ and the estimate of
the state q̂#t$ satisfy a linear relation involving some yet unknown
matrix K, i.e.,

u#t$ = Kq̂#t$ #71$

The goal of this second step is then to find such a matrix K, which
is referred to as the control gain.

At the heart of the LQG-framework is the separation principle
!80", which states that the controller that minimizes Eq. #69$ can
be computed in two independent steps: #i$ we can solve the esti-
mation problem to obtain an approximation q̂ of the true state q
without any reference to the control problem; #ii$ to find the con-
trol gain K in Eq. #71$ we do not need the estimate q̂ in Eq. #71$
but instead can assume the full-information relation u#t$=Kq#t$.
One of the important consequences of the separation principle is
the fact that the final compensator, using #71$ based on the control
gain K obtained by considering q#t$ #not q̂$, will always yield a
closed-loop system that is stable if and only if each of the two
separate problems #estimation and full-information control$ are
themselves stable #see Ref. !23"$. In addition to stability, the
closed-loop system will be optimal. To simplify the expressions in
the following analysis, we assume that the adjoint system is de-
rived using a standard Euclidean inner product, i.e., the dual or the
adjoint of the plant #68$ is given simply by its complex conjugate
transpose.

5.2.1 The Estimation Problem. Under the assumption that the
measurements capture a sufficient amount of the system’s dynam-
ics #i.e., that we have significant observability$, it is possible to
estimate or observe the state vector by using a Kalman filter !98".
In this section, we derive the algebraic Riccati equation for esti-
mation and show examples on the Ginzburg–Landau equation. For
additional details, see, e.g., Refs. !20,22".

We assume zero initial conditions, since we are interested in the
controller performance as an average over long time while the
system is excited by external perturbations. We further assume
white-noise stochastic processes for w#t$ and g#t$ with zero mean.
The estimator then takes on the form

q̇̂ = Aq̂ + B2u − L#y − ŷ$ #72a$
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ŷ = C2q̂ #72b$

In the above expression, we compare the measurement y from the
state and the measurement ŷ from the estimated state and feed-
back the mismatch in these two quantities using the estimator gain
L. To analyze the performance of the estimation problem, it is
instructive to derive the dynamics of the estimation error q̃=q
− q̂. Combining Eqs. #68$ and #72$, we obtain

q̇̃ = Aq̃ + B1w + L#y − ŷ$ #73$

Substituting the explicit dependence of the two measurements on
the state q and estimated state q̂, respectively, we obtain

q̇̃ = #A + LC2$q̃ + B1w + Lg #74$

where the estimation error dynamics is governed by the matrix
Ae=A+LC2 and is driven by two source terms, namely, the exter-
nal excitation w and the sensor noise g. We aim at finding an
estimator gain L such that Ae is asymptotically stable and is not
sensitive to the external perturbations B1w+Lg. Since Eq. #68$ is
driven by noise, the state q#t$ and the output y#t$ are consequently
random processes whose stochastic properties have to be consid-
ered in finding the estimator gain L. The error covariance is given
as

P#t$ = E,q̃q̃H- #75$

which represents a measure of uncertainty in the estimate. Smaller
values of P#t$ indicate a better estimate as the estimation error is
more tightly distributed about its mean value of zero. If the esti-
mator #74$ is stable, the error q̃#t$ will eventually reach a steady
state with a constant mean and covariance. The steady-state cova-
riance can be readily obtained by solving the Lyapunov equation

AeP + PAe
H + LGLH + B1WB1

H = 0 #76$

where G and W are the covariance matrices of g#t$ and w#t$,
respectively. The optimal estimation feedback gain L is then cho-
sen to both keep Eq. #74$ stable and to minimize the mean of the
steady-state estimation error. We obtain the mean estimation error
from the covariance #75$ using the expression #38$,

J = E,q̃- = tr#PM$ #77$

where the mean is chosen as the kinetic energy. This minimization
has to be accomplished under the constraint that P satisfies the
above Lyapunov equation #76$. We add this constraint to the cost
functional J via a Lagrange multiplier : and obtain the Lagrang-
ian M:

M = tr#PM$ + tr!:#AeP + PAe
H + LGLH + B1WB1

H$"

We thus minimize J subject to the constraint #76$ by equivalently
finding stationary points of M without imposed constraints. The
necessary conditions for a minimum are given by

!M
!P

= Ae
H: + :HAe + M = 0 #78a$

!M
!:

= AeP + PAe
H + LGLH + B1WB1

H = 0 #78b$

!M
!L

= 2:#PC2
H + LG$ = 0 #78c$

We can eliminate : from Eq. #78c$ to obtain an expression for the
estimator gain

L = − PC2
HG−1 #79$

Inserting the expression above into the second condition #78b$
leads to a quadratic matrix equation for the error covariance P:

AP + PAH − PC2
HG−1C2P + B1WB1

H = 0 #80$

which is referred to as an algebraic Riccati equation. In Refs.
!74,99", efficient methods of solving the Riccati equations can be
found. We can thus determine the optimal estimation gain L by
solving Eq. #80$ for the error covariance P which, using Eq. #79$,
results in L. No requirements of observability or controllability
have to be explicitly imposed on the estimation problem; how-
ever, if we place the input describing external disturbances B1 and
the sensor C2 such that #C2 ,A$ is observable and #A ,B1$ is con-
trollable, then the resulting Riccati equation #80$ will have a
unique positive-definite solution. Moreover, the closed-loop esti-
mator will then be asymptotically stable.

One way to investigate the performance of the estimator is to
compare the energy of the true flow state with the energy of the
estimation error. In Fig. 25#a$, the temporal evolution of the state
energy #red line$ and of the estimation error #blue line$ are shown.
The energy of the estimation error is nearly three orders of mag-
nitude smaller than the energy of the true state. In the same figure,
the mean energy of the estimation error—obtained by solving the
Riccati equation #80$—and the mean energy of the state—
obtained by solving the Lyapunov equation #44$—are plotted with
dashed lines. We observe that the solutions of the Riccati equation
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Fig. 25 „a… The mean of the error covariance tr„PM… „lower
dashed line… obtained by solving the Riccati equation „80… is
compared to the estimation error „blue line… obtained by march-
ing the estimator in time „72…. Also, the mean value of the state
„top dashed line/red line… is shown and found to be nearly three
orders of magnitude larger than the estimation error. It is evi-
dent that both the state and the estimation error reach a steady
state. „b… The rms value of the error and the state are shown in
blue and red lines, respectively. The red and green Gaussian
functions represent the location of the input „stochastic distur-
bances… and the sensor. The error attains its minimum value
just downstream of the sensor location and increases up-
stream and downstream of it.
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and the Lyapunov equation provide the mean energy in which,
respectively, the estimation error and state energy fluctuate about.
In Fig. 25#b$, the corresponding rms of the error q̃rms together
with the rms of state qrms are shown.

5.2.2 Full-Information Control. The second step in the design
of a LQG compensator involves the solution of an optimal control
state-feedback problem. We show in this section that the optimal
solution is again provided by the solution of a Riccati equation.
The reader is directed to Refs. !20,22" for more detailed
derivations.

We seek a control u#t$ as a linear function of the flow state q#t$
that minimizes the deterministic cost functional

J =
1
220

T

qHMq + uHRudt, M,R * 0 #81$

while satisfying the initial value problem

q̇ = Aq + B2u, q#t = 0$ = q0 #82$

We perform the steps analogous to the estimation problem by first
defining an augmented Lagrangian N of the form #see Ref. !22"$

N =
1
220

T

#qHMq + uHRu$ + ,T#− q̇ + Aq + B2u$dt #83$

where , is again a Lagrange multiplier, which enforces the initial
value problem #82$. The necessary conditions for a minimum of N
result in the following set of equations

!N
!,

= − q̇ + Aq + B2u = 0 #84a$

!N
!q

= ,̇ + Mq + AH, = 0 #84b$

!N
!u

= Ru + B2
H, = 0 #84c$

We proceed by assuming a linear relation between the state q#t$
and the Lagrange multiplier ,#t$:

,#t$ = X#t$q#t$ #85$

where X#t$ is self-adjoint and positive semidefinite. Using this
linear relation and the optimality condition #84c$ yields the fol-
lowing feedback law:

#86$

To find X#t$, we differentiate #85$ and use the state equation #84a$
to obtain

− ,̇ = Ẋq + X#Aq − B2
HR−1B2Xq$ #87$

Substituting Eq. #84b$ into this last expression leads to a quadratic
matrix equation for X#t$ that #assuming controllability of #A ,B2$$
asymptotically converges to

AHX + XA − XB2R−1B2
HX + M = 0 #88$

As before, we obtain a Riccati equation for the linear mapping X.
The solution to this equation provides the optimal steady feedback
gain via the relation #86$.

Moreover, stabilizability of #A ,B2$ and detectability of #A ,C1$
imply additional desirable properties: The feedback gain K is
guaranteed to stabilize the plant and to yield a global minimum
value of Eq. #81$. We recall that a system is stabilizable #detect-
able$ if all unstable global modes are controllable #observable$. In

other words, if we place our actuators such that we ensure con-
trollability of the unstable global modes and if we choose M as the
kinetic energy weight matrix, then the closed-loop system is guar-
anteed to be stable. In the limit as T→!, the cost functional is
given by #see Ref. !100"$

J = q0
HXq0 #89$

and any other stabilizing controller will result in a larger value of
this objective functional.

5.2.3 The LQG Compensator. Combining the estimator and
controller, we can now control our plant by solely relying on the
measurements y#t$. To validate the separation principle, we may
write the control #71$ in terms of the full-state q and the estima-
tion error q̃,

u = Kq − Kq̃ #90$

We can combine the plant #68$ and the equation for the estimation
error #74$ into the augmented system

%q̇

q̇̃
& = %A + B2K − B2K

0 A + LC2
&%q

q̃
& + %B1 0

B1 L
&%w

g
& #91$

Since this augmented system is block triangular, the eigenvalues
of the augmented closed-loop system consist of the union of the
eigenvalues of Ac=A+B2K and Ae=A+LC2. Thus, if the full-
information controller Ac and the estimator Ae are stable, then the
closed-loop system, i.e., the compensator, obtained by combining
the plant #68$ and estimator #72$,

#92a$

#92b$

is also stable. As the separation principle suggests, the compensa-
tor consisting of an optimal estimator and an optimal full-state
controller is itself optimal. The closed-loop system, given by Eq.
#92$, has two inputs, the external disturbances w and the measure-
ments noise g, and one output, the objective function z. This
closed-loop system is treated as a new dynamical system whose
properties, such as stability, input-output behavior and perfor-
mance, have to be investigated. Next, we discuss these issues for
the two prototypical flow cases.

5.3 Control of Subcritical Flow. For a choice of parameters
that results in a convectively unstable plant #Table 1$, the objec-
tive is to apply control schemes that lower transient energy growth
or reduce the amplification of external disturbances. We will now
construct a LQG compensator for the Ginzburg–Landau equation
to illustrate how a typical convectively unstable flow system may
react to control. Similar to the analysis of the uncontrolled system
in Secs. 2 and 3, the response behavior of the closed-loop
system—in terms of spatiotemporal evolution of the state, kinetic
energy, and sensor signal—will be investigated for various inputs,
optimal initial disturbance, harmonic forcing, and stochastic
forcing.

Before control schemes can be designed, one has to decide on
the placement of actuators and sensors, the choice of which is
reflected in the matrices B2 and C2. We assume the spatial distri-
bution of the inputs and the outputs as Gaussian functions of the
form given by Eq. #A4$. The width parameter s=0.4 is chosen
such that 95% of the spatial extent of the input/output distribu-
tions are 35% of the length of the unstable domain #see Fig.
26#a$$. In this way, we are restricted—as in any practical imple-
mentation of control schemes—to only a limited number of noisy
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measurements and to actuation in a rather small region of the full
domain. An additional simplification is made by considering only
one actuator and one sensor.

Identifying regions of the flow where sensing and actuation are
favorable to the feedback control of a convectively unstable sys-
tem is significantly complicated by the convective nature of the
flow. Usually one has to use physical intuition and a trial-and-
error approach. Transient growth of energy due to the non-
normality of A is associated with the local exponential growth of
disturbances between branches I and II. As a consequence—and in
contrast to the globally unstable case #see Sec. 5.4$, where it suf-
fices to estimate at branch II and control at branch I—the entire
unstable domain between branches I and II is of great importance
for the flow dynamics.

Appropriate choices for the location of an actuator and a sensor
for the subcritical Ginzburg–Landau equation is found to be xu
=−3 and xs=0, respectively. In Fig. 26#a$, the actuator and sensor
placement are shown that result in an acceptable closed-loop per-
formance.

5.3.1 Stochastic Disturbance. Consider a system driven by
white noise B1w#t$ just upstream of branch I. From the noisy
measurements y#t$=C2q#t$+g between branches I and II, an esti-
mated state is obtained. Based on this estimate, the control signal
B2u#t$ is applied upstream to the sensor. The placement of the
excitation, sensor, and actuator is shown in Fig. 26#a$.

The covariance of the external and measurement noise should
be chosen to match as closely as possible the uncertainties that are
expected for the chosen design configuration, but it is difficult to
make more specific statements. It has, however, been found #see
Refs. !13,66,73"$ that the performance of the estimator can be
improved dramatically if the covariances are chosen to reflect
physically relevant flow structures rather than generic probability
distributions. For our problem, the sensor noise g is chosen to
have a variance of G=0.1, which is 10% of the variance of a
random input with W=1.

Since Eq. #68$ is driven by white noise w#t$, the state q#t$ is
consequently a random process and is defined by its stochastic
properties, e.g., its covariance P=E,qqH-. As we have shown in
Sec. 3.2, these properties are linked to the statistical characteris-
tics of the forcing via a Lyapunov equation #44$.

In Fig. 26#a$, the rms values #39$ of the state without control
#red$ and with control #black$ are shown. The rms value of the
uncontrolled state grows exponentially as it enters the unstable
domain at branch I; this growth prevails until branch II. The rms
of the controlled state, however, grows only slightly in the un-
stable region and is considerably lower than the rms value of the
uncontrolled state at branch II.

In Figs. 26#b$ and 26#c$, the performance of the compensator is
shown more explicitly in form of a temporal simulation of the
closed-loop system #92$ in time. The control is only engaged for
t! !250,750". Without control the stochastic disturbances grow
exponentially as they enter the unstable region at x=−8.2 and
decay as they exit the region at x=8.2. When the control is acti-
vated, the perturbation energy is reduced from E1103 to E11.
When the control is disengaged, the disturbances immediately
start to grow again. During and after the time when the control is
applied, the perturbation energy reaches a steady state at a level
that can be determined from the covariance of the state according
to E=tr#PM$ #Eq. #38$$. Dashed lines in Fig. 26#c$ indicate these
levels.

5.3.2 Harmonic and Optimal Disturbance. The aim of feed-
back control for subcritical flows is to design closed-loop systems
with small transfer function norms compared to the stable open-
loop system. Maximum transient energy growth of a perturbation
and the norm of the system transfer function G are linked for
highly non-normal systems #see Sec. 3.1 for details$. To show this
link, we will pose the LQG problem as a control problem in the
frequency domain with the objective to minimize the 2-norm of
the closed-loop transfer function.

The relation between the input and output signals, that is, be-
tween disturbance and measurement noise and the objective func-
tion, #w→z ,g→z$, of the closed-loop system #92$ #displayed
schematically in Fig. 1$ can be described by the transfer function

Gc#s$ = C#sI − A$−1B, s ! C #93$

The relation between the objective function #69$ in the time
domain and in the frequency domain can easily be found from
Parseval’s identity,

2
−!

!

z2dt =
1

2;
2

−!

!

tr+Gc#i)$+2
2d) = /Gc#i)$/2

2 #94$

with +Gc+2
2=Gc

HGc. We have thus defined the 2-norm of the transfer
function Gc#s$ as the integral over the 2-norm of the amplitude of
the transfer function along the imaginary axis. The H2 problem is
then to minimize Eq. #94$. The symbol H2 stands for the “Hardy

Fig. 26 The controlled Ginzburg–Landau equation with sto-
chastic excitation: „a… White noise w with zero mean and unit
variance W=1 forces the system at x=−11, just upstream of
unstable region with input B1 as a Gaussian function „green….
Measurements y„t… of the state „red Gaussian… contaminated by
white noise with zero mean and variance G=0.1 are taken at
xs=0. The actuator u with control penalty R=1 is placed up-
stream of the sensor at xu=−3. The rms values of the uncon-
trolled and LQG-controlled state are given by the solid red and
black lines, respectively. The absolute value of the state .q. is
shown in an x-t-plane in „b…, while the lower plot „c… displays
the kinetic energy E=‖q‖M as a function of time. The control is
only engaged for t« †250,750‡. Dashed lines in „c… indicate the
mean value computed from Lyapunov equation.
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space” !23", which contains the set of stable transfer functions
with bounded 2-norms.

In Fig. 27#a$, the frequency response #w→z ,g→z$ of the
open-loop system is shown #red line$ for the subcritical Ginzburg–
Landau equation; we observe a 2-norm of 20.5. The correspond-
ing LQG /H2 closed-loop transfer function #93$ is displayed
#black line$ in Fig. 27, where the 2-norm is now minimized to a
value of /Gc/2=6.1. In Fig. 27#b$, the optimal energy growths
#Sec. 2.3$ of the uncontrolled and controlled system are compared.
The maximum transient energy growth #peak value$ is reduced by
an order of magnitude.

5.4 Control of Supercritical Flow. For a globally unstable
flow #parameters given in Table 1$, i.e., an unstable plant #68$, the
influence of uncertainties #w#t$ and g#t$$ on the system dynamics
is rather small compared to the asymptotic behavior of the most
unstable global mode. This mode will grow exponentially as soon
as any disturbance #assuming it is not orthogonal to the unstable
mode$ enters the unstable region. For this reason, disturbance
modeling may not play a decisive role for globally unstable flows,
in contrast to convectively unstable flows.

The goal of any control effort is to stabilize an otherwise un-
stable system; this task is particularly straightforward using LQG-

based feedback control, since the closed-loop system #92$ is guar-
anteed to be stable as long as the actuator and the sensor are
placed such that the system is both stabilizable and detectable.

In other words, the performance of a controller to a globally
unstable Ginzburg–Landau equation can only be successful if all
unstable global modes are controllable and observable. It was con-
cluded in Sec. 4.1 that a global mode is controllable #observable$
if the overlap of the actuator #sensor$ and the adjoint mode #global
modes$ is nonzero. In Fig. 28, a configuration for the actuator and
sensor is shown that yields a plant, which is both stabilizable and
detectable.

For this setup, a LQG compensator #92$ is constructed by solv-
ing the Riccati equations #88$ and #80$. The perturbation energy,
the impulse response, and the spectrum of the uncontrolled plant
#68$ and controlled closed-loop system #92$ are shown in Figs. 29
and 30. We observe that the closed-loop system has all eigenval-
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Fig. 27 „a… Comparison of the frequency response of the
open-loop „red…, LQG-controlled „black…, and H!-controlled
„blue… Ginzburg–Landau equations. For the open loop, the
!-norm corresponding to the peak value of the response is
151, whereas the 2-norm corresponding the to integral of the
response is 20.5. The H!-controller minimizes the peak value
to 18.4 and reduces the 2-norm to 8.7. The LQG/H2-controller,
on the other hand, minimizes the 2-norm to 6.1 and reduces the
peak value to 20.8. „b… The energy evolution of an optimal dis-
turbance is shown for the convectively unstable Ginzburg–
Landau equation „red line… and the closed-loop system com-
puted with LQG/H2 „black… and H! „blue….
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Fig. 28 Actuator and sensor placement for the supercritical
Ginzburg–Landau equation, which yields a stabilizable and de-
tectable system. The spatial support of the actuator „blue bar…,
sensor „red bar…, the unstable domain „gray region…, and the
unstable global mode „black lines… together with its corre-
sponding adjoint mode „red lines… are shown.

Fig. 29 The spatiotemporal response to an impulse in time
induced at x=−10 for the uncontrolled system „a… and LQG-
controlled system „b….
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ues in the stable half-plane yielding an asymptotically stable flow.
For a pointwise spatial distribution of actuators '#x−xu$, it has

been shown in Ref. !33" that the Ginzburg–Landau equation
gradually loses stabilizability as the parameter %0 is increased.
This loss is due to the increasing number of unstable global modes
which are located further downstream. Controllability of the un-
stable global modes is gradually diminished as the support of the
actuator and the support of the corresponding unstable adjoint
global modes #56c$ move apart until controllability is entirely lost.
At this point no compensator will be able to stabilize the system
using one pointwise actuator.

5.5 The H! Framework: Robust Control. In Secs. 2–4, we
have tacitly assumed that the system matrices A, B, and C are
known exactly. In reality, however, this is not the case, since mod-
eling errors #for example, a small mismatch in the Reynolds num-
ber between the model and the actual flow$ are always present.
The presence of these errors raises the important issue of robust-
ness of a specific control design.

Concentrating for simplicity on the dynamic model error, let us
consider a model system given by A. The real flow, on the other
hand, shall be subjected to a small deviation from this model and
is described by the dynamic matrix A+29 with 9 as a unit-norm
uncertainty matrix and with 2 parametrizing the magnitude of the
uncertainty. For a given value of 2, the controller designed for A
has the “robust stability” property if the closed-loop system is
stable for all unit-norm uncertainty matrices 9 and, similarly, has

the “robust performance” property if the performance of the
closed-loop system is satisfactory for all possible unit-norm un-
certainty matrices 9. If information about the specific form of the
uncertainties is available, one can restrict the structure of the un-
certainty matrix 9 to reflect this information and thus reduce the
“uncertainty set.” In a similar fashion, the magnitude 2 of the
uncertainty may be estimated or bounded.

Unfortunately, the LQG /H2-control design does not account
explicitly for uncertainties in the system matrices, which is needed
to guarantee robust performance or even robust stability. For a
given controller, the smallest value of 2 such that the closed-loop
system is unstable is referred to as the stability margin. It is
known !101" that there are no guaranteed stability margins for
LQG /H2-controllers. However, this does not necessarily mean
that the H2-controller will be unstable for very small values of 2;
instead, it merely means that the search for robustness is not ac-
counted for.

To incorporate the presence of uncertainties into the control
design framework, one can adjust the actuation penalty and sensor
noise, which, in turn, directly affects the strength of the controller
and may help push the control design toward robustness. This
approach has led to the development of control optimization based
on the H!-norm. Instead of minimizing the energy of the transfer
function #i.e., the integral of the frequency response over all fre-
quencies$, it concentrates instead on reducing the peak value of
the frequency response. These are two very different objectives:
for instance, a strong peak in the frequency response localized
about one single frequency may not contribute significantly to the
energy #integral$ of the response. This new H!-objective plays a
pivotal role in the search for robustness since closed-loop insta-
bilities can be quantified by the relation between the magnitude of
the dynamic uncertainty and the maximum frequency response
#see Ref. !23"$.

The steps to compute H!-controllers closely follow the ones for
LQG /H2-design except that a new term is added to the objective
functional that will represent the worst possible external forcing.
The subsequent optimization scheme will search for a controller
that achieves the best performance for the worst perturbation #see
Refs. !11,24"$. Mathematically, this is equivalent to searching for
a saddle point of this new objective functional rather than a mini-
mum. The augmented objective functional reads

J =2
0

T

qHMq + uHRu − $2wHWwdt #95$

In this expression, w represents both external disturbances and
measurement noise. We then wish to find the control u, which
minimizes the control objective #69$ in the presence of a distur-
bance w that maximally disrupts this objective. A new free param-
eter $ appears that plays the role of 2 in parametrizing the mag-
nitude of the worst perturbation.

To simplify the following derivation, we assume for now that
W=1 and R=1. Similar to the LQG design in Sec. 5.3.2, we can
also specify the control objective in the frequency domain instead
of the time domain #95$. In this case, we simply aim at restricting
the maximum values of the closed-loop transfer function as given
by #see, e.g., Ref. !79"$

/Gc#i)$/! (
/z/2

/w/2
( $ #96$

The above transfer function norm was defined in Eq. #35$.
The H!-problem consists of finding a control signal u#t$ that

minimizes both the perturbation energy and control effort while
maximizing the effects of the external disturbances w. As the pa-
rameter $ approaches infinity, the objective functional #and the
optimal control$ reduces to the one of the LQG problem. In this
review, we will merely present the solution of the H!-problem
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Fig. 30 „Top… The perturbation energy of an initial condition,
which illustrates the asymptotic growth and the decay of the
global mode of the controlled and uncontrolled systems. „Bot-
tom… The spectrum of the uncontrolled „red… and LQG-
controlled „black… Ginzburg–Landau equations. The exponen-
tial growth of the wavepacket in Fig. 29„a… is due to one
unstable global mode of the open loop shown by the red circle
in the unstable half-plane „gray region…. The LQG-based closed
loop is stable with no unstable eigenvalues.
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and show how it relates to the LQG-solution. For a more detailed
derivation of this link, see Ref. !23" or Ref. !79".

The solution of the above H!-problem is, similar to the LQG-
problem, obtained by solving two Riccati equations, which stem
from two separate problems: the estimation and the full-
information control problem. The full-information control prob-
lem leads to the Riccati equation of the form

AHX + XA − X#− $−2B1B1
H + B2B2

H$X + M = 0 #97$

with the control given by

#98$

Furthermore, one finds that the worst-case disturbance w is given
by

wworst = $−2B1
HXq #99$

The Riccati equation #97$, whose solution yields the control
feedback gain for H!, is modified such that it takes into account
the worst-case disturbance acting on the system. We notice that
the term −$−2B1B1

H is absent in the Riccati equation #88$ of the
LQG problem. Rather, by modeling and incorporating the struc-
ture of the disturbances B1 when computing the feedback gain K,
the components of the state that are expected to be most influ-
enced by external disturbances are forced by the largest feedback,
Kq̂. We would like to point out that the parameter $ is supplied by
the user and that the resulting control #98$ is only suboptimal
rather than optimal. For large values of $, the full-information
solution of the associated LQG problem and the optimal control
signal are recovered.

The estimated state is also computed in the presence of worst-
case disturbances ŵworst=$−2B1

HXq̂ and is therefore the result of
the following estimation problem:

q̇̂ = Aq̂ + B1ŵworst + B2u − L#y − ŷ$ #100a$

ŷ = C2q̂ #100b$

Similar to the LQG-estimation problem, the difference between
the true measurement y and the estimated measurement ŷ is fed
back using the estimator gain L. There is, however, no longer any
assumption on the disturbances w and g. Instead the additional
term B1ŵworst provides the estimator with information on the
worst-case disturbance. The estimation gain in Eq. #100$ is given
by L=−ZYC2

H, where Y is the solution of the following Riccati
equation #for a derivation of this result see, e.g., Ref. !23"$

AY + YAH − Y#− $−2C1
HC1 + C2

HG−1C2$Y + B1B1
H = 0 #101$

and Z is a constant matrix given by

Z = #I − $−2YX$−1 #102$

Equation #101$ can now be compared to the Riccati equation #80$
for the LQG problem. The additional term −$−2C1

HC1 is present in
the above equation, which reflects the fact that the computation of
the estimation gain L depends on the weights in the cost func-
tional. The components of the estimated state that most contribute
to the objective functional are forced stronger by the feedback
L#y− ŷ$. In addition, we notice that the estimation gain L depends
via Eq. #102$ on the solution of the full-state Riccati solution X.

By combining the estimator #100$ and the plant #68$, it is
straightforward to formulate the H!-compensator as a closed-loop
system. Even though the required calculations #the solution of two
Riccati equations$ are reminiscent of the LQG approach, in the
H! case we face additional restrictions for the stability of the
closed-loop system and a more demanding computational effort
for finding an optimal controller.

First, stabilizability and detectability are no longer a sufficient
condition to guarantee the stability of the closed-loop system. For
the H!-problem to be solvable, the spectral radius < of XY has to
be smaller than $2 #see Ref. !102"$.

Second, the solution presented above is merely suboptimal;
finding an optimal robust controller involves an iterative process
that terminates when a lower bound $0 of $ is found, which still
satisfies <#XY$"$2. This optimal $0 can typically be found with
fewer than 20 iterations using the bisection algorithm.

We use the Ginzburg–Landau equation to exemplify the tech-
niques introduced above. For a more detailed investigation, we
refer to Ref. !34". In Fig. 27#a$, the frequency response #i.e., the
mapping w ,g→z$ of the open-loop system is shown with a red
line for the subcritical Ginzburg–Landau equation, displaying an
!-norm of 151. The corresponding H! closed-loop design is
shown with a blue line where the !-norm is now reduced to
/Gc/!=18.4 Comparing the frequency responses of the controlled
systems based on the H2 and H!, we can confirm that in the
former case the 2-norm /Gc/2 is minimized while in the latter case
/Gc/! is minimized. Consequently, the most amplified frequencies
are more damped in the H!-case at the expense of the higher
frequencies, which are amplified compared to the uncontrolled
case. The H2-controller, on the other hand, shows a smaller re-
duction in the most unstable open-loop frequencies #i.e., the peak
value in the frequency response$. This is not surprising, since the
H2-controller minimizes the energy—the integral of the transfer
function along the imaginary axis—whereas the H!-controller
minimizes the peak value of the transfer function on the imaginary
axis.

The optimal energy growth #see Eq. #20$$ in Fig. 27#b$ demon-
strates that the maximum energy growth is smaller for the
H!-design, which suggests that reducing the most amplified fre-
quencies, rather than all the frequencies, is a more efficient strat-
egy for damping maximum energy growth. However, to achieve
its goal the H!-controller expends more control energy than the
corresponding H2-controller !34".

Using the Ginzburg–Landau equation for a set of parameters
that yields a globally unstable flow, Lauga and Bewley !34" com-
pared the H!-controller to the H2-controller for a range of control
penalties and various levels of measurement noise. They found
that the H!-control design always uses more control energy #for
the same control penalty$ than the corresponding H2-control de-
sign. A robust controller uses this additional control energy to
ensure that the constraint on the maximum value of the transfer
function norm /Gc/! is satisfied.

5.6 Reduced-Order Controllers. The process of systematic
control design as presented above involves the solution of two
Riccati equations. The cost of computing a Riccati solution is of
order n3, where n is the number of components in the discretized
state vector. Whereas for the Ginzburg–Landau equation n is still
sufficiently low to allow a direct solution of the Riccati equations,
for the Navier–Stokes equations the number of state vector com-
ponents is rather large. The cost of a direct Riccati solution is
prohibitively expensive when n*105, which is easily reached for
two- and three-dimensional flow configurations. As discussed in
Sec. 4, this high cost can be avoided by developing a reduced-
order model, which preserves the essential flow dynamics.

Similar to solving a Lyapunov equation, there exist “matrix-
free” methods to solve a Riccati equation. One common approach
that significantly reduces the cost of directly solving the Riccati
equation—if the number of inputs and outputs is much smaller
than the number of states—is known as the Chandrasekhar
method !103". In this method, the Riccati solution is expressed as
the solution to a coupled system of ordinary differential equations,
which needs to be integrated in time #see Ref. !66" for an appli-
cation$.
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Even if we manage to obtain the feedback gains from the full
system, however, there still remains the issue that the controller is
of very high order, which requires a rather fast feedback system
running next to the experiment.

We will return to the issue of model reduction #see Sec. 4$
based on the projection of the original high-dimensional system
onto a smaller system using a given basis. One of the main ad-
vantages of this approach is that the error in the reduced-order
model can be quantified in terms of transfer functions, as shown in
Eqs. #61$ and #57$.

Once a reduced-order model is devised #using the techniques in
Sec. 4$ whose transfer function is a sufficiently good approxima-
tion of the open-loop transfer function, we can design an H2- or
an H!-controller for this reduced model. This results in a reduced-
order controller, which, coupled to the full-order open-loop sys-
tem, will result in the following augmented system:

%q̇

q̇̂
& = % A B2K̂

− LĈ Â + B̂2K̂ + L̂Ĉ
&%q

q̂
& + %B1 0

0 − L̂
&%w

g
&

#103$

The expression of the reduced-order controller is similar to the
full order given by Eq. #92$, except that the quantities marked
with “ˆ” are of order r8n. Note that the feedback gain K and
estimation gain L have the dimension of the reduced model result-
ing in a fast online controller.

We can now compare the frequency response of the reduced-
order models with and without control. The frequency response of
the full model without control was shown by the dashed blue lines
in Fig. 22. The frequency response of reduced-order models using
global modes #green$, POD modes #black$, and balanced modes
#red$ were also shown in the figures.

In Figs. 31#a$–31#c$, we display with dashed blue lines the
frequency response Gc#i)$ of the LQG closed-loop system when
solving the full-order #n=220$ Riccati equations. Comparing the
dashed blue lines in Fig. 22, where the frequency response of the
reduced model of the open loop is shown, with the ones of the
closed loop in Fig. 31, we see that the most unstable frequencies
are reduced by an order of magnitude. Solving the Riccati equa-
tions for the reduced models of order r=2, 4, and 6 for the three
sets of modes #global, POD, and balanced modes$, we observe the
same trend for the closed-loop system as we saw for the open-
loop system: The reduced-order model based on two balanced
modes #red line in Fig. 31#b$$ is able to obtain a closed-loop
performance very similar to the full model, whereas POD modes
require a substantially larger basis and global modes fail entirely.

It should be mentioned that model reduction for unstable sys-
tems is also possible using global modes !10", POD modes !104",
and, more recently, balanced modes !105".

6 Conclusion
A unifying framework for linear fluid dynamical systems has

been presented and reviewed that allows the analysis of stability
and response characteristics and the design of optimal and robust
control schemes. An input-output formulation of the governing
equations yields a flexible formulation for treating stability prob-
lems and for developing control strategies that optimize given
objectives while still satisfying prescribed constraints.

The linear Ginzburg–Landau equation on the infinite domain
has been used as a model equation to demonstrate the various
concepts and tools. It has been modified to capture both subcriti-
cal and supercritical disturbance dynamics and thus span the range
of fluid behavior observed in various generic shear flow configu-
rations. With a small modification, the equation can also be used
to mimic instabilities in other spatially developing flows, for in-
stance, flows on semi-infinite domains such as inhomogeneous
jets and wakes.

Input-output-based analysis tools, such as the impulse response
or the frequency response, have been applied to the model equa-
tion. This type of analysis lays the foundation for a thorough
understanding of the disturbance behavior and the design of effec-
tive control strategies. Concepts such as controllability and ob-
servability play an important role for both the input-output behav-
ior and the control design.

The design of effective and efficient control strategies is a chal-
lenging task, starting with the placement of actuators and sensors
and ending with the judicious choice of a model reduction basis in
order to numerically solve the compensator problem. Along the
way, compromises between optimality #H2-control$ and robust-
ness #H!-control$ have to be made that influence the overall per-
formance of the feedback system.
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Fig. 31 The frequency response of the closed feedback loop
based on a LQG compensator. The blue dashed lines represent
the full model of order n=220. The performance of reduced-
order models based on r=2, 4, and 6 modes are shown in „a…,
„b…, and „c…, respectively. The red lines represent the balanced
modes, the black lines represent the POD modes, and the
green lines represent the global eigenmodes. We observe that
reduced-order controller based on balanced modes outper-
forms the other two models. The poor performance of the re-
duced order based on POD and global modes is directly asso-
ciated with the unsatisfactory approximation of the open-loop
case in Fig. 22.
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It is hoped that this review has given a comprehensive and
modern introduction to the fields of stability and control theory
and has shown the close link between them. It is further hoped
that it will spark interest in the fluid dynamics community to
continue the exploration of these two exciting disciplines.

The MATLAB files to reproduce the results and figures of this
review article are available from the FTP server.1
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Appendix: Discretization
The numerical studies in this review article are based on a

pseudospectral discretization of the Ginzburg–Landau operator A
using Hermite functions and the corresponding differentiation ma-
trices provided by Weideman and Reddy !106". To approximate
the derivatives in Eq. #1$, we expand the solution q#x , t$ in n
Hermite functions

q#x,t$ = 0
j=1

n

= j#t$exp%−
1
2

b2x2&Hj−1#bx$ #A1$

where Hj#bx$ refers to the jth Hermite polynomial. The differen-
tiation process is exact for solutions of the form

f#x$ = exp#− 1
2b2x2$p#bx$ #A2$

where p#bx$ is any polynomial of degree n−1 or less. The scaling
parameter b can be used to optimize the accuracy of the spectral
discretization !107". A comparison of the above expression with
the analytical form of the global Ginzburg–Landau eigenmodes
#9b$ shows that they are of the same form except for the exponen-
tial term exp,## /2$$x- stemming from the convective part of the
Ginzburg–Landau equation. This exponential term is responsible
for the nonorthogonality of the eigenmodes of A. The Hermite
functions are thus the “orthogonal part” of the global modes. By
choosing the Hermite function scaling factor b=-, we obtain a
highly accurate approximation of A, since any solution of the
Ginzburg–Landau equation will decay with the same exponential
rate as the Hermite functions in the limit as the domain tends to
infinity.

The collocation points x1 , . . . ,xn are given by the roots of
Hn#bx$. We also notice that the boundary conditions are enforced
implicitly and that −x1=xn=O#*bn$ in the limit as n→! !108".
The discretization converts the operator A into a matrix A of size
n4n #with n as the number of collocation points$. Throughout
this review article, we present the results for n=220 yielding a
computational domain with x! !−85,85".

Discretization transforms flow variable q#x , t$ into a column
vector q̂#t$ of dimension n, and the inner product is defined as

'f ,g( =2
−!

!

f#x$!g#x$dx 1 0
i=1

n

0
j=1

n

f̂ i
Hĝjwi,j = f̂HMĝ = ' f̂ , ĝ(M

#A3$

where f̂ = ! f̂1 , . . . , f̂ n"H and ĝ= !ĝ1 , . . . , ĝn"H are the column vectors
consisting of, respectively, f#x$ and g#x$ evaluated at the colloca-
tion points. The symbol H denotes the Hermitian #complex con-
jugate transpose$ operation. The positive-definite matrix M con-

tains the weights wi,j of the chosen quadrature rule. For instance,
applying the trapezoidal rule to the Hermite collocation points
results in a diagonal matrix M = 1

2diag,9x1 ,9x2+9x1 , . . . ,9xn−1
+9xn−2 ,9xn−1-, with 9xi=xi+1−xi. In this paper, the discrete vari-

ables f̂ are denoted by f .
The operators B and C, describing the input and output configu-

rations, are represented at their respective collocation points. We
assume a spatial distribution of inputs B= ,B1 , . . . ,Bp- and outputs
C= ,C1 , . . . ,Cr-T in the form of Gaussian functions

Biu#t$ = exp4− % x − xw,i

s
&25u#t$ #A4a$

Ciq#t$ = exp4− % x − xs,i

s
&25H

Mq#t$ #A4b$

where x represents the Hermite collocation points.
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