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Abstract Using a number of localized sensors and actuators, a feedback controller is
designed in order to reduce the growth of three-dimensionaldisturbances in the flat-
plate boundary layer. A reduced-order model of the input-output system (composed
of the linearized Navier–Stokes equations including inputs and outputs) is com-
puted by projection onto a number of balanced truncation modes. It is shown that a
model with 50 degrees of freedom captures the input-output behavior of the high-
dimensional (n∼ 107) system. The controller is based on a classical LQG scheme
with a row of three sensors in the spanwise direction connected to a row of three
actuators further downstream. The controller minimizes the perturbation energy in
a spatial region defined by a number of (objective) functions.

1 Input-output configuration

The three-dimensional input-output configuration considered is the extension of the
two-dimensional case studied in [2, 3]. We focus on the dynamics and control of
small amplitude perturbations about a steady base flow. The main numerical tool is
a pseudo-spectral code that provides solutions of the linearized Navier-Stokes equa-
tions and its associated adjoint equations. For further details of the code, boundary
conditions etc, we refer to [1, 2] . The computational domainhas the dimensions
(Lx,Ly,Lz) = (500,20,160) and a resolution of 384×81×80 grid points; the fringe
region starts atx = 400. The Reynolds number isRe= U∞δ ∗

0/ν = 1000, whereδ ∗
0

is the inflow displacement thickness.
The plant (shown schematically in Fig. 1), written in an input-output form reads,

u̇ = Au +B1w+B2u (1)

z = C1u+ lu (2)
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v = C2u+ αg (3)

whereu is the velocity field,A ∈ Rn×n is the discretized and linearized Navier-
Stokes equations, whereas the vectorB1 ∈ Rn×1 and the matrixB2 ∈ Rn×3 provide
the spatial distributions of the incoming disturbance upstream and the (three) actu-
ators downstream. The output signals are extracted via the matricesC1 ∈ Rk×n and
C2 ∈ R3×n that define the spatial distributions of the sensors. The scalar quantities
α andl are penalties of measurements noiseg(t) and control signalu(t) (see [2]).

The system (1) is stable since all the eigenvalues ofA are strictly to the left of the
imaginary axis on the complex plane. However, the system is characterized by sen-
sitive dynamics as it acts as an amplifier of disturbances. The upstream disturbance
consist of the optimal localized initial condition computed by Monokrousoset al.
[4], that provides the largest energy growth over a given time. For long time, the op-
timal initial condition is a three-dimensional wave-packet of Tollmien-Schilichting
(TS) waves triggered by upstream tilted structures exploiting the Orr-mechanism. As
the three actuators, we use localized volume forcing in the form of TS-like wave-
packets.

The three sensors in the spanwise direction are also modelled as localized wave-
packet structures. Thek sensorsC1, located further downstream are used to define
the objective functional

Fig. 1 Sketch of the input-output configuration considered. The disturbance (B1) is modelled as
a localized TS-wavepacket located upstream at(xB1 ,yB1,zB1) = (20,1,0). A spanwise row (C2
) of three sensors equally spaced along z (∆z = 40) are used for estimation; the center sensor is
located at(xC2 ,yC2,zC2) = (150,1,0). The actuator row (B2 ) has a similar configuration with the
center actuator located at(xB2 ,yB2,zB2) = (200,1,0). A centralized controller is designed, i.e. all
actuators are connected to sensors as shown by the inset figure. Further downstream a region, that
is spanned by a number of basis functions (C1), is used to evaluate the disturbance dynamics and
thus acts as an “objective function”.
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Fig. 2 Streamwise velocity component (positive is shown in black and negative in gray) of the basis
functionsC1,k with k = 1, . . .,4 given in equation (5) projected onto divergence-free subspace.

‖z‖2 =

∫ T

0
|C1u|2 + l2|u|2 dt. (4)

The aim of the controller is to determine the input signalu(t), based on noisy sensor
measurementv(t) such that the above objective is minimized. Note that in thisinput-
output framework, the controller minimizes the disturbance energy in a subspace of
the domain, spanned by the basis{C1,1, . . . ,C1,k}. One choice of basis (the so-called
output projection[5]) are the POD modes obtained from the impulse response of
all the inputs. This basis is empirical, i.e. it accurately represents the data used to
generate it. Using output projection with few leading POD modes, the controlled
system shows significantly smaller output signalsz(t) compared to the open-loop
system. However, for three-dimensional disturbances, this does not correspond to an
actual reduction of the total kinetic energy of the perturbation. Instead of including
a very large number of POD modes, alternatively, a set of spanwise Fourier modes
(see Fig. 2) localized in the streamwise and wall-normal directions can be used as
to define a basis, of the form

C1,ku =

∫

Ω
(0,exp

(

−(x−x0)
2/σ2

x −y2/σ2
y ,0

)

cos

(

2π(k−1)z
Nz

)

u dxdydz. (5)

Four modes – fromk = 1 tok = 4 – localized aroundx= 300 are used in the present
configuration.

2 Model reduction

In order to design a feedback controller, it is sufficient to capture the input-output
(I/O) behavior of the system, rather than the entire perturbation dynamics. For a
small number of inputs and outputs, the I/O behavior of a linear system can be
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Fig. 3 Streamwise velocity (positive is shown in black and negative in gray) of the first (top row)
and 10th (bottom row) balanced mode (left) and their associated adjoint mode (right).

described by a reduced-order model obtained via the balanced truncation method
[6]. The reduced model retains the states affected easily bythe inputs (controllable
states) and the states that contribute the most to the outputs (observable states).
Essentially, the method amounts to an oblique projection ofthe system (1), onto a
number of so-called balanced modes which can be computed forhigh-dimensional
plants using thesnapshots methodproposed in [5]: snapshots are collected from the
impulse response of each input via a forward simulation, andof each output via a
simulation of the adjoint system followed by one singular value decomposition (of
the size of number of adjoint snapshots times forward snapshots).

Two balanced modes (first and 10th) and their associated adjoint modes are
shown in Fig. 3. The first balanced mode is nearly two-dimensional and takes the
shape of a TS wave-packet with a large amplitude downstream.This spatial struc-
ture is trigged with the least energy by the inputB1. Its corresponding adjoint mode
is essentially two-dimensional with its largest amplitudeupstream. This structure,
on the other hand, generates the largest response in the sensorsC1. The higher bal-
anced modes (bottom row in Fig. 3) look similar to the first mode, but are mainly
characterized by different spatial wavelengths.

A reduced-order model of order 50 is found to capture the behavior between
all the inputs and all the outputs of the Naiver-Stokes system of order 107. An ex-
ample of the performance of the reduced-order model is shownin Fig. 4. With an
impulse inB1, a (optimal) disturbance is introduced in the boundary-layer upstream
that grows as it is convected in the downstream direction. The sensor outputsz1(t)
andz2(t) extracted by the sensorsC1,1 andC1,2 respectively, is shown with black
solid lines. After an time-delay the sensors register a wave-packet; the signal even-
tually decays to zero as the disturbance leaves the computational box. In the same
figure, the output signals computed using the reduced-ordermodel is shown (cir-
cles) , where an impulse in the input of the reduced-order model (B̂1) results in the
same response (extracted via the reduced sensorsĈ1,1 andĈ1,2) as the full Navier-
Stokes system, albeit the significant order reduction. The approximate Hankel sin-
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Fig. 4 Impulse response fromB1 → C1,1 (right) andB1 → C1,2 (left) to a 3D TS wavepacket; the
solid line represents the DNS (n = 107) and the dotted-line the reduced-model (m= 50).

gular values (not shown here) decay rapidely and the leadingsingular values come
in pair similar to observations in previous studies [2]. A thorough analysis of the
performance of the reduced-order and the model-reduction error will be presented
elsewhere.

3 Controller design

The reduced-order model can be used to design a controller oflow-order that will
run “online”, next to the numerical experiments. Here, a classical Linear-Quadratic-
Guassian (LQG) (see e.g. [7] for introduction in control theoretical tools from a
fluid mechanics viewpoint) is designed, where all three sensors used for estimation
(C2) are connected to all three actuatorsB2. Such a centralized controller minimizes
the energy of the output signals (4) and more importantly theresulting closed-loop
is guaranteed to be stable. A de-centralized controller – when the control signal of
each actuator is based only on the output from the sensor located upstream and at
the same spanwise location – was found both by RGA analysis [8] and by numerical
experiments to result in an unstable closed-loop. This is partly due to the fact that
localized disturbance introduced in the boundary-layer spreads (or widens) in the
spanwise direction as it is convected downstream, resulting in a strong coupling in
the spanwise direction.

The performance of the controller is shown in Fig. 5. The r.m.s. (streamwise ve-
locity component integrated in spanwise and wall-normal directions and time) when
forced upstream with temporal white noise is compared for three linearized DNS;
in solid black the exponential growth of optimal TS wave-packet in the stream-
wise direction is observed; the dash-dotted and dashed lines show the disturbance
development when the controller is active, i.e. when the measurements from the
three sensors (C2) upstream are fed into a controller that provide the three actuators
further downstream (B2) a control signal. The dashed line represents a “cheap” con-
troller with l = 10, whereas the dashed-dotted line is “expensive” controller with
l = 100 (for both controllersα = 0.1). Near the location (x = 200) of the actua-
tors the growth of perturbations is transformed into a decay; further downstream the
perturbations again begin to growth, but their overall amplitude is reduced.
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Fig. 5 R.M.S of the streamwise velocity component of the uncontrolled system (black line), the
cheap controller (dashed) and expensive controller (dotted-dashed line).

In summary, a reduced-order model of order 50 is able to capture the input-output
behavior between three-dimenstional disturbances, actuators, sensors and “objective
functions”. Using this model, efficient control strategiescan be designed in order
to damp the growth of small-amplitude perturbations insidethe boundary-layer. A
number of improvements are currently under investigation.The spatial structure
of the sensors and actuators will be chosen in order to reflectwhat actually can
be achieved in a practical experimental implementation (for instance with plasma
actuators). Also, the choice of basis defining the objectivefunctions in this study,
was rather arbitrary and can be improved.

References

1. Chevalier, M., Schlatter, P., Lundbladh, A. and Henningson, D. S. A pseudo spectral solver
for incompressible boundary layer flows. Technical Report, Trita-Mek 7, 2007.

2. Bagheri, S., Brandt, L., Henningson, D.S.,Input-output analysis, model reduction and control
of the flat-plate boundary layer. J. Fluid Mech, Vol 620,263-298, 2009.

3. Bagheri, S.,̊Akervik, E., Brandt, L., Henningson, D.S.,Matrix-free methods for the stability
and control of boundary layers. AIAA J., Vol 47,1057-1068, 2009.

4. Monokrousos, A.,̊Akervik, E., Brandt, L., Henningson, D.S.,Global optimal disturbances
in the Blasius boundary-layer flow using time-steppers.Submitted to the J. of Fluid Mech,
2009.

5. Rowley, C.W.Model reduction for fluids using balanced proper orthogonaldecomposition.
Int. J. of Bif. Chaos, 15(3):997-1013, 2005.

6. Moore, B.Principal component analysis in linear systems: Controllability, observability, and
model reduction.IEEE Trans. Aut. Control, 26:1732, 1981.

7. Bagheri, S., Hœpffner, J., Schmid, P.J., Henningson, D.S., Input-Output Analysis and Control
Design Applied to a Linear Model of Spatially Developing Flows. Appl. Mech. Rev., Vol 62
(2), 2009.

8. T. Glad and L Ljung, Control Theory, multivariable and Nonlinear Methods.Taylor and
Francis.


