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Abstract This paper addresses recent developments in model-reduction techniques
applicable to fluid flows. The main goal is to obtain low-order models tractable
enough to be used for analysis and design of feedback laws for flow control, while
retaining the essential physics. We first give a brief overview of several model re-
duction techniques, including Proper Orthogonal Decomposition [3], balanced trun-
cation [8, 9], and the related Eigensystem Realization Algorithm [5, 6], and discuss
strengths and weaknesses of each approach. We then describe a new method for
analyzing nonlinear flows based on spectral analysis of the Koopman operator, a
linear operator defined for any nonlinear dynamical system. We show that, for an
example of a jet in crossflow, the resulting Koopman modes decouple the dynamics
at different timescales more effectively than POD modes, and capture the relevant
frequencies more accurately than linear stability analysis.

1 Introduction

The ability to effectively control a fluid would enable many exciting technological
advances, including modifying the stability of laminar flows, and delaying transition
from laminar to turbulent flow. Many of the tools available for analysis and design
of control systems require knowledge of a model in terms of a system of differential
equations, and the equations governing a fluid, though known, are too complex for
these tools to apply. Model reduction addresses this problem: one obtains approx-
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imate models that are computationally tractable and capture the essential physics,
but neglect details that are not critical for the problem at hand.

Here, we present a brief overview and comparison of various methods used for
obtaining reduced-order models, aimed at applications in flow control. We then
present a new method for analyzing fluid flows, based on spectral analysis of an
object called the Koopman operator, and apply the method to a jet in crossflow.

2 Model reduction techniques

Many of the methods used for model reduction involve projecting known, high-
dimensional dynamics onto a set of modes. For instance, for a state variable q(t)
(which could be a flow field at a specified time t), we begin with known dynamics
q̇(t) = f (q) (for instance, the Navier-Stokes equations). Then we expand q(t) in
terms of a set of basis functions, or modes, ϕk:

q(t) =
n

∑
k=1

ak(t)ϕk. (1)

If the modes ϕk are orthonormal, we obtain projected dynamics as ȧk(t)= � f (q(t)),ϕk�.
If the modes are not orthonormal (e.g., if they are eigenmodes of a non-normal op-
erator A), then we often have a complementary set of adjoint modes ψ j that satisfy�
ϕ j,ψk

�
= δ jk (e.g., eigenmodes of adjoint operator A∗). In this case, we still have

the expansion (1), but the projected dynamics are given by ȧk(t) = � f (q(t)),ψk�. In
such projection methods, the main choices for obtaining reduced-order models are
therefore how to choose the modes ϕ j and ψk.

2.1 Proper Orthogonal Decomposition and its limitations

A common approach is to determine the modes ϕk by Proper Orthogonal Decompo-
sition (POD) of a certain dataset [3]. While this approach is optimal for capturing the
energy in a given dataset, this choice is often not appropriate for obtaining reduced-
order models, since low-energy modes can be critically important for capturing the
dynamics.

A striking example of the importance of low-energy modes is shown in [4], in
which POD modes are computed from snapshots of the transient growth of a distur-
bance in a linearized channel flow. The first five POD modes capture over 99% of
the energy, and yet the corresponding reduced-order model completely misses the
transient energy growth. If, however, low-energy modes 10 and 17 are used in place
of modes 4 and 5, the resulting five-mode model performs very well, and captures
the transient growth nearly perfectly. While POD models can work well, this ex-
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ample illustrates that they often require careful tuning, and one must be aware that
low-energy modes can be critically important to the dynamics.

2.2 Balanced models

An alternative approach, popular in the control theory community, is balanced trun-
cation [8]. This approach is applicable to linear systems, and has a priori error
bounds that are close to the minimum possible error from any reduced-order model.
In [9], an approximation of balanced truncation is introduced, called Balanced POD.
In this method, the direct modes ϕ j and adjoint modes ψk are computed from snap-
shots taken from a simulation of the original (linear) system and an adjoint system.
Once these modes are known, the reduced-order models are computed as described
above. This method, which approaches exact balanced truncation as the number
of snapshots is increased, also corresponds to POD of a particular dataset (an im-
pulse response) with respect to a particular inner product (called the observability
Gramian). This inner product may be regarded as a measure of dynamic importance,
and thus, the notion of “energy” in POD is simply redefined to refer to dynamic im-
portance, rather than the usual (physical) energy.

In practice, this method often dramatically outperforms the standard POD method,
particularly for highly non-normal systems. For instance, for the transient growth
problem in [4] mentioned above, a 3-mode balanced model captures the transient
growth nearly perfectly, and the models consistently improve as more modes are
included, without any of the manual tweaking necessary for the POD models.

It is also worth noting that balanced models may also be obtained using the
Eigensystem Realization Algorithm [5] (ERA). In fact, it has recently been shown
that for linear systems, ERA produces reduced-order models that are identical to
those from Balanced POD [6]. This method does not involve adjoint simulations,
and hence can be used with experimental data. However, unlike Balanced POD, the
Eigensystem Realization Algorithm does not produce modes ϕ j,ψk, which can be
useful for a variety of purposes, such as projection of nonlinear dynamics, or re-
taining parameters in the models. For more information about the advantages and
disadvantages of ERA, see [6].

3 Spectral analysis of nonlinear flows

In this section, we describe a new method for analyzing the dynamics of nonlinear
systems, based on spectral analysis of an object called the Koopman operator. The
Koopman operator is a linear operator defined for any nonlinear system, but it is not
based on linearization: indeed, it captures all of the dynamics of the full nonlinear
system. The Koopman operator describes the evolution of observables on the phase
space. For instance, an observable may be a 2D slice of velocity vectors obtained
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from an experiment using Particle Image Velocimetry (PIV). Below, we define this
operator, and the Koopman modes associated with a particular observable. For a
more detailed explanation of this operator and its use, see [7, 10].

3.1 Koopman operator and Koopman modes

Consider a dynamical system evolving on a manifold M such that, for xk ∈M,

xk+1 = f(xk), (2)

where f is a map from M to itself. The Koopman operator is a linear operator U that
acts on scalar-valued functions on M in the following manner: for any scalar-valued
function g : M → R, U maps g into a new function Ug given by

Ug(x) = g(f(x)). (3)

Although the dynamical system is nonlinear and evolves on a finite-dimensional
manifold M, the Koopman operator U is linear, but infinite-dimensional.

The idea is to analyze the flow dynamics governed by (2) only from available
data—collected either numerically or experimentally—using the eigenfunctions and
eigenvalues of U . To this end, let ϕ j : M → R denote eigenfunctions and λ j ∈ C
denote eigenvalues of the Koopman operator,

Uϕ j(x) = λ jϕ j(x), j = 1,2, . . . (4)

and consider a vector-valued observable g : M →Rp. For instance, if x∈M contains
the full information about a flow field at a particular time, g(x) is a vector of any
quantities of interest, such as a velocity measurements at various points in the flow.
If each of the p components of g lies within the span of the eigenfunctions ϕ j, then
as in [7], we may expandthe vector-valued g in terms of these eigenfunctions, as

g(x) =
∞

∑
j=1

ϕ j(x)v j. (5)

We typically think of this expression as expanding the vector g(x) as a linear combi-
nation of the vectors v j, but we may alternatively think of this expression as expand-
ing the function g(·) as a linear combination of the eigenfunctions ϕ j of U , where
now v j are the (vector) coefficients in the expansion. In this paper, we will refer to
the eigenfunctions ϕ j as Koopman eigenfunctions, and the corresponding vectors v j
in (5) the Koopman modes of the map f, corresponding to the observable g. Note
that iterates of x0 are then given by

g(xk) =
∞

∑
j=1

Ukϕ j(x0)v j =
∞

∑
j=1

λ k
j ϕ j(x0)v j. (6)
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The Koopman eigenvalues, λ j ∈ C, therefore characterize the temporal behavior of
the corresponding Koopman mode v j: the phase of λ j determines its frequency, and
the magnitude determines the growth rate. Note that, as described in [7], for a system
evolving on an attractor, the Koopman eigenvalues always lie on the unit circle.

3.2 Properties of Koopman modes and eigenvalues

It is not immediately clear why the Koopman modes and eigenvalues might be of
interest in studying fluid flows. However, these modes are in fact related to objects
routinely used in fluid mechanics, such as global eigenmodes (for linear systems)
and the discrete Fourier transform (for periodic solutions of (2)). For a more detailed
presentation, see [10], but here we summarize the main results:

• For a linear system (xk+1 = Axk), if the observable is the full state g(x) = x,
then the eigenvalues of A are also Koopman eigenvalues, and the corresponding
eigenvectors of A are Koopman modes.

• For a nonlinear system with a periodic orbit, if we restrict the phase space to
the periodic orbit, then the Koopman modes are given by the discrete Fourier
transform of the vectors that make up the periodic orbit. In particular, if we
have a set S = {x0, . . . ,xm−1} that forms a periodic solution of (2), such that
xk+m = xk for all k, then the discrete Fourier transform defines a new set of vec-
tors {x̂0, . . . , x̂m−1} that satisfy

xk =
m−1

∑
j=0

e2πi jk/mx̂ j, k = 0, . . . ,m−1. (7)

Then the vectors x̂ j are Koopman modes, with corresponding eigenvalues λ j =
e2πi j/m. Thus, the phase 2πi j/m of the Koopman eigenvalue λ j is the frequency
of the corresponding mode x̂k.

The Koopman modes therefore provide a framework that unifies linear stabil-
ity theory (for transients of linear systems), and the discrete Fourier transform (for
periodic solutions of nonlinear systems).

3.3 Computing Koopman modes from snapshots

The Koopman eigenvalues and modes would not be useful for practical applications
if they could not be computed. It turns out that approximations to these modes and
eigenvalues may be computed directly from snapshots of an observable, using a
Krylov subspace method, a variant of the commonly used Arnoldi iteration [11].
The algorithm is in fact identical to that referred to as Dynamic Mode Decomposition
in [12]. For the details of the algorithm, and its relation to Koopman modes, see [10].
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3.4 Example: jet in crossflow

In this section we compute the Koopman modes for a jet in crossflow, and show that
they directly allow an identification of various phenomena present in this flow. The
parameters and the numerical code are the same as in the DNS performed in [2]; the
jet inflow ratio is R ≡Vjet/U∞ = 3, the Reynolds number is Reδ ∗0 ≡U∞δ ∗0 /ν = 165
and the ratio between the crossflow displacement thickness and the jet diameter is
δ ∗0 /D = 1/3.

The empirical Ritz values λ j and the empirical vectors v j are computed from
a sequence of flow-fields {u0,u1, . . . ,um−1} = {u(t = 200),u(t = 202), . . . ,u(t =
700)} with m = 251, using the algorithm mentioned in Section 3.3. The transient
time (t < 200) is not sampled, and only the asymptotic motion in phase space is
considered.

Fig. 1 The magnitudes of the
Koopman modes v j , as a func-
tion of their nondimensional
frequency St = ωD/(2πVjet).
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The magnitudes of the modes, defined by the global energy norm �v j�, are shown
in Figure 1, as a function of the corresponding frequency ω j = Im{log(λ j)}/∆ t
(with ∆ t = 2 in our case). Only the ω j ≥ 0 are shown, since the eigenvalues come
in complex-conjugate pairs. Ordering the modes with respect to their magnitude,
the first (2–3) and second (4–5) pair of modes oscillate with St2 = 0.141 and St4 =
0.136 respectively, whereas the third pair of modes (6-7) oscillate with St6 = 0.017.
All linear combinations of the frequencies excite higher modes: for instance, the
nonlinear interaction of the first and third pair results in the fourth pair, i.e. St8 =
0.157 and so on.

The frequencies of these dominant Koopman modes agree very well with fre-
quencies obtained from point measurements of the DNS, taken from the shear layer
and near-wall regions, respectively, as shown in Table 1.

The streamwise velocity component u of Koopman modes 2 and 6 are shown in
Figure 2. Each mode represents a flow structure that oscillates with one single fre-
quency, and the superposition of several of these modes results in the quasiperiodic



Reduced-order models for flow control 7

global system. The high-frequency mode 2 (Figure 2(a)) can be associated with
shear layer vortices; along the jet trajectory there is first a formation of ring-like
vortices that eventually dissolve into smaller scales due to viscous dissipation. Also
visible are upright vortices: on the leeward side of the jet, there is a significant struc-
ture extending towards the wall. This indicates that the shear-layer vortices and the
upright vortices are coupled and oscillate with the same frequency.

On the other hand, the low-frequency mode 6 shown in figure 2(b) features large-
scale positive and negative streamwise velocity near the wall, which can be associ-
ated with shedding of the wall vortices. However, this mode also has structures
along the jet trajectory further away from the wall. This indicates that the shedding
of wall vortices is coupled to the jet body, i.e. the low frequency can be detected
nearly anywhere in the vicinity of the jet since the whole jet is oscillating with that
frequency.

(a) (b)

Fig. 2 Positive (red) and negative (blue) contour levels of the streamwise velocity components of
two Koopman modes. The wall is shown in gray. (a) Mode 2, with �v2� = 400 and St2 = 0.141.
(b) Mode 6, with �v6�= 218 and St6 = 0.0175.

3.5 Comparison with linear global modes and POD modes

The linear global eigenmodes of the Navier-Stokes equations linearized about an
unstable steady state solution were computed by [2] for the same flow parameters
as the current study. They computed 22 complex-conjugate unstable modes using
the Arnoldi method combined with a time-stepper approach. The frequency of the
most unstable (anti-symmetric) mode associated with the shear-layer instability was
St = 0.169, not far from the value St = 0.14 observed for the DNS. However, the
mode with the lowest frequency associated with the wall vortices was St = 0.043,
far from the observed frequency of St = 0.017. These frequencies are summarized
in Table 1. The global eigenmodes capture the dynamics only in a neighborhood of
the unstable fixed point, while the Koopman modes correctly capture the behavior
on the attractor.

We also compared the Koopman modes with modes determined by Proper Or-
thogonal Decomposition (POD) of the same dataset. The POD modes themselves
are shown in [1], and capture similar spatial structures to the Koopman modes shown
in Figure 2. The most striking distinction is in the time coefficients: while a single
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Mode DNS Global POD Koopman
Shear layer 0.141 0.169 0.138,0.158,0.121 0.141
Wall 0.017 0.043 0.0188,0.0094,0.158,0.121 0.017

Table 1 Comparison of the frequencies (St = f D/Vjet) obtained from DNS probes; the global
eigenmodes of the linearized Navier-Stokes; POD modes 1 and 6, corresponding to mainly shear-
layer and wall oscillations, respectively; and Koopman modes.

Koopman mode contains, by construction, only a single frequency component, the
POD modes capture the most energetic structures, resulting in modes that contains
several frequencies. For situations such as the jet in crossflow where one is inter-
ested in studying the dynamics of low-frequency oscillations (such as wall modes)
separate from high-frequency oscillations (such as shear-layer modes), the Koop-
man modes are thus more effective at decoupling and isolating these dynamics.
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7. I. Mezić. Spectral properties of dynamical systems, model reduction and decompositions.
Nonlin. Dyn., 41:309–325, 2005.

8. B. C. Moore. Principal component analysis in linear systems: Controllability, observability,
and model reduction. IEEE Trans. Automat. Contr., 26(1):17–32, Feb. 1981.

9. C. W. Rowley. Model reduction for fluids using balanced proper orthogonal decomposition.
Int. J. Bifurcation Chaos, 15(3):997–1013, Mar. 2005.
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