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Abstract
In this thesis direct numerical simulations are used to investigate two phenom-
ena in shear flows: laminar-turbulent transition over a flat plate and periodic
vortex shedding induced by a jet in crossflow. The emphasis is on understand-
ing and controlling the flow dynamics using tools from dynamical systems and
control theory. In particular, the global behavior of complex flows is described
and low-dimensional models suitable for control design are developed; this is
done by decomposing the flow into global modes determined from spectral anal-
ysis of various linear operators associated with the Navier–Stokes equations.

Two distinct self-sustained global oscillations, associated with the shed-
ding of vortices, are identified from direct numerical simulations of the jet in
crossflow. The investigation is split into a linear stability analysis of the steady
flow and a nonlinear analysis of the unsteady flow. The eigenmodes of the
Navier–Stokes equations, linearized about an unstable steady solution reveal
the presence of elliptic, Kelvin-Helmholtz and von Kármán type instabilities.
The unsteady nonlinear dynamics is decomposed into a sequence of Koopman
modes, determined from the spectral analysis of the Koopman operator. These
modes represent spatial structures with periodic behavior in time. A shear-
layer mode and a wall mode are identified, corresponding to high-frequency and
low-frequency self-sustained oscillations in the jet in crossflow, respectively.

The knowledge of global modes is also useful for transition control, where
the objective is to reduce the growth of small-amplitude disturbances to delay
the transition to turbulence. Using a particular basis of global modes, known
as balanced modes, low-dimensional models that capture the behavior between
actuator and sensor signals in a flat-plate boundary layer are constructed and
used to design optimal feedback controllers. It is shown that by using con-
trol theory in combination with sensing/actuation in small, localized, regions
near the rigid wall, the energy of disturbances may be reduced by an order of
magnitude.

Descriptors: Fluid mechanics, flow control, hydrodynamic stability, global
modes, jet in crossflow, flat-plate boundary layer, laminar-turbulent transi-
tion, Arnoldi method, Koopman modes, balanced truncation, direct numerical
simulations.
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Preface

This thesis in fluid mechanics consists of two parts. The objective of the first
part is to provide an introduction to some aspects of flow physics by analyzing
two relevant examples. The analysis is mainly carried out numerically and
therefore this part also contains a section on the algorithms and techniques
used throughout the thesis. The presentation is at a non-expert level providing
the necessary background for part 2. The second part contains 8 papers. The
papers are adjusted to comply with the present thesis format for consistency,
but their contents have not been altered compared to published or submitted
versions, except for minor corrections. Division of work among the authors is
given in part 1.
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Paper 3. Bagheri, S., Åkervik, E., Brandt, L. & Henningson, D. S.

2009 Matrix-free methods for the stability and control of boundary layers.
AIAA J. 47, 1057–1068.
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2009 Feedback control of three-dimensional Tollmien–Schlichting wavepackets
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D. S. 2009 Global stability of a jet in crossflow. J. Fluid Mech. 624, 33–44.

Paper 6. Schlatter, P., Bagheri, S. & Henningson, D. S. 2009 Self-
sustained global oscillations in a jet in crossflow. Theor. Comp. Fluid Mech.
Submitted.
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Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech.
641, 115–127.

Paper 8. Bagheri, S. & Hanifi, A. 2007 The stabilizing effect of streaks
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Introduction





CHAPTER 1

Introduction

Despite the long history of fluid mechanics we lack a complete understanding of
why fluid flows have a tendency to change pattern when perturbed. Two exam-
ples of flows that transition from an organized and steady state to an irregular
and fluctuating state when perturbed are the laminar-turbulent transition of
flows on slender bodies and the alternating shedding of vortices of flows behind
bluff bodies. It has been known for over a century that these flow phenomena
are governed by the basic conservation laws of mechanics, but the difficulties
that arise when one attempts to solve or analyze the system of equations have
proved to be a major obstacle. With the advent of numerical simulations re-
markable advancements have been made in fluid mechanics in the past two
decades. In particular, the analysis and control of flows using tools developed
by the mathematical community has emerged as an important discipline in the
field.

In this thesis, we are concerned with the laminar-turbulent transition of a
flow along a flat plate and the vortex shedding in a jet in a crossflow. In par-
ticular, a global viewpoint is adopted where the flow is allowed to move as it
wishes in the physical domain without assumptions about or constraints on its
dynamics. There are countless examples in both nature and industry pertaining
to the study of the flow along a flat plate, since it is the archetype of boundary
layer flows. In these flows the layer of fluid in the immediate vicinity of the
surface is sheared, resulting in rapid velocity change over a short distance nor-
mal to the surface. Examples of boundary-layer flows are the layer of air near
the ground or near an aircraft wing, where the observed flow pattern depends
on the smoothness of the surface, level of diurnal heat, moisture, turbulence
levels far away from the surface and so on. The fundamental issue is a physical
and mathematical understanding of the transition of a laminar smooth flow to
a turbulent unpredictable one. Compared to a laminar flow, a turbulent flow is
more expensive and often undesirable in practical applications. For instance,
to sustain a turbulent flow in a pipe, more pressure is required to maintain
the same volume of discharge as a laminar flow. Also, turbulent flow around
vehicles increases the friction, resulting in higher fuel costs. Understanding
the transition process is adjacent to the field of flow control and in particular
transition control, where the aim is to modify the flow conditions in order to
delay the laminar-turbulent transition. The necessary flow conditions can be
obtained by changing initial and boundary conditions (e.g. surface roughness),
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2 1. INTRODUCTION

the flow properties (e.g. velocity, pressure distribution, turbulence level) or the
fluid properties (e.g. density, viscosity and temperature).

The classical example of vortex shedding is the von Kármán vortex street
that can be observed in the formation of clouds behind mountains and islands
or in the flow behind vehicles, buildings and chimneys of factories. It is of
great practical significance to identify the source from which alternating pairs
of vortices are shed downstream, since they often lead to large structural vi-
brations, acoustic noise and resonance. Another example of a flow dominated
by vortex shedding is the jet in crossflow, which is found when gas or liquid
is injected through a small orifice into a crossflow of a similar fluid. The flow
is related to a wide range of applications. A few examples are plume disper-
sal from smoke stacks and volcanos, reduction of environmental pollution (the
“jet” represents a stream flowing into a lake) and film cooling applications in
jet engine combustors.

This introductory chapter is organized as follows. Section 1.1 describes the
laminar-turbulent transition of a flow over a flat plate in a phenomenological
way and introduces the key ideas behind transition control. Section 1.2 gives
an insight into the physics of the jet in crossflow obtained by direct numerical
simulations and paves the way for the analysis in chapter 2. The present
chapter concludes with an overview of the main results of the thesis and a brief
motivation of the global mode approach undertaken in the subsequent chapters
of the thesis.

1.1. Physics of the flow on a flat plate

Viscous flows in straight tubes, pipes, channels and on flat plates are steady
for sufficiently small values of the (dimensionless) number UL/ν, where U and
L are, respectively, a velocity and a length characteristic of the flow and ν is
the kinematic viscosity of the fluid. At higher values, however, the flow shows
intermittent oscillations and eventually becomes highly irregular and unsteady.
This transition from a laminar flow to a turbulent one at a critical Reynolds
number, Re = UL/ν was first investigated in a pipe by Reynolds (1883).

Consider a steady uniform stream of flow with speed U that encounters
a flat plate of length L. It is appropriate to define the Reynolds number as
Rex = Ux/ν where 0 ≤ x ≤ L is the distance on the plate from the leading
edge. The critical Reynolds number, Rex, for the laminar-turbulent transition
is notoriously difficult to determine. Transition can occur abruptly, gradually
and at completely different locations on the plate depending on the size, spatial
structure and temporal behavior of the disturbances that can be found in the
laboratory or numerical experiments. For example, the presence (or combina-
tion) of acoustic waves, roughness on the plate, vortical structures in the free
stream critically affects the transition process. A number of books (Batchelor
1967; Schlichting & Gersten 2000; Schmid & Henningson 2001) treat the differ-
ent laminar-turbulent transition scenarios in boundary layers. We proceed by
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Figure 1.1. Sketch of a numerical experiment of the evo-
lution of a wavepacket disturbance in a flat-plate boundary
layer. The Reynolds number at the computational inlet is
Rex ≈ 3×105 and the computational outlet it is Rex ≈ 1×106.
The numerical parameters are given in table 4.2 (case 3D-
NLIN-BL) in section 4.4 of this thesis.
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a simple numerical experiment to characterize the evolution of a small distur-
bance in the flow on a flat plate in order to highlight the essential physics that
is relevant for our purposes. In practice, flow conditions are significantly more
complicated than our single-disturbance example but the underlying physics is
essentially the same. The simulation is performed using the spectral Simson
code described in section 4.4.

A sketch of the setup is given in figure 1.1. Prandtl (1905) introduced the
concept of a boundary layer, as a thin (about 2−5 mm on a 180 cm plate) layer,
where the effects of viscosity are important. This layer is the region (marked in
figure 1.1 with solid black line) where diffusion of the vorticity generated at the
surface is significant. The thickness of the laminar boundary layer δ is related to
the viscosity and the downstream distance as δ ∼ (νU/x)−1/2, which indicates
that the layer grows slowly in the downstream direction. Prandtl showed that
for the boundary layer, the Navier–Stokes equations (see section 2.1) can be
reduced to a simpler form and it was Prandtl’s student Blasius (1908) who
formulated a nonlinear ODE and solved it, with the velocity profile shown
schematically (as the inflow profile) in figure 1.1. Inside the boundary layer
and far upstream in the flow domain we place a small localized perturbation.
As the disturbance is released, it propagates in the downstream direction and
its fate depends on its initial amplitude and on its initial physical shape. The
disturbance could for instance be introduced by using a loudspeaker to generate
a short pulse, injected through a small hole in the plate. The volume of the
loudspeaker would then determine the disturbance amplitude and the structure
of the hole in the plate its shape.
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(a)

(b)
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Figure 1.2. Snapshots of the disturbance at t = 300, 600 and
t = 1000 are shown in (a), (b) and (c) respectively. Red iso-
contour levels depict the λ2-criterion. The plate is shown in
black and viewed from top.

Figure 1.2 shows “snapshots” of the disturbance (top view of the plate)
at three different instances in time using iso-contour levels of the λ2-criterion
(Jeong & Hussain 1995). The λ2 levels are useful to identify vortical structures
in the flow. In the initial stage (figure 1.2a), the disturbance is nearly two di-
mensional in the spanwise direction (z) and it grows in amplitude rapidly. Af-
ter approximately 300 time units the disturbance has a different structure; now
significant three-dimensional components (figure 1.2b) and smaller wavelengths
are observed. Finally at t = 1000, a localized turbulent spot is developed with
a typical arrow-shaped structure. The disturbance is now characterized by a
wide range of scales in all spatial directions (figure 1.2c). The turbulent spot
eventually leaves the computational domain and the flow returns to the steady
boundary layer. We have thus identified three distinct flow regimes; (i) the
laminar region where a smooth disturbance grows in size; (ii) the transition
region where there is breakdown of the disturbance into a significantly more
complicated structure; (iii) turbulent region where a turbulent spot emerges.

Depending on the Reynolds number, the drag due to the skin friction in
the laminar region can be as much as an order of magnitude less than that
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(a) (b) (c)

Figure 1.3. Velocity profiles of the streamwise component
(u) as a function of the wall-normal distance from the plate (y).
The profiles (a), (b) and (c) correspond to the snapshots (a-c)
in figure 1.2 and are extracted approximately in the center of
the disturbance.

in the turbulent region (Schlichting & Gersten 2000). For an aircraft1 or a
vehicle the reduced drag means longer range, reduced fuel cost or increased
speed. To illustrate this, for each snapshot in figure 1.2, the streamwise veloc-
ity component u at the location on the plate where the disturbance is present
is shown as a function of the wall-normal coordinate y in figure 1.3. For the
first snapshot, the characteristic laminar boundary-layer profile (figure 1.3a) is
observed, but already after a short period, the disturbance has modified the
profile considerably (figure 1.3b), and an inflection point can be observed. The
third profile (figure 1.3c) extracted from the turbulent spot is very distorted
and the smooth boundary layer has changed its character completely. The tur-
bulent profile changes rapidly over a very short distance normal to the surface
compared to the laminar profile. As a consequence the local shear stress is
considerably higher in the turbulent region.

1.1.1. Linear amplification

If the upstream disturbances in the boundary layer are small – determined by
the receptivity (Goldstein & Hultgren 1989) of the boundary layer to external
flow conditions – the initial stage in the transition process is a linear ampli-
fication. In figure 1.4 the time evolution of the disturbance kinetic energy of
the numerical experiment is shown with a black solid line. We observe a rapid
energy growth until the disturbance is propagated out of the computational
domain at t = 1500. In the figure, the kinetic energy of a disturbance with an
infinitesimal amplitude – where the nonlinear effects are neglected – is shown
by the dashed line. We observe that the energy of the infinitesimal amplitude
and the finite-amplitude disturbance initially grow with the same rate.

The linearized flow is considerably easier to analyze, since the temporal
part of the disturbance can be decomposed into a number of waves that grow

1Friction drag constitutes more than half of the total aircraft drag, with 18%, 4%, 3% and
3% for wing, horizontal tail plane, fin and nacelles, respectively. If the flow were laminar on
40% of the surfaces, the total drag would be reduced by 16% (Schrauf 2005).
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Figure 1.4. The evolution of the kinetic energy of a distur-
bance in time corresponding to a nonlinear simulation (solid
black) and linear simulation (dashed black). The initial growth
phase where the linear and nonlinear curves nearly collapse is
marked in red color.

or decay independently of each other as predicted by linear stability theory.
However, for the boundary layer, no single wave grows exponentially in time;
in fact all waves decay for long times, but their superposition may result in
a wavepacket that grows as it propagates downstream. Since late 1980’s a
new (linear) mathematical approach to characterize the disturbance behav-
ior has emerged, based on transient growth analysis (Reddy & Henningson
1993), pseudo spectra (Trefethen 1997), categorizing flows as noise amplifiers
or oscillators (Huerre & Monkewitz 1990) and analysis of input-output norms
(Jovanovic & Bamieh 2005).

1.1.2. Transition control

The natural question that arises is: If we can suppress the growth of the distur-
bance, can we delay the transition to turbulence? In many cases the answer is
yes; for our numerical example above if we assign an order of magnitude smaller
amplitude to the initial disturbance, it breaks down further downstream and
the development of the turbulence spot is delayed. One major objective of flow
control is thus to damp the amplitude of disturbances at an early stage in the
boundary layer in order to delay transition to turbulence. Since we observe
that the disturbance energy growth is initially a linear process (see also e.g.
Kim & Bewley 2007; Schmid & Henningson 2001), transition control focuses
mainly on the simpler linear system.

If the necessary flow conditions resulting in lower disturbance growth are
achieved in a way that requires energy input, one needs to introduce actuators,
such as loudspeakers, synthetic jets (Smith & Glezer 1998), electro-magnetic ac-
tuators (Pang & Choi 2004), plasma actuators (Grundmann & Tropea 2008) or
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various MEMS actuators (Ho & Tai 1998) constructed using micro-machining
techniques. Flow control is indeed engineering, where besides the type of actu-
ators, the distribution and location of actuators has to determined. In general,
the more physical insight one has into the disturbance behavior, the better
design decision one is able to make. If we know exactly what type of distur-
bances are present in the flow, e.g. if perturbations are traveling waves or in
the form of elongated streamwise vortices called streaks, using the actuators we
can introduce other disturbances that counter-act them. For example a second
wave of appropriate amplitude and phase would cancel the traveling wave by
interference (Milling 1981) or blowing and suction at the wall (Hammond et al.
1998) would cancel out the streaks. If we don’t know the exact form of the
disturbance, we can monitor the flow using sensors and adjust the actuation
accordingly to achieve the control objectives. This type of control is known as
feedback control, where in addition to actuators, the design and distribution
of sensors have to be taken into account. The sensor measurements could be a
few pressure measurements using a small microphone membrane mounted flush
to the wall, velocity measurements using hot-wire anemometry near the wall
or shear-stress measurements using thermal sensors (wall wires).

1.2. Physics of the jet in a crossflow

The jet in crossflow (JCF) is the interaction of two well-studied canonical flows,
the flat-plate boundary layer flow and the flow ejected through an orifice into
a quiescent environment, a free jet flow. Since vorticity cannot be created
or destroyed in the interior of a flow and is produced only at boundaries (or
by initial conditions), the orifice is the only source of vorticity for a free jet
and consequently, the dynamics of jets are commonly described by convection,
diffusion, stretching and turning of vorticity in an otherwise irrotational flow.
In contrast (as discussed previously), in a flat-plate boundary layer, vorticity
generated at the wall convects and diffuses in the wall-normal direction, causing
growth of the boundary layer. The interaction of the boundary layer and the jet
vorticity results in a highly unsteady fully three-dimensional flow and a number
of “vortical structures”, which refer to flow features that are relatively well
organized and appear rotational in nature. These structures can be identified
in three different regions of the flow domain as shown schematically in figure
1.5; the jet region, the wake region and the wall region. In particular, four
large-scale vortical structures of the JCF have been studied extensively by
researchers; (1) the counter-rotating vortex pair (Moussa et al. 1977); (2) the
horse-shoe vortex and its wall vortices (Kelso & Smits 1995); (3) loop-like or
ring-like vortices (Kelso et al. 1996; Lim et al. 2001) and (4) upright vortices
(Kelso et al. 1996; Fric & Roshko 1994).

1.2.1. Steady-unsteady transition

We will now illustrate how a steady jet in crossflow gradually exhibits unsteady
behavior that is sustained for all times when it is perturbed. One major ob-
stacle towards understanding the physical mechanisms of the unsteadiness in
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Figure 1.5. Sketch of a numerical experiment of the jet in
crossflow. The initial fields are the flat-plate boundary layer
profile and a parabolic jet profile. The ratio between the jet
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the flow is that the “natural state” of the JCF is unsteady. A steady flow
will never be observed in laboratory experiments or in applications. One of
the advantages of numerical experiments is that we can artificially force the
unsteady flow to become steady, in order to better understand the underlying
physics. Figure 1.5 shows a sketch of the numerical setup used to simulate the
jet in crossflow. In addition to the laminar boundary-layer profile at the up-
stream inlet investigated in the previous section, an inhomogeneous parabolic
boundary condition is imposed in order to model a laminar pipe flow mounted
to the plate.

The steady flow obtained by filtering out all the unsteady structures (Åkervik
et al. 2006) is “released” and its evolution in time is followed by a numerical
simulation. A disturbance is not explicitly introduced, instead background nu-
merical noise acts as flow perturbation. Figure 1.6 shows the λ2 criterion (red)
and the streamwise velocity (gray) of a sequence of snapshots from the numer-
ical experiment. We observe how a well organized smooth flow is gradually
transformed into a more complicated irregular flow with significantly smaller
vortices. The most dominant feature of the steady flow (label ① in figure 1.6a)
– and the largest vortical structure of the JCF – is the counter-rotating vortex
pair (CVP) that takes the form of two distinct tubes. The direction of rotation
is in such a way that fluid is lifted up in between the vortices. This vortex
pair develops because the crossflow skirts laterally around the jet and shears
the jet fluid along its edges and then folds the face of the jet over itself to form
the CVP. The CVP emerge from the center of an cylindrical vortex sheet (or a
shear layer) developed when the crossflow and the jet fluid come into contact.
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Figure 1.6. Three instantaneous snapshots of the steady-
unsteady transition at t = 0, 300 and t = 500 are shown in
(a), (b) and (c) respectively. Red contour levels represent the
λ2 = −0.09 and the gray contour levels represent the stream-
wise velocity u = 0.2. See text for explanations of labels ①-④.
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Close to the wall, when the crossflow encounters the jet, part of the crossflow is
deflected in direction of the jet flow and part of it is pushed towards the wall, to
form a spanwise oriented vortex, the horse-shoe vortex (label ③ in figure 1.6a).
This vortex wraps around the base of the jet and forms a streamwise vortex
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pair, the wall vortices in the wall region, as shown in by the gray contour levels
of the streamwise velocity (label ② in figure 1.6).

After a long time (t = 300) the disturbances triggered by the background
noise have grown sufficiently in amplitude to modify the steady flow. As shown
in figure 1.6(b), the disturbance modifies mainly the CVP; a varicose out-of-
phase oscillation of the two vortex tubes is observed and “arches” are created,
i.e. the vortex loops coil up around the upper side of the CVP and their bases
join with the CVP. This type of symmetric structures are associated with the
roll-up of the cylindrical vortex sheet. Finally, at t = 500, the symmetric vortex
loops are distorted into half-ring shaped asymmetric vortices (label ④ in figure
1.6c) which rapidly break down into a series of smaller vortices. This flow
is sustained for all times; half-ring shaped vortices are continuously generated
from an internal source upstream, they grow as they are convected downstream,
and finally they gradually dissipate due to viscosity.

1.2.2. Self-sustained oscillatory behavior

It is of interest to determine whether the unsteadiness depends on the exter-
nal disturbance environment (in our case numerical noise due to discretization
errors) or if it is an intrinsic property of the JCF. It is well known (Huerre
& Monkewitz 1985) that (co-flowing) shear layers amplify upstream incoming
disturbances and the frequencies observed in the flow depend highly on the
frequencies present in the external disturbance environment. However, un-
der certain flow conditions a resonance can arise where one observes a few
dominant frequencies, independent of the spectral content of the noisy outside
environment. A resonance can for example be triggered when one introduces
a rigid body at an appropriate downstream location in the flow. The body
creates a pressure feedback loop giving rise to oscillations at discrete resonant
frequencies2. However, such a feedback loop can also be produced by purely
hydrodynamic means, where a downstream body is not necessary. Such flows
often have a region of significant reversed flow (e.g. backflow). A classical ex-
ample is the von Kármán vortex street developing behind a circular cylinder
at low Reynolds numbers. The unsteadiness usually consists of small patches
of vorticity being released periodically from a location, i.e. vortex shedding,
where the oscillation frequency is insensitive to external low-amplitude forcing.
Many examples of hydrodynamic resonances exist, (see e.g. Chomaz et al. 1987;
Monkewitz et al. 1990; Strykowski & Niccum 1992; Barkley et al. 2002), and
during the last decade a large number of experimental and numerical studies
have been devoted to categorization of flows as oscillators or amplifiers (see
Huerre & Monkewitz 1990; Huerre 2000).

The simplest approach, that provides only supporting evidence for oscil-
latory behavior, is to place probes in the flow and study single-point spectral
data. The time signal of a probe located in the shear layer of the JCF is
shown in figure 1.7(a), where Fourier analysis reveals a dominant frequency of

2Similar to bounded states in quantum mechanics, resulting in a discrete energy spectrum.
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Figure 1.7. Time signals of two probes measuring the
streamwise velocity u component at a single point in the flow.
In (a) the probe is placed in the shear layer and in (b) near
the separated region downstream of the jet near the wall.
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Strouhal number St2 ≡ f2D/Vjet = 0.14. In addition to this high frequency, a
distinct low frequency St1 = 0.017 is observed by a probe located in the wall
region downstream of the jet orifice (figure 1.7b). Several time signals from
other probes have been obtained and all the additional frequency peaks are lin-
ear combinations of St1 and St2, corresponding to higher harmonics triggered
by nonlinear interactions between the two main frequencies.

There is some evidence (Hammond & Redekopp 1998) and numerous stud-
ies (Theofilis et al. 2000; Alam & Sandham 2000; Barkley et al. 2002; Mar-
quillie & Ehrenstein 2002; Theofilis 2005; Giannetti & Luchini 2007; Åkervik
et al. 2007) that connect self-sustained oscillations in fluid systems with large
unsteady separated regions. The flow under investigation here has two regions
of reversed flow: a smaller, steady separated region upstream of the jet which
coincides with the horse-shoe vortex, and a larger unsteady region of reversed
flow directly downstream of the emerging jet near the wall. The animation
of the DNS data shows that the separation region downstream of the jet ori-
fice is highly unsteady. In the upper part of this region, patches of negative
u are periodically released in the wall-normal direction with the fundamental
frequency St2 = 0.14. The separated region also oscillates with the lower fun-
damental frequency St1 = 0.017, however this time the entire recirculation zone
downstream of the jet is periodically moving back and forth in the spanwise
direction. In figure 1.8, the movement of the separation region, downstream of
the jet, oscillating in two directions with two distinct frequencies is shown.
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Figure 1.8. Yellow iso-contour levels represent zero stream-
wise velocity, marking the region of reversed flow, red levels
show positive wall-normal velocity, marking the jet fluid. The
blue streamlines originate from the crossflow fluid and show
how the crossflow is sucked into the jet (a) and how it devel-
ops a pair of streamwise wall vortices (b). Top figure is a side
view, where the region of reversed flow oscillates back and
forth in the wall-normal direction. Bottom figure is a front
view, illustrating the movement of the separated region in the
spanwise direction.
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1.3. Thesis overview

In the previous two sections, using numerical experiments, we have observed
the following:

(i) The breakdown of a small-amplitude disturbance in a boundary layer,
resulting in a turbulent spot. Our interest lies in damping the growth of dist-
urbances at an early stage in the transition process in order to delay the devel-
opment of turbulence.
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(ii) The nonlinear saturation of a small-amplitude disturbance (background
numerical noise), resulting in self-sustained oscillatory behavior of the flow.
Our interest lies in understanding the underlying mechanisms of the distur-
bance growth and identifying the spatial flow structures associated with the
oscillations.

The aim of the present thesis is to study these two phenomena using global
modes.

1.3.1. Global modes

The concept of global modes in fluid mechanics has over the last two decades
been used in various contexts. In the early nineties it was part of a theoretical
framework (Huerre & Monkewitz 1990) for the understanding of self-sustained
oscillations. A global mode was defined as a flow structure that oscillates
with one single frequency and satisfies certain boundary conditions, similar to
bound states in quantum mechanics. More recently (Theofilis 2005; Henning-
son & Åkervik 2008), global modes have been associated with the eigenmodes
of the linearized Navier–Stokes operator for flows that have two or three in-
homogeneous spatial directions. The term “global” in this context is used to
differentiate from the approach to the classical local hydrodynamic stability
analysis applicable to parallel shear flows, for example the eigenmodes of the
Orr-Sommerfeld/Squire equations. A third usage of the term “global mode”
is to denote any localized vortical structure that is contained in the full global
spatial domain. In this sense, global modes are not simply instantaneous snap-
shots of flow fields containing vortical structures, rather they are extracted
from experiments or numerical simulations by some method to isolate certain
dynamical features, such as coherent structures either growing with one rate,
oscillating with one frequency or containing the largest possible kinetic energy,
etc. We adopt the latter definition of a global mode.

In particular, the following global modes are considered:

(i) Linear global eigenmodes are small-amplitude perturbations that grow
or decay exponentially and pulsate with one frequency. They are useful to
determine the linear stability of a steady flow and to describe the underlying
physical mechanisms for perturbation growth.

(ii) Koopman modes represent spatial flow structures with time-periodic
motion. They are useful to characterize oscillatory nonlinear flow dynamics.

(iii) Balanced modes are used to construct low-dimensional models of large-
scale flow systems in order to design efficient controllers for transition delay.
The reduced-order model captures the relation between inputs (disturbances
and actuators) and outputs (sensors used for flow measurements).

1.3.2. Contributions

To the author’s knowledge, this thesis is the first to perform a simulation-
based global stability analysis of a fully three-dimensional flow and to present
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a technique for describing the behavior of nonlinear flows, by decomposing the
flow into Koopman modes.

During the course of the thesis, the following contributions are described:
Direct numerical simulation (DNS) of the three-dimensional jet in crossflow at
velocity ratio, R = 3, and the identification of two distinct self-sustained flow
oscillations. Computation of a three-dimensional steady solution and a number
of unstable linear global eigenmodes. The use of global modes to discover
the presence of elementary instability mechanisms, such as elliptic instability,
Kelvin-Helmholtz instability and von Kármán type of instability. Computation
of a number of Koopman modes, and their use to identify coherent structures
associated with vortex shedding.

The main contributions of this work for transition control are as follows:
The use of a suite of tools to analyze and control linear flow systems, for exam-
ple controllability, observability, balancing, transfer function norms, stochastic
framework, design of estimators, optimal and robust controllers. The use of a
few localized sensors/actuators and control theory to reduce the energy growth
of two- and three-dimensional disturbances in the flat-plate boundary layer by
one order magnitude or more. Development and validation of reduced-order
models of the flat-plate boundary layer using balanced modes.

1.3.3. Organization

In chapter 2, the transition from a steady flow to an unsteady one is analyzed
using linear global eigenmodes and Koopman modes. The global mode theory
is presented for general fluid systems followed by examples on the jet in cross-
flow. Chapter 3 gives a treatment of linear systems theory including model
reduction and control design. Along the way, the concepts are illustrated on
the flat-plate boundary layer flow. Chapter 4 provides a detailed description
of the numerical algorithms used to compute global modes, with a few simple
examples to demonstrate convergence behavior of the methods. This first part
of the thesis finalizes with a short summary and outlook in chapter 5.



CHAPTER 2

Flow analysis using global modes

The jet in crossflow is a complex flow. It involves the interaction of at least four
shear layers, namely the boundary layer, the jet shear layer, a separated shear
layer and a wake. Due to the strong coupling between the shear layers, one is
obliged to study the global behavior of the flow, in order to obtain a complete
picture of the dynamics. The complete steady-unsteady dynamics of the jet in
crossflow can be divided into a number of stages. Figure 2.1 shows the time
evolution of the streamwise velocity component at (x, y, z) = (12, 6,±2) ex-
tracted from the numerical simulation discussed in section 1.2. The trajectory
starting at the steady flow at t = 0 (marked with filled black circle in figure
2.1), departs from the steady solution and advances towards an attractor re-
gion where the trajectory appears to fluctuate randomly back and forth. In
this chapter, we describe the dynamics in the two regions (marked schemati-
cally with circles in figure 2.1): the linear dynamics in a small neighborhood
(black circle) of the steady solution and the nonlinear dynamics evolving in the
attractor region (blue circle).

Global linear stability analysis determines whether exponentially growing
perturbations exist in a neighborhood of the steady solution. These perturba-
tions, called linear global eigenmodes, represent spatially coherent structures
that grow or decay exponentially and pulsate with one frequency. The fact that
the instabilites are global modes does not mean that the elementary mecha-
nisms of the instabilities are not local. In fact, this is often the case, where
locally the inviscid Kelvin-Helmholtz instability, inviscid elliptic instability or
viscous Tollmien-Schlichting waves are active, but the coupling between them
is a truly global phenomenon. If unstable global eigenmodes exist, disturbances
will grow until they saturate nonlinearly to a more complicated state. For self-
sustained oscillatory flows, the nonlinear flow commonly evolves near a limit
cycle or quasi-periodic attractors. The most convincing reports so far are the
milestone experiments of Provansal et al. (1987) that showed that the vortex
shedding behind a circular cylinder at low Reynolds number is due to an am-
plified global instability that saturates via Hopf bifurcation to a self-sustained
limit cycle.

The flow dynamics evolving in the attractor region is difficult to analyze
by studying individual trajectories. To understand the global features of the
unsteady flow, an easier task is to study its statistical properties, such as time-
averages. One approach, explained in this thesis, is the decomposition of the

15
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Figure 2.1. The streamwise velocity at (x, y, z) = (12, 6,±2)
is plotted as function of time. The black circle marks the re-
gion where the flow behavior is linear, whereas the blue circle
marks the nonlinear flow dynamics. The figure shows the en-
tire linear-transient-nonlinear development.

unsteady nonlinear dynamics into a set of global modes, referred to as the
Koopman modes. The modes can be considered as a generalization of the
time-averaged mean flow; the first mode is the mean flow, whereas other Koop-
man modes are harmonic averages, i.e. spatial structures that display periodic
behavior in time. In this way we can identify the flow structures that oscillate
with precisely the same frequency as the vortex shedding observed in the flow.

This chapter is organized as follows. In section 2.1, we present the govern-
ing equations for an incompressible flow. In section 2.2, we define the linear
global eigenmodes and discuss their significance for the jet in crossflow. Finally,
in the last section of the chapter we introduce the spectral properties of the
Koopman operator and the nonlinear analysis of the jet in crossflow.

2.1. Equations of motion

The Navier–Stokes equations governing the rate of change of momentum per
unit volume of an incompressible fluid are given by

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u + F (2.1a)

∇ · u = 0 (2.1b)
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where u(x, t) = (u, v, w)1 and p(x, t) are the velocity and pressure in space
x = (x, y, z) ∈ Ω and time t ≥ 0, ∇ = (∂x, ∂y, ∂z) is the divergence operator
and the term F = (f1, f2, f3) represents a body force. The Reynolds number
is defined as

Re =
U∞δ

∗
0

ν
where U∞ is the constant streamwise free-stream velocity, δ∗0 is the displace-
ment thickness at a particular distance from the leading edge x0 and ν is the
kinematic viscosity. The flow evolves in the spatial domain defined by,

Ω = {x ∈ R
3|0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly,−Lz/2 ≤ z ≤ Lz/2}.

For all flows investigated in this thesis the solutions to (2.1) are periodic in
the streamwise x and spanwise z directions with periodicity Lx and Lz respec-
tively. For the flow on a flat plate and the jet in crossflow, periodic boundary
conditions in the streamwise direction are artificially enforced by F. In the
wall-normal direction y, different boundary conditions are imposed depending
on the flow configuration. See section 4.4.2 and table 4.2 for details on the
imposed boundary conditions.

We omit entirely any discussion of partial differential equations and the
subsequent analysis is presented for finite-dimensional systems – ordinary dif-
ferential equations – for simplicity. One can either think that the flow is rep-
resented on a number of grid points obtained by discretizing the domain Ω, or
that the dynamics takes place over some finite-dimensional smooth manifold
(see e.g. Temam 1997, p. 10).

Henceforth, let the flow dynamics be described by an n-dimensional non-
linear system

u̇ = f(u) (2.2)

where u ∈ U is the state variable. The state space U ⊂ Rn is endowed with the
inner-product denoted by 〈·, ·〉U so that the associated norm ‖ · ‖2

U
equals twice

the kinetic energy of the flow field. The subscript U will be omitted unless it is
necessary to include.

Associated with the vector-field is the evolution operator, T(t) : U → U

u(s+ t) = T(t)u(s) (2.3)

that satisfies (i) T(0) = I and (ii) T(s + t) = T(s)T(t). Given a flow field at
time s, T(t) provides the velocity field at a later time t+s by solving (2.2) with
u(s) as initial condition. Our analysis is often based on flow fields sampled at
discrete equidistant points in time, where for a fixed t = ∆t, (2.3) is a discrete
dynamical system,

uk+1 = g(uk), (2.4)

1A note on the basic notation used through out the thesis is appropriate at this point. Square
brackets [ and ] are used to construct matrices and vectors, i.e. [1 2]T is a column vector
∈ R2×1 which is abbreviated as R2. Curved brackets ( and ) are used surrounding lists
of entries, delineated by commas as an alternative method to construct (column) vectors,
(1, 2) = [1 2]T .



18 2. FLOW ANALYSIS USING GLOBAL MODES

where g = T(∆t) and k is an integer index. Note that, in the context of fluid
mechanics, g represents a numerical flow solver, which in its simplest form, sets
up a grid in space and time and computes approximate solutions on this grid
by marching in time.

2.2. Linear global eigenmodes

We are interested in the behavior of disturbances evolving near the steady-
state solution as t → ∞, that is the linear perturbation dynamics after “a
short transient period”. For highly unsteady flows, finding a steady solution
us, so that f(us) = 0 is a formidable task when n is large. Usually, one has
to resort to iterative (Trefethen & Bau 1997) or filtering (Åkervik et al. 2006)
techniques. For now, suppose that we have found us.

To characterize the flow field near us, let

u = us + u′ (2.5)

with ‖u′‖ ≪ 1 as a small perturbation. We substitute (2.5) into (2.2) and
expand in Taylor series around us to obtain

u̇′ = ∇f(us)u
′ + O(‖u′‖2),

where ∇f(us) is the Jacobian n × n matrix with the elements as first partial
derivative ∂fi/∂uj at us. Denoting the Jacobian matrix by A, omitting the
primes and neglecting high-order terms, we obtain the linear system,

u̇ = Au. (2.6)

The matrix A can be regarded as the discretized and linearized Navier–Stokes
equations, and could also be obtained by substituting (2.5) directly into the
PDE (2.1), neglecting nonlinear terms and then discretizing the spatial domain
Ω.

The linear global eigenmodes are defined as the eigenvectors and eigenvalues
of A,

Aφj = λjφj j = 1, . . . , n, (2.7)

where φj ∈ U are complex valued and

λj = σj + iωj. (2.8)

The modes form a basis, in which any perturbation u can be expanded as
follows

u(t) =
n∑

j=1

ajφje
λjt,

where aj are the scalar expansion coefficients. From the above expression and
(2.8), it is clear that if σj > 0 for any j, the corresponding mode φj will be
grow in time, regardless of the behavior of other modes, and the steady flow
(or “baseflow”) is rendered unstable. Conversely if σj < 0 for all j the steady
flow is stable, since any perturbation for long times will decay in time. If there
exists σj = 0, the stability of us cannot be determined by linearization and one
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Figure 2.2. The linear spectrum of the jet in crossflow atR =
3. The eigenvalues marked with open squares correspond to
anti-symmetric eigenmodes, whereas black circles correspond
to symmetric eigenmodes.

σ

ω

Mode Local Mechanism Symmetry Location

A Elliptic instability Anti-symmetric Jet & wake region
B Kelvin-Helmholtz instability Symmetric Jet region
C von Kármán instability Anti-symmetric Wall region

Table 2.1. Properties of three global eigenmodes.

has to resort to other methods (Guckenheimer & Holmes 1983). The frequency
at which the eigenmode φj pulsates is given by ωj .

2.2.1. Linear global eigenmodes of the jet in crossflow

In this section, the linear stability analysis of the steady solution (discussed
in section 1.2.1) of the jet in crossflow is presented. The steady solution is
obtained using the selective frequency damping (SFD) approach introduced by
Åkervik et al. (2006). The linear global eigenmodes of JCF are fully three-
dimensional (n ≈ 107), and must be computed using iterative algorithms (such
as the Arnoldi method) described in section 4.1. From the linear spectrum
shown in figure 2.2 it is clear that σj > 0 for all the leading modes, rendering
the steady solution strongly unstable for the chosen parameters (velocity ratio,
R = Vjet/U∞ = 3). The Strouhal number, defined as St = fD/Vjet (D is the
jet diameter), of the unstable modes are in the range [0.04, 0.17], and none of
the frequencies of the linear modes match the nonlinear shedding frequencies
observed in the numerical simulations. Recall from section 1.2.2, that one
separation region just downstream of the jet orifice was observed to oscillate in
two directions, slowly in the spanwise direction with St1 = 0.017 and rapidly
along the jet trajectory with St2 = 0.14. However, the stability analysis merely
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Figure 2.3. Linear global eigenmodes A, B and C of the jet
in crossflow shown from top view. The red contour levels rep-
resent the λ2 criterion, whereas the baseflow is shown in blue
(λ2) and gray (u). The modes are complex and shown at one
phase only.
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(b)

(c)
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z

accounts for the linear dynamics in the neighborhood of the steady solution,
where the Strouhal numbers can be considerably different from the saturated
dynamics near the attractor (also indicated by figure 2.1). The eigenvalues in
figure 2.2 marked by black circles are symmetric, where the symmetry refers
to the u and v component with respect to the z = 0 axis, i.e.

(u(x, y, z), v(x, y, z), w(x, y, z)) =

(u(x, y,−z), v(x, y,−z),−w(x, y,−z))

The modes marked with open squares display opposite symmetry properties.

The global modes provide a remarkable insight into the underlying growth
mechanisms present in the flow. We will focus on three global modes, listed
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Figure 2.4. Streamwise vorticity at x = 40 for the steady
baseflow (a) and mode A (b). Contour levels are 0.1, 0.2, . . . ,
1.0 · ωx,max, red is positive, blue negative. Only a portion of
the zy-plane is shown.
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in table 2.1, each associated with one global spatial structure and one local
physical instability mechanism.

Mode A — elliptic instability

The most unstable mode (φ1), shown in figure 2.3(a) is an anti-symmetric
mode. The instability extends spatially in all three regions discussed in section
1.2 (see also Bagheri et al. 2009d ; Schlatter et al. 2009); in the jet region it takes
the form of a wavepacket located on and around the CVP; in the wake region
it is associated with the upright vortices; and finally the mode has a small
amplitude in the wall region. The various vortex systems are thus coupled and
in a linear approximation grow with the same rate and oscillate with the same
frequency, illustrating the global character of the flow.

This instability has the strongest direct effect on the CVP; the two vor-
tex tubes of the CVP are modified by a sinuous in-phase wavy oscillation in
top view (xz-plane) and an out of phase oscillation in side view (xy-plane).
Moreover, the wavelength of the instability is of the same order as the diam-
eter of the vortex cores of the CVP. These observations are the traits of a
short-wavelength instability of a vortex pair as observed by the experiments
of Leweke & Williamson (1998) and the numerical simulations of Laporte &
Corjon (2000). Such an instability is due to a resonance between two waves of
one vortex and the straining field induced by the other vortex. In figure 2.4
the streamwise vorticity component in a cross plane (yz-plane) far downstream
is shown for the baseflow and the most unstable global mode. The CVP cen-
tered around y = 14 can clearly be seen in figure 2.4(a). The global mode
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Figure 2.5. Spanwise vorticity at z = 0 for the steady base-
flow (a) and the mode B (b). Contour levels are 0.1, 0.2, . . . ,
1.0 · ωz,max, red is positive, blue negative. Only a portion of
the xy-plane is shown.
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(figure 2.4b) shows a characteristic two-lobe structure in each CVP vortex.
This is remarkably similar to the vorticity computed analytically for the ellip-
tic instability (Waleffe 1990, figure 2) and the short-wave instability (Leweke
& Williamson 1998, figure 10).

Mode B — Kelvin–Helmholtz instability

The most unstable symmetric mode is shown in figure 2.3(b). The global
mode consists of a symmetric spanwise oriented row of vortex loops that wrap
around the upper part of the CVP. They are gradually stretched, and develop
“legs” that align with the direction of CVP tubes. In figure 2.5 the spanwise
vorticity of the steady flow and mode B is compared at the center xy-plane
(z = 0). The baseflow shows a shear layer, which is due to the cylindrical
vortex sheet emerging from the jet nozzle and its interaction with the crossflow.
The effect of the global instability (figure 2.5b) on the shear layer is a periodic
deformation of the shear layer, which results in a redistribution of the vorticity
in an alternating manner. Such a perturbation of a shear layer is unstable
and is referred to as the Kelvin-Helmholtz instability. More generally, when
two streams of different velocities come into contact, a vortex sheet develops
which is unstable to infinitesimal periodic perturbations (see Batchelor 1967, p.
511 for an elementary stability analysis of the vortex sheet). Mode B modifies
the CVP in a varicose fashion viewed from top (xz-plane). The nonlinear
simulation discussed in section 1.2.1 (see figure 1.6b), shows how mode B grows
in amplitude and develops the characteristic “arches”. This type of symmetric
structures has been observed in many experimental studies (see e.g. Kelso et al.
1996; Lim et al. 2001).
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Figure 2.6. Wall-normal vorticity at y = 1 for the steady
baseflow (a) and mode C (b). Contour levels are 0.1, 0.2, . . . ,
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Mode C — von Kármán instability

Mode C shown in figure 2.3(c), is an anti-symmetric mode that oscillates with
the frequency St = 0.043. Its global structure is mostly concentrated close
to the wall, although it has a small amplitude along the CVP. In particular,
the structure near the wall is considerably different compared to the other
modes. The wall-normal vorticity of mode C and the steady flow is compared
in figure 2.6. In figure 2.6(a) the black contour marks the region of reversed
flow (u = 0) in the wall region downstream of the jet orifice. On each side of the
recirculation zone, two lobes of positive and negative wall-normal vorticity are
observed. This is strikingly similar to the unstable steady solution computed
for the wake behind a circular cylinder (Barkley 2006, figure 1). Moreover,
the global mode shown in figure 2.6(b) shows alternating positive and negative
wall-normal vorticity, which is almost identical to the first global mode of the
cylinder wake (Barkley 2006, figure 3). It thus seems that although, the jet is a
“soft” body and there exists a rigid flat wall, the vortex street of von Kármán is
present. One can compare the low frequency oscillation of the separation bubble
in the spanwise direction with St1 = 0.017, with the Strouhal number of the von
Kármán vortex street behind a solid cylinder. For a cylinder wake, the relevant
Strouhal number is defined as Stc = fD/U with U being the uniform flow
velocity in the far field. Adapting the present definition of the frequency based
on the jet velocity gives Stc = St1(Vjet/U∞)(U∞/U). Assuming U/U∞ ≈ 1/3
due to the reduced streamwise velocity in the proximity of the wall gives Stc ≈
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9St1 = 0.153, which is close to the cylinder wake frequency in the supercritical
range (Re = 50 − 100 is approximately Stc = 0.13 − 0.16). It should be
mentioned that mode A, which is associated with the elliptic instability in the
jet region, also contains the von Kármán instability near the wall, although not
as dominant and distinct as mode C.

2.2.1.1. Relation to the separated region

Global modes do not directly identify the mechanisms that initially generate
a disturbance, i.e. rather than the source of the instability, the consequences
of the instability are identified. It has therefore been difficult to establish a
rigorous connection between unstable linear global eigenmodes and separated
regions in the flow, although there is some evidence (Hammond & Redekopp
1998; Pier 2002) and an increasingly number of investigations (Theofilis et al.
2000; Alam & Sandham 2000; Barkley et al. 2002) that couple them. Instead,
local stability concepts based on the notions of absolute and convective insta-
bilities applied to weakly non-parallel flows have been useful in this context. It
is shown that spatially developing flows with self-sustained oscillatory behavior
have localized regions in the flow that act as oscillators and localized regions
in the flow that act as amplifiers (see Huerre & Monkewitz 1990, for a review).
Observations and analysis indicate that sufficiently large separated regions act
as oscillators and various co-flowing shear layers act as amplifiers. Although not
rigorously investigated in this thesis, it is likely that for the jet in crossflow an
oscillator – the separated region downstream of the orifice – periodically sheds
patches of vorticity, which are convected into the jet, wake and wall regions
and amplified due to different local mechanisms (such as Kelvin-Helmholtz or
short-wave elliptic instability).

2.3. Koopman modes

When global instabilities saturate after a transient phase, a global mode anal-
ysis of the fully nonlinear flow has to be undertaken. Another issue is that,
while in numerical simulations and analytical studies the full state u can be
“observed”, in experiments this is not the case. Usually the velocity is probed
– either at a point using hot-wire measurements or at 2D planes using Particle
Image Velocimetry (PIV)– or some bulk quantity associated with the flow is
measured (such as mass flux, drag, lift). It turns out (see e.g. Packard et al.
1980) that by observations of one or more time signals only, called observables,
one can characterize the (possibly low-dimensional) behavior of fluid systems
(such as chaotic or quasiperiodic attractors, heteroclinic cycles etc.). The im-
portant point here is that, monitoring an observable over a very long time
interval allows in a statistical sense the reconstruction of the phase space.
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An observable is defined as a function a(u) that associates a scalar to each
u ∈ U. Define the Koopman2 operator U : L2(U) → L2(U) (Koopman 1931),
with respect to g, as the operator that steps forward the observable, i.e.

Ua(u) = a(g(u)). (2.10)

Comparing (2.10) with (2.4), we observe that whereas the finite-dimensional
and nonlinear operator g steps forward the state, the Koopman operator is
infinite-dimensional and it steps forward an observable. The operator is linear
since for a, b ∈ L2(U),

U(αa(u) + βb(u)) = αa(g(u)) + βb(g(u))

= αUa(u) + βUb(u).

We can study certain properties of the trajectory of the nonlinear flow g by the
spectral properties of linear operator U . Let therefore, ϕj : U → R denote the
eigenfunctions and λj ∈ C denote the eigenvalues3 of the Koopman operator,

Uϕj(u) = λjϕj(u), j = 0, 1, 2, . . .

It can be shown (e.g. Ding 1998) that as t → ∞, U is a unitary operator
and therefore the sequence of its eigenfunctions {ϕj}∞j=0 forms an orthonormal
expansion basis.

We proceed with defining the global modes that are referred to as Koop-
man modes, by first introducing a vector-valued observable a(u) : U → R

p.
For example, the scalar observable a(u) can be considered as an observation of
a velocity component at a single coordinate in Ω (obtained via hot-wire mea-
surements) and a(u) can be considered as a velocity measurement in a plane
in Ω (obtained via PIV). Consider a long time series of the observable a on the
trajectory of the system g starting at the initial condition u0,

X = [a(u0) a(u1) a(u2) . . . ]. (2.11)

Next, assuming that each of the components of a(u0) lies within the span of
{ϕj}∞0 (see Mezic 2005, for the general case), an orthogonal projection of a(u0)

2The analysis requires some measure theory, but here we make no attempt to be mathemat-
ically precise and refer to Lasota & Mackey (1994) for rigorous treatment on the subject.
Most importantly, we need to introduce an invariant measure, essentially meaning that we
can find a measure µ such that the value of a integral,

Z

U

a(u)dµ =

Z

U

a(g(u))dµ.

is invariant. Henceforth we drop µ and use the notation dµ = du. Such a measure can
always be found (Lasota & Mackey 1994) if g satisfies certain properties (that g is a measure-
preserving operator). Observables are thus elements in the space

L2(U) = {a : U → R|

Z

U

|a|2du < ∞}.

3Here, we consider only the point spectrum of U , see Mezic (2005) for the continuous
spectrum.
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onto the space spanned by the Koopman eigenfunctions yields,

a(u0) =

∞∑

j=0

φjϕj(u0)

where the vector-valued expansion coefficient φj ∈ Rp, given by

φj = 〈a(u0), ϕj(u0)〉L2(U) =

∫

U

a(u0)ϕ
∗
j (u0) du0 (2.12)

is defined as the jth Koopman mode under the map g. Note that in numerical
simulations, where the entire flow field is observable a(u) = u, the Koopman
modes are fully global, φj ∈ U. The Koopman modes and eigenfunctions are
determined only for the first sample in (2.11) and the remaining samples on
the trajectory can be expressed entirely in terms of these. To see this, note
that the kth sample in the series (2.11) is given by,

a(uk) = Uka(u0) = Uk





∞∑

j=0

ϕj(u0)φj



 =

∞∑

j=0

λk
jϕj(u0)φj .

We expand the entire sequence (2.11) in Koopman eigenfunctions and write it
in matrix form

X = ΦS, (2.13)

where the columns of Φ contain the Koopman modes and the corresponding
Koopman eigenfunctions,

Φ = [ϕ0(u0)φ0 ϕ1(u0)φ1 ϕ2(u0)φ2 . . . ]

and S is the infinite Vandermonde matrix

S =






1 λ0 λ2
0 . . .

1 λ1 λ2
1 . . .

...
...

...
. . .




 . (2.14)

Note that the first eigenfunction of U , corresponding to the eigenvalue λ0 = 1,
is related to the time average of a sequence X,

ϕ0(u) = lim
n→∞

1

n

n−1∑

j=0

a(uj). (2.15)

This can be easily seen, since the average ϕ0 is constant on the orbit g(u),

ϕ0(u) = ϕ0(g(u)) = Uϕ0(u).

The sequence of observables obtained from g starting with u0, can thus be de-
composed into spatial structures (Koopman modes) whose temporal behavior is
given by the associated Koopman eigenvalue, i.e. the phase arg(λj) determines
its frequency, and the magnitude |λj | determines the growth rate of mode φj .
The Koopman eigenfunctions ϕj , on the other hand, associate with each Koop-
man mode φj an amplitude, which determines the significance of that mode.
As explained in Mezic & Banaszuk (2004) and Mezic (2005), by investigating
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a large number of trajectories (starting from different u0), the state space can
be partitioned into level sets of constant ϕj , i.e. one can identify regions in U

that oscillate with a single frequency only and the value ϕj determines how
significant that frequency is in the flow. For complex flows, after a transient
regime, the flow evolves near some attracting set in U, which might show very
complicated behavior such as strange attractors or simple behavior, such as
periodic orbits. In this limit there exists a countable set of nonzero eigenvalues
λj that all are on the unit circle, |λj | = 1 for all j. The means that each
eigenfunction ϕj is associated with a temporal frequency ωj (the phase of λj)
only since the growth rate is zero for all modes.

The Koopman modes can in principle be determined by solving the integral
(2.12). However, this is too expensive, since every possible initial condition has
to be considered. Alternatively, one can use harmonic averages as described by
Mezic (2005) or by finding the inverse of the truncated Vandermonde matrix,
i.e. Φ = XrS

−1, as shown in section 4.2.

2.3.1. Other approaches

It has somewhat “accidentally” been noticed that a linear stability analysis
using the time-average mean flow, instead of a truly steady flow, provides modes
whose discrete frequencies are in good agreement with the global nonlinear
shedding frequency. As a consequence a number of linear stability studies (see
e.g. Pier 2002; Barkley 2006; Thiria & Wesfreid 2007, and references therein)
have recently been conducted in order to identify coherent structures that can
be associated with vortex shedding. Although the averaged mean flow takes
into account some of the nonlinear effects implicitly, such analysis is “ad-hoc”
and lacks rigorous foundation. In fact, it was shown (Sipp & Lebedev 2007)
that such an analysis works only for some specific cases, such as the circular
cylinder.

Proper orthogonal decomposition (POD) is a method to extract informa-
tion from large datasets, either obtained from numerical simulations or exper-
iments. The method was introduced by Lumley (1970) for fluid systems for
extracting coherent structures in turbulent flows. The POD modes identify
those parts of the phase space which contain the most kinetic energy, typically
attractors in phase space (Holmes et al. 1996). It is likely that the structures
are a result of the vortex shedding. Unfortunately, the POD method averages
in time and the correlation in time is completely lost, rendering the task of
pinning down one structure to one frequency impossible.

2.3.2. Koopman modes of the jet in crossflow

A long sequence of flow-field snapshots are collected from direct numerical
simulations (DNS) of the jet in crossflow. The transient time from the unstable
fixed point to the attractor is not sampled, i.e. only the asymptotic motion in
phase space is considered. The eigenvalues λj , eigenfunctions ϕj and the global
modes φj associated with the Koopman operator of the sequence are computed
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Figure 2.7. Time-discrete (a) and time-continuous (b) Koop-
man spectra of the JCF. The Koopman eigenvalue λ0 is shown
with a blue symbol, while the other eigenvalues vary smoothly
in color from red (high magnitudes) to white, depending on
the magnitude ϕj of the corresponding Koopman mode.
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using the DMD algorithm described in section 4.2. The time-discrete spectrum
and the time-continuous spectrum of the Koopman operator are shown in figure
2.7. The two spectra are related to each other via a linear transformation
(see section 4.1). From the time-discrete (figure 2.7a) we can observe that
nearly all the eigenvalues lie on or very close to the unit circle. Note that as
t→ ∞ all the eigenvalues will lie exactly on the unit circle since the Koopman
operator is unitary. The time-continuous spectrum (figure 2.7b) confirms that
all eigenvalues are marginally stable and therefore one cannot expect any flow
structures growing or decaying exponentially in the nonlinear flow.

The Koopman mode corresponding to the Koopman eigenvalue λ0 is the
time-averaged flow and is depicted with blue symbol in figure 2.7. The other
(unsteady) Koopman eigenvalues vary smoothly in color from red to white,
depending on the magnitude (Koopman eigenfunctions) ϕj of the corresponding
Koopman mode. The magnitudes of the modes are shown in figure 2.8(a) with
the same coloring as the spectrum, where a few (10–14) leading modes are
observed to have significantly larger values, as the magnitudes rapidly decay
and gradually level out. In figure 2.8(b) each mode is displayed with a vertical
line scaled with its magnitude at its corresponding Strouhal number. Only
the ωj ≥ 0 are shown, since the eigenvalues come in complex conjugate pairs.
Ordering the modes with respect to their magnitude, the first (1–2) and second
(3–4) pair of modes oscillate with St2 = 0.141 and St4 = 0.136 respectively,
whereas the third pair of modes (5–6) oscillate with St6 = 0.017. All linear
combinations of the frequencies excite higher modes, for instance, the nonlinear
interaction of the first and third pair results in the fourth pair, i.e. St8 = 0.157
and so on. Therefore, the spectral properties of the Koopman operator for the
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Figure 2.8. Left figure: The magnitudes ϕj associated with
the Koopman modes j = 1, . . . , 40. Right figure: The mag-
nitudes ϕj are plotted as a function of the Strouhal number
Stj.
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Figure 2.9. The zeroth Koopman mode (time-averaged mean
flow) is shown with red contour levels depicting the λ2-criterion
and gray contour level show the u component.

jet in crossflow, suggest that the attractor dynamics is dominated by a few
discrete distinct frequencies. The associated Koopman modes are considered
next, where each global mode identifies a region where the flow oscillates with
its corresponding frequency.

The zeroth Koopman mode φ0 (shown in figure 2.9) is the time-averaged
mean flow, corresponding to the eigenvalue marked with a blue symbol in
the spectrum. A common feature of unsteady flows with separated regions
is a large difference between the steady solution and the time-averaged mean
flow solution, which is due to a significant transient time from the fixed point
to the attractor. The difference between the two flows, usually called mean
flow distortion (correction), quantifies how much the saturated disturbances
modify the steady flow, i.e. where the mean flow distortion is large there is
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Figure 2.10. The positive (red) and negative (blue) stream-
wise velocity component of the first (a) and fifth (b) Koopman
modes. The flat plate is shown in gray.

(a)

(b)

significant alteration of the steady solution due to the saturated disturbance.
Physically, the mean flow correction is due to the Reynolds stresses generated
by the fluctuating field. The most significant change in the flow is due to
breakdown of the CVP (possibly attributed to the elliptic instability) resulting
in a retardation of the two CVP vortex tubes, whereas the cylindrical vortex
sheet, horse-shoe/wall vortices are not modified noticeably. The separated
region downstream of the jet orifice is reduced in size (compared to the steady
flow), similarly to the observations made by other researchers (Noack et al.
2003; Barkley 2006). The mean flow distortion being confined to the CVP and
the separated region near the wall indicates that the saturating fluctuations
are large in those locations.

The first pair of unsteady Koopman modes φ1–φ2 oscillates with St2 =
0.14 – which is precisely the fundamental shedding frequency observed in the
numerical simulations – and is an anti-symmetric nonlinear wavepacket. The
mode (shown in figure 2.10a) identifies the regions in the flow domain where the
frequency St2 = 0.14 can be detected. The largest amplitude is along the jet
trajectory; the streamwise velocity of opposite sign gives rise to the spanwise-
oriented vortex loops that gradually break up into smaller vortex filaments in
the downstream direction. Similar to the mean flow, most coherence in the
spatial structure is located in region where jet fluid and crossflow come into
contact; its shape is similar to the “array of transverse secondary vortex pairs”
observed in the late nonlinear stages of the short-wave instability as reported
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Mode DNS Global POD Koopman

Shear layer 0.141 0.169 0.138, 0.158, 0.121 0.141
Wall 0.017 0.043 0.0188, 0.0094, 0.158, 0.121 0.017

Table 2.2. Comparison of the frequencies (St) obtained from
DNS probes (shown in figure 1.7); the global eigenmodes of the
linearized Navier–Stokes; POD modes 1 and 6, corresponding
to mainly shear-layer and wall oscillations, respectively; and
Koopman modes.

by Laporte & Corjon (2000) and Leweke & Williamson (1998). This analysis
clearly shows that the fundamental shedding frequency of the jet in crossflow is
associated with vortex loop structures on the jet, as a result from a saturation
of the first global instability mode discussed in the previous section.

The third pair φ5–φ6 oscillates with precisely the low-frequency vortex
shedding, St1 = 0.017 observed from numerical simulations. This anti-sym-
metric mode is shown in figure 2.10(b) and is clearly related to coherent struc-
tures in the wall region. The alternating positive and negative streamwise
velocity near the wall contributes to the wall-normal vorticity constituting the
nonlinear von Kármán vortex street. In fact, the structure of the wall-normal
vorticity near the wall is similar to the nonlinear wavepacket reported by Pier
(2002) and Barkley (2006) for the cylinder wake flow. We conclude that the
low-frequency shedding of the jet in crossflow is indeed associated with the von-
Kármán vortex street developing near the wall downstream of the jet, resulting
from a saturation of the global instability modes. It can be noted that this
mode has a nonzero amplitude in the jet region (along the jet body), which is
confirmed by the observation that the whole jet wiggles back and forth in the
spanwise direction.

2.3.3. Concluding remarks

For complex flows, where several self-sustained oscillations exist and are po-
tentially coupled, one is interested in studying the dynamics of the different
oscillations separate from each other. The Koopman modes are able decouple
and isolate these dynamics. In table 2.2 the frequencies obtained from the
analysis based on the Koopman modes and global eigenmodes of the linearized
system for the jet in crossflow are shown. For completeness, the frequencies
extracted from the Proper Orthogonal Decomposition (POD) modes are also
included in the table. The POD modes of the JCF are described in Schlatter
et al. (2009). The global eigenmodes capture the dynamics only in a neigh-
borhood of the unstable fixed point, resulting in linear frequencies that are
different from the nonlinear shedding frequencies. The Koopman modes, on
the other hand, correctly capture to the asymptotic dynamics on the attractor
of the nonlinear system. The method is thus able (by construction) to extract
global modes that oscillate with precisely the same frequency as the shedding
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Figure 2.11. Comparison of time coefficients: the projection
of the flow field onto the most energetic POD mode (black),
and the coefficient of the most energetic Koopman mode
(gray).

time

frequencies. Although, POD modes are also associated with the nonlinear
system, they capture the most energetic structures, resulting in modes that
contain several frequencies. The coefficient of the first POD mode oscillates
mainly with frequency St = 0.138, which is close to the shear-layer oscillation
frequency St2 = 0.141 observed in DNS. However, the signal contains other
frequencies as well, resulting from the interaction of the two fundamental os-
cillations (shear-layer and wall), St = 0.138 ± 0.017, which cause the beating
shown in figure 2.11.



CHAPTER 3

Flow control using balanced modes

In wall-bounded shear flows, for a given Reynolds number Re > Rec, a laminar
flow is observed if disturbance amplitudes are below a critical value, whereas
a fluctuating turbulent flow is gradually developed for higher amplitudes. As
discussed in section 1.1, the aim of transition control is to keep the amplitudes
of the incoming perturbations small, in order to avoid turbulence. It thus
suffices to focus on the dynamics of small amplitude disturbances near the
laminar solution governed by the linear system u̇ = Au. For the flat-plate
boundary layer, significant amplification of disturbances u – usually several
orders of magnitude – takes place before disturbances eventually propagate out
of the flow domain and leave behind the steady unperturbed boundary-layer
flow. This transient growth of disturbance energy is due to the nonnormality
(Trefethen & Embree 2005) of the stable matrix A.

We return to the flat-plate example introduced in chapter 1, where the
emergence of a turbulent spot from a finite-amplitude disturbance was dis-
cussed. In figure 3.1 a sketch of flat-plate configuration is shown, where in
addition to the disturbances upstream in the boundary layer, one row of sen-
sors and one row of actuators are introduced near the wall. The objective is to
use the sensor-actuator system to minimize the disturbance energy in a domain
downstream in the boundary layer. This domain is spanned by a number of
prudently chosen (objective) functions. In the present configuration, there are
10 inputs (one disturbance, 9 actuators) and 19 outputs (9 sensors, 10 objective
functions). Assuming all inputs and outputs have been modelled appropriately,
there are a number of important decisions to be made: Given the sensor mea-
surements, how do we determine what action the actuators should take in order
to minimize the disturbance energy? Should the action of an actuator depend
on all sensors measurements or only the sensor located upstream of it? How can
we model sensor noise or penalize the actuation effort? Are there guarantees
that the actuators will not introduce more “dangerous” disturbances in flow?

These issues can be addressed in a systematic way by control theory. In
particular, the objective of feedback control is to minimize the effects of exter-
nal influences on the system behavior when not having a complete knowledge
of the disturbances that are present. This indirectly means that a more re-
liable system (closed-loop system) is designed whose amplifying behavior of
disturbances is significantly reduced, and as a consequence less likely to tran-
sition to turbulence. In figure 3.2(a) the energy evolution (red solid line) of a

33
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Figure 3.1. Sketch of the input-output configuration. The
disturbance is located far upstream inside the boundary layer.
Approximately half way in the downstream direction, 9 ac-
tuators are modelled by a spanwise row of localized volume
forcing. Similarly, the sensor measurements used for estima-
tion consist of a spanwise array of 9 localized functions (same
as actuators) near the wall placed a small distance upstream
of the actuators. The inset figure shows the how the sensors
are connected to the actuators. Finally, 10 sensors, located
further downstream are used to define the objective functional
(3.22). The numerical parameters are given in table 4.2 (case
3D-LIN-BL) in section 4.4.
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infinitesimal-amplitude disturbance clearly demonstrates the transient growth
phenomena; we observe an exponential growth of three orders of magnitude un-
til the energy peaks at t = 2000 and then decays rapidly. In the same figure the
disturbance energy of the closed-loop system obtained using feedback control
is shown with a blue line. We observe that the peak value of the disturbance
energy is considerably smaller (about one order of magnitude) than the original
system. Snapshots of disturbances of the two systems at t = 1750 are com-
pared in figure 3.2(b-c), where we clearly see that the nearly two-dimensional
structure of disturbance of the Navier–Stokes system has been replaced by a
smaller scale three-dimensional disturbance in the closed-loop system.

Although feedback systems have been used for several centuries to modify
dynamics and a rigorous theory has existed for several decades, it is only very
recently that it has been used in flow control applications. The main reason
is that control theoretical tools have essentially been unaccessible to all but
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Figure 3.2. (a) Kinetic energy of a three-dimensional distur-
bance in the flat-plate boundary layer without (red) and with
feedback control (blue). A sketch of the control configuration
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the very simplest fluid systems, due to the high-dimensional system that arise
from discretization of the Navier–Stokes equations. Model reduction, where
the complex system is approximated with a very low-order system, is therefore
an important step in the control design process.

3.1. Control design: An overview

The main steps of the control design process are outlined in this section.
Throughout the chapter, examples on the simpler two-dimensional flat-plate
configuration are provided. The three-dimensional configuration can be treated
in an analogous manner, although the design requires more care due to the ad-
ditional direction in the spanwise direction.
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Disturbance Sensor Actuator Objective

Controller

Figure 3.3. A sketch of input-output configuration for the
control of perturbations in a two-dimensional flat-plate geom-
etry. The domain size and numerical parameters are listed in
table 4.2 (case 2D-LIN-BL) in section 4.4.

B1 C2 B2 C1

A sketch of the configuration for the control of two-dimensional perturba-
tions is shown in figure 3.3. The first input B1, located far upstream, models
the initial receptivity phase, where disturbances are induced by free-stream
turbulence, acoustic waves or wall roughness. The second input is the actua-
tor, B2, which provides a way to manipulate the flow. Two sensors, C1 and
C2, are used to provide measurements of the perturbation. The upstream mea-
surements are used to estimate the amplitude and the phase of the incoming
perturbations, while the downstream sensor is used to quantify the modification
of the flow due to the action of the actuator. The aim is to minimize the kinetic
energy of the disturbance in the region defined by C1, using the actuator B2

and sensor C2. Of course, the overall goal is to reduce the perturbation growth
in the entire flow domain in order to delay the initial phase of the transition
process. However, this is achieved by placing C1 far downstream: if we demand
the disturbance energy to be small at C1, the disturbance amplitude has to
decrease significantly before it reaches the objective function to accomplish this
task. For the three-dimensional disturbance discussed in the beginning of this
chapter, C1 must be chosen with more care to achieve a significant damping of
perturbation. The choice of the relative position of the actuator and sensor is
based on the knowledge of the behavior of boundary layer instabilities and is
described in Bagheri et al. (2009b).

The key point is that the signal given to the actuator at each instant in time
is based only on the measurement signal provided by the sensor C2. Rather
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System Complexity 2-norm ∞-norm

Plant G 105 9.7 144.6
Reduced-order model Gr 60 9.4 144.3
Closed-loop system Gc 105 0.4 6.4

Table 3.1. Properties of the three systems considered in the
thesis. See text for additional information.

than velocity fields u ∈ U, we are interested in characterizing time signals
and in particular the relation between input signals and output signals, since
this relation underlies most of the basic treatments in the control design. We
adopt an operator-viewpoint, where the operators represent “systems” that
map input signals to output signals. In particular, three systems will be used
throughout this chapter, each of them related to one major step in the control
design:

1. The characterization of the input-output behavior of the plant (open-
loop system) G, represented by the linearized Navier–Stokes equations
including two-dimensional disturbances, actuators, sensors and objec-
tive functions. In section 3.2 the input-output behavior between signals
is evaluated by computing system norms (2-norm and ∞-norm).

2. Section 3.3 describes a method to construct a low-dimensional model
Gr that essentially shows the same input-output behavior as the plant
G.

3. The final step is taken in section 3.4, using Gr, the closed-loop system
Gc is designed such that its norms – thus its amplifying behavior of
disturbances – are small compared to the plant G.

The three systems and their properties are listed in table 3.1.

3.2. Linear systems and input-output signals

In order to characterize the input-output behavior of a linear system we first
need to define systems and signals. We begin with defining a linear state-space
system as

u̇ = Au + Bw (3.1a)

y = Cu + Dw (3.1b)

where u ∈ U is the state variable, w ∈ Rm is the input and y ∈ Rp is the
output of the system. The input space and output space are endowed with
the Euclidean norm denoted by | · |. The matrices A ∈ R

n×n, B ∈ R
n×m and

C ∈ Rp×n are constant and the latter two matrices are usually low-rank, i.e.
m, p ≪ n. We assume (3.1) is stable, meaning that all the eigenvalues of A

have negative real part. Since it does not affect the results, assume for now
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that both the initial condition u0 and the feed-through term D ∈ Rp×m are
zero.

A signal is a (vector-valued) function of the independent variable time only,
and is an element of the function space

L2
s(t1, t2) = {z(t) : R → R

s|
∫ t2

t1

|z|2 ≤ ∞},

where s = m for the input space s = p for the output space (subscript will omit-
ted in most cases). Often we will consider signals over the infinite time intervals
L2(−∞,∞), L2(0,∞) and L2(−∞, 0), which physically can be obtained after
the transients asymptotically die out (owing to stability). The time-domain

space L2(−∞,∞) can be represented by a frequency-domain space L̂2(iR) by
means of a Fourier transform, which preserves the inner-product (Parseval’s
theorem), i.e. ‖z‖L2 = ‖ẑ‖L̂2 . Therefore we will not make notational distinc-
tion between time-domain signals and their frequency-domain counterparts.

A system is a linear mapping between an input signal to an output signal,
G : L2 → L2

y(t) = (Gw)(t).

We are interested in the asymptotic and causal input-output properties; as-
suming knowledge of w(t) in the time interval (−∞, t), the output at time t is
uniquely given by the system G : L2(−∞,∞) → L2(−∞,∞)

y(t) = (Gw)(t) = C

∫ t

−∞

eA(t−s)Bw(s) ds (3.2)

where exp(A) is the matrix exponential (Trefethen & Embree 2005). Similar to
signals, linear time-invariant (LTI) systems can be represented in the frequency
domain. A Laplace transform of (3.2) results in a transfer function matrix

y(s) = Ĝ(s)w(s) = (C(sI − A)−1B)w(s) (3.3)

with s ∈ C. Henceforth the hat on Ĝ is omitted since it is related to G

by a linear transformation. Occasionally we write the input-output system in
compact form

G =

(
A B

C 0

)

. (3.4)

Performance criterions for control design and error bounds for model re-
duction are given by different system norms. In general, ‖G‖2 is an appropriate
measure of performance when the input signal is a stochastic process, whereas
‖G‖∞ is appropriate when considering largest possible amplification due to an
input signal. The latter norm quantifies the amplification of an input signal,
which is given by the induced L2-norm of a system,

‖G‖∞ = sup
w 6=0

‖Gw‖L2

‖w‖L2

.
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It can be shown (see e.g. Green & Limebeer 1995, p. 92) that the induced norm
is the infinity norm of its transfer function matrix,

‖G‖∞ = sup
ω

|G(iω)|, (3.5)

where |G| denotes the largest singular value of the transfer function matrix.
Moreover, this norm is finite for all stable systems. So, ‖G‖∞ measures how
much energy is transfered from the input to the output.

The 2-norm of system G is the expected root-mean-square (RMS) value of
the output when the input is a white noise process with unit variance. If w(t)
is white noise, then

‖G‖2
2 = E

(
1

T
‖Gw‖2

L2

)

= E

(

1

T

∫ T

0

|y|2dt
)

(3.6)

where it can be shown (see e.g. Green & Limebeer 1995, p. 94) that as t→ ∞

‖G‖2
2 =

1

2π

∫ ∞

−∞

trace
(
G(iω)GT (iω)

)
dω. (3.7)

The 2-norm can be computed either by the average output energy of a large
number of realizations to stochastic forcing, or by solving one Lyapunov equa-
tion (Green & Limebeer 1995). However, when n is large, as in our case, a
more feasible way is to compute the output energy of an impulse response,
since white noise is a set of impulses that are uncorrelated in time.

Comparing equation (3.7) with equation (3.5), we note that ∞-norm mea-
sures the response to the “worst” frequency, whereas 2-norm measures the
response to all frequencies in an average sense.

3.2.1. Input-output analysis of the flat-plate boundary layer

Before we consider the full system in figure 3.3, the input-output behavior be-
tween the disturbance and objective function is characterized; the “sensor”,
“controller” and ”actuator” are not included in the analysis for now. Consider
the stable linear system G given by; (i) the Navier–Stokes equations linearized
about the steady boundary-layer flow (A ∈ Rn×n), (ii) a two-dimensional vol-
ume forcing inside the boundary layer at an upstream location (B1 ∈ Rn×1)
and (iii) a two-dimensional sensor (C1 ∈ R1×n), also represented by function
inside the boundary layer, but located further downstream.

We will characterize G by computing its 2-norm and ∞-norm, since these
measures are necessary components when performing model reduction and de-
signing control schemes in the subsequent sections of this chapter. The norms
are obtained by computing the energy of the output signal y when the input
w is a impulse/stochastic (2-norm) signal and harmonic signal (∞-norm).

The 2-norm, defined by equation (3.6), is given by the output energy due
to an impulsive input w(t) = δ(t). The impulse response given by,

y(t) = CeAtB, (3.8)
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Figure 3.4. Impulse (a) and frequency response (b) of the
flat-plate boundary layer. The black lines show responses from
DNS computations (n ≈ 105). The red symbols show the
responses from the reduced-order model (r = 60).
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is shown in figure 3.4(a) with a black solid line. The impulse triggers a
wavepacket that grows in amplitude as is propagates in the downstream di-
rection. The output signal y(t) is zero for a long time, but as the disturbance
passes the sensor location, the wavepacket is registered. The 2-norm of G,
which for the present case is ‖G‖2 = ‖y‖L2 = 9.7 quantifies the signal ampli-
fication of a unit norm input in an averaged sense.

The ∞-norm, defined by equation (3.5), is computed by finding the har-
monic input signal that results in the largest output energy. The response to
harmonic forcing w(t) = eiωt is given by

y(t) = |G(iω)|eiωt+φ. (3.9)

Due to the linear nature of the system, the input frequency ω will generate an
output signal with same frequency but with a phase shift φ = Arg(G) and a
gain |G(iω)|. The gain is shown in figure 3.4(b) with a black solid line. A range
of frequencies are amplified with the peak at ω = 0.055, whereas the low and
high frequencies are damped. The ∞-norm is given by the peak value value of
the gain |G|. In table 3.1 the norms of G are listed. In the next section, we
attempt to construct a new system, Gr with system norms very close to G,
but a significantly smaller dimension.
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3.3. The model reduction problem

The state space U contains all possible solenoidal velocity fields that satisfy
the boundary conditions. However, for a given structure of B and C, only cer-
tain velocity fields can be triggered by the input and observed by the output.
These states are called controllable and observable states respectively. The
flow structures that are neither controllable nor observable are redundant for
the input-output behavior. The minimum number of states1 n̂ ≤ n that can be
both observed and controlled for a given B and C is defined as the complexity
of G. Henceforth we will omit the hat on n̂. It turns out that when m, p≪ n,
the complexity of G can be significantly reduced, while preserving the rela-
tion between the inputs and outputs. The reason for this reduction is that
a large number of the states are nearly uncontrollable/unobservable and they
can be discarded since they have a very weak influence on the input-output
behavior. A systematic approach of removing these states is called balanced
truncation (Moore 1981).

A reduced-order system (ROM) is an “approximation” of G, defined as

Gr =

(
Ar Br

Cr Dr

)

,

such that the complexity of Gr is r where r ≪ n. We would like to choose Gr

such that

‖G− Gr‖∞ (3.10)

is small. Requiring a small error in the 2-norm is a substantially more difficult
problem.

3.3.1. SVD of the Hankel operator

Matrices and linear systems are both linear transformations and have thus a
lot in common. It is well known that if one wants to approximate an n-rank
matrix A with a r < n rank matrix Ar, then the smallest possible error is
given by

min
rank(Ar)≤r

‖A − Ar‖ = σr+1, (3.11)

where ‖ · ‖ is the induced Euclidean norm and σr+1 is the r+1 largest singular
value of A. One can also compute singular value decomposition (SVD) of
signals which amounts to a POD analysis (Moore 1981). However, a SVD of a
linear input-output system G in order to find a Gr is not straightforward, since
G is not always a finite rank operator. In fact there is no known solution to the
optimal model reduction problem in the infinity norm. A simpler input-output
mapping, is the finite-rank Hankel operator ΓG : L2(−∞, 0] → L2[0,∞) of the
system G, defined by

(ΓGw)(t) =

∫ 0

−∞

CeA(t−s)Bw(s) ds.

1In the literature, n̂ is refereed to as the McMillan degree.
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Figure 3.5. The controllability operator Lc relates past in-
puts to the present state, while the observability mapping Lo

relates the present state to the future outputs. Their combined
action is expressed by the Hankel operator ΓG.

Past inputs Future outputsState
Lc Lo

ΓG

The induced norm of ΓG is equal to the Hankel norm of G, ‖ΓG‖∞ = ‖G‖H .
The Hankel norm quantifies the energy transfered from past inputs to future
outputs. In this norm there is a solution to the optimal model reduction prob-
lem, called the Hankel norm approximation (Glover 1999). However, we will
use the Hankel operator to introduce a non-optimal model reduction problem,
referred to as balanced truncation, which has error bounds very close (a factor
of 2 larger in ∞-norm) to the Hankel norm approximation, but is considerably
easier to compute.

To understand why ΓG has finite rank, we decompose the input-output
operator into two parts

ΓG = LoLc.

The controllability operator Lc : L2(−∞, 0] → U, maps past input signals to
an initial state u0,

Lcw =

∫ 0

−∞

e−AsBw(s)ds. (3.12)

The second mapping Lo : U → L2[0,∞), called observability operator, is from
the initial state to future outputs signals,

Lou0 = CeAtu0 t ≥ 0. (3.13)

As sketched in figure 3.5, the input is mapped via a state at a reference time
t = 0, given by u0 = Lcw, to the output given by y = Lou0. Therefore in
order to determine the output, it is sufficient to know the state u0 that results
from driving the system with w. The key point is: all inputs that give rise to
the same u0 produce the same output. Any two linearly independent states,
u1,u2 ∈ U result in two linearly independent future outputs y1,y2 ∈ R

p. Thus,
the number of linearly independent outputs, and hence the rank of ΓG, is n.

We can compute the singular value decomposition (SVD) of ΓG,

(ΓGw)(t) =

n∑

j=1

σj〈sj ,w〉L2tj , (3.14)
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where sj ∈ L2(−∞, 0) and tj ∈ L2(0,∞) are sets of orthonormal signals. The
singular values of ΓG, σj > 0 are called Hankel singular values (HSV) of G

and are ordered in descending order of magnitude. Of all possible unit-norm
(past) input signals, s1 results in the (future) output signal with the largest
norm, given by σ2

1t1.

3.3.2. Reduced-order system

The mappings, Lc and Lo, are related to the concepts of controllability and
observability. A state is called controllable if it belongs to the range of Lc, that
is, if u = Lcw exists for some w. By forming the n×n positive (semi) definite
matrix P,

P = LcL
T
c =

∫ ∞

0

eAtBBT eA
T tdt, (3.15)

called the controllability Gramian, we can rank different states according to
how easily they can be influenced by an input. In particular, the most eas-
ily influenced, or most controllable, flow structures are the eigenvectors of P

associated to the largest eigenvalues of P.

The linear system G is observable if Lou0 = 0 occur only if u0 = 0, i.e. if the
knowledge of the output determines the initial state uniquely. Fluid systems are
rarely completely observable when using localized sensing. However, among all
possible u0, we can find the initial conditions which produce the largest possible
output energy, by forming the n× n observability Gramian Q,

Q = LT
o Lo =

∫ ∞

0

eA
T tCT CeAtdt. (3.16)

The matrix provides a way to rank states according to their contribution to the
output. The most observable states are given by the eigenvectors of the matrix
Q corresponding to its largest eigenvalues. The sketch in figure 3.6, illustrates
the concepts of the Gramians. Note that LT

o and LT
c are the adjoint observabil-

ity and controllability operators respectively and are derived in Bagheri et al.
(2009b).

It is easy to show (see Green & Limebeer 1995, p. 344) that (3.14) holds if

PQφi = σ2
iφi, i = 1, . . . , n. (3.17)

We call the eigenvectors, φj ∈ U, balanced modes. This set is not orthog-
onal, and we define the set of left eigenvectors of PQ as the adjoint balanced
modes and denoted them by ψj ∈ U. The two sets are bi-orthogonal, i.e.
〈φi,ψj〉U = δij . The balanced mode φj is a global structure in the flow that is
“influenced” by the input B by an amount given by its HSV σj , whereas the
corresponding adjoint mode ψj is a flow structure that – if used as an initial
condition – will result in an output energy ‖y‖L2

given also by σj . These global
modes that come in pairs have thus ranked the flow fields according to their
response behavior (controllability) and output sensitivity (observability).
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Figure 3.6. Sketch of controllability (a) and observability (b)
for the flat-plate boundary layer. The response to an input is
large downstream (because of strong convection), which results
in a large controllability of flow structures in the downstream
part of the domain. Similarly, the flow structures that will af-
ter a transient time, result in a large sensor output are located
far upstream, resulting in strong observability in that region.

(a)

(b)

Let the columns of the matrices Φ and Ψ contain r balanced modes and r
adjoint modes respectively, corresponding to the r largest HSV,

Φ = [φ1 . . . φr], Ψ = [ψ1 . . . ψr].

The reduced order system Gr is given by,

Gr =

(
ΨT AΦ ΨT B

CΦ D

)

.

To obtain the above system, we have performed an oblique projection of the
original high-dimensional state-space system (3.1) onto a subspace Ur ⊂ U

spanned by r balanced modes. The projection is along a direction orthog-
onal to the subspace U∗

r ⊂ U spanned by the adjoint balanced modes (see
Ahuja 2009, p. 12). Traditionally, to obtain Gr one adopts a transformation-
truncation approach (Moore 1981) called balanced truncation. In this approach
– which also explains the term balancing – the system G is via a linear transfor-
mation represented in coordinates, where the controllability and observability
Gramians are diagonal and equal to the HSV (the controllable and observable
properties are thus “balanced”).

The system Gr is not optimal in any way, although it is derived from SVD
of the Hankel operator. Nevertheless, balanced truncation is arguably the most
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widely used method for model reduction of linear input-output systems, because
of the following two properties: (i) Gr is guaranteed to be asymptotically stable
if σj 6= σj+1 for all j (Pernebo & Silverman 1982); (ii) there exist tight error
bounds (Glover 1999),

σr+1 ≤ ‖G− Gr‖∞ ≤ 2

n∑

j=r+1

σj (3.18)

that can be determined a priori to computing Gr. Comparing the error bound
to equation (3.11), we see that the Hankel singular values play a similar role in
linear systems to singular values of matrices.

3.3.3. Model reduction of the flat-plate boundary layer

We return to the single-input single-output flat-plate boundary layer example,
where the number of degrees of freedom to describe two-dimensional distur-
bances is n ≈ 105. In this section, we construct a low-order model Gr using
balanced modes and compare its performance to the Navier–Stokes system.

When the input B1 is placed upstream and the output C1 downstream, the
controllable velocity fields and the observable fields are spatially separated in
the streamwise direction. As shown in schematically in figure 3.6, observability
is strong far upstream, whereas controllability is strong at the downstream part
of the domain. This is a consequence of the convective nature of the instabilities
arising in the Blasius flow where disturbances grow in amplitude as they are
convected in the downstream direction. The large difference between observable
and controllable states, makes it particularly important to perform balancing
in order to construct a reduced-order model that captures the input-output
behavior. Figure 3.7(a-b) show that the first adjoint (ψ1) and forward balanced
mode (φ1) appear as localized wavepackets, located at each end of the domain.
Modes corresponding to higher HSV look similar, but have different spatial
wavelengths. It is because of the bi-orthogonal projection, where the adjoint
balanced modes account for the output sensitivity and the direct balanced
modes for the most controllable structures, that the resulting reduced-order
model captures the input-output behavior. It is interesting to point out that
for many convectively unstable flows, this spatial separation is also observed
between the global eigenmodes of the linearized Navier–Stokes equations and
eigenmodes of the adjoint Navier–Stokes equations, where it is associated to
the streamwise nonnormality of the system (Chomaz 2005).

In figure 3.4 the impulse and frequency responses of the balanced reduced-
order model Gr (r = 60) are compared to full Navier–Stokes system (n = 105).
We observe that the curves essentially collapse for both types of forcing, albeit
the remarkable reduction in the number of degrees of freedom. This clearly
indicates that capturing the input-output behavior of a linear system when
m, p ≪ n (in this single-input single-output case m = p = 1) requires signifi-
cantly smaller degrees of freedom, compared to capturing the full spatiotempo-
ral disturbance dynamics. A more quantitative evaluation is provided in figure
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Figure 3.7. Left: The streamwise velocity component (posi-
tive in red and negative in black) of first balanced mode φ1 and
it associated adjoint mode ψ1. Right: The ∞-norm model re-
duction error. The upper and lower theoretical bounds (equa-
tion 3.18) are depicted with a gray region and the actual model
reduction error is shown with red symbols.
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3.7(b), where the actual model reduction error ‖G − Gr‖∞ is compared to
the theoretical error bounds given by HSV (3.18). We observe that the error
(red circles) decays rapidly with increasing modes, and is close to the lower
theoretical bound. Note that the lower bound in the ∞-norm holds for any
model reduction procedure applied to a linear system and not only balanced
reduced-order model. See also table 3.1 for the norms of Gr (r = 60).

3.4. The control problem

In the previous sections, we have characterized the input-output behavior of the
plant (Navier–Stokes system) G by computing system norms. In the context
of flow stability, large system norms are closely linked to transient growth
of perturbation energy (see e.g. Bewley & Liu 1998; Bewley 2001, for more
on this relation). By minimizing the system norms we can expect smaller
transient growth of perturbations and a laminar flow system that is less likely
to transition to turbulence.

The control problem can formulated as follows: By applying feedback con-
trol to G, find a closed-loop system

Gc =

(
Ac Bc

Cc Dc

)

,

such that
‖Gc‖2 < ‖G‖2 (3.19)

and its complexity is of the same order as the plant G. Recall from section
3.2 that the 2-norm of a system is the output energy when the input to the
system is a stochastic process. In other words, forcing both systems G and Gc
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with unit-variance white noise, the closed-loop system is required to result in
a significantly smaller output signal than the plant. The aim of this section
is to design Ac,Bc,Cc and Dc such that the 2-norm of Gc is the smallest
possible. We present a systematic method to find Gc, known as the linear
quadratic Gaussian (LQG) optimal control problem (Anderson & Moore 1990;
Lewis & Syrmos 1995; Doyle et al. 1989; Dullerud & Paganini 1999). The
main disadvantage of LQG is that it does not account for uncertainties of the
system G (Doyle 1978) which is required to guarantee a robust performance
and even robust stability of the closed loop system Gc. One can only check the
robustness by ad-hoc testing the controller for various parameters. The LQG
problem can be extended to robust optimal control problem referred to as the
H∞ control, see Zhou et al. (2002); Bagheri et al. (2009c).

3.4.1. The plant

So far in this chapter, the inputs has represented disturbances and the outputs
some arbitrary sensor measurements. In order to construct Gc by formulating
a feedback control problem, we need to arrange the inputs and outputs in a
specific manner (Doyle et al. 1989). Consider the following stable plant (or
open–loop system) with three inputs and two outputs,

u̇ = Au + B1w1 + B2w2 (3.20a)

y1 = C1u + lw2 (3.20b)

y2 = C2u + αg. (3.20c)

The system (3.20) in a compact form is given by

G =





A B1 0 B2

C1 0 0 l
C2 0 α 0



 . (3.21)

Figure 3.3 shows a sketch corresponding to the above system. The physical
shape of the inputs/outputs, described by the constant input and output vec-
tors B = [B1 0 B2] and C = [C1 C2]

T , were discussed in section 3.1. The
corresponding time signals w(t) = [w1 g w2]

T and y(t) = [y1 y2]
T represent

the following:

• The disturbance signal w1 is assumed to be a temporal white noise with
unit intensity.

• The control signal w2 is to be determined in order to minimize the
objective function.

• The objective functional is the mean of the output signal y1,

E
(
‖y1‖2

L2

)
= E

(∫ ∞

0

(uT CT
1 C1u + l2wT

2 w2)dt

)

. (3.22)

The disturbance energy is minimized in the domain defined by C1, and
at the same time the control effort is penalized with a scalar l.

• The measurement signal y2 estimates amplification and phase of tempo-
ral frequencies in the flow at the location of the sensor C2. The signal
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is forced with an unit variance temporal noise g(t) (large values of the
scalar α, indicate high level of noise corruption).

As alluded to above, we will determine the optimal control w2(t) in (3.20)
based on noisy measurements y2(t) such that the cost functional (3.22) is min-
imized. The assumptions that external disturbances w1 and the sensor noise g
are white noise may in some applications be unrealistic, however, it is possible
to describe a system with colored noise input, in terms of an augmented system
with white-noise input (Lewis & Syrmos 1995).

3.4.2. Linear quadratic Gaussian design

One can show (Doyle et al. 1989) that the system Gc with smallest 2-norm,
satisfies

‖Gc‖2
2 = ‖Gf‖2

2
︸ ︷︷ ︸

Full information

+ ‖Ge‖2
2

︸ ︷︷ ︸

Estimation

.

In order to construct Gc we need to compute two simpler linear systems Gf

and Ge, by solving a full-information control and an estimation problem. It
turns out that the two systems Gf and Ge can be solved independently from
each other. Moreover, if both subsystems are stable and optimal then the
closed-loop system is also guaranteed to be stable and optimal.

We briefly state the solution of the two problems and refer to Doyle et al.
(1989) for details.

Full-information problem

In this first step, assume we can measure the full state at all times. We fur-
ther assume that the control w2(t) and the state u(t) satisfy a linear relation
involving some yet unknown matrix K, i.e.

w2(t) = Ku(t). (3.23)

Inserting (3.23) into (3.20) and neglecting the redundant output y2, we get

Gf =

(
A + B2K B1

C1 + lK 0

)

.

It remains to choose K such that Gf is stable and the control signal w2(t)
minimizes the system norm ‖Gf‖2. The solution is provided by a optimal
control state-feedback problem, (see e.g. Anderson & Moore 1990), where the
optimal control signal (3.23) is given by the feedback gain,

K = −BT
2 X,

and X is a solution of the (algebraic) Riccati equation

0 = AT X + XA − XB2B
T
2 X + CT

1 C1.
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Estimation problem

The second step in constructing Gc is to estimate the full state u(t) via the lin-
ear system Ge given only the noisy measurements y2. Denoting the estimation
error by ue = u − û, where û is the estimated state and assuming that both
w1 and g are white noise processes, an estimator can be formulated as follows

u̇e = Aue + B1w1 + L(y2 − ŷ2) (3.24a)

ŷ2 = C2û (3.24b)

y2 = C2u + αg . (3.24c)

In the above expression, we compare the measurement y2 from the state and
the measurement ŷ2 from the estimated state and feed back the mismatch in
these two quantities using the estimator gain L.

It can be shown (Kalman 1960) that the estimation gain that minimizes
the estimation error ‖ue‖L2(0,∞) and results in a stable estimator is given by

L = −YCT
2 ,

where Y is a solution of the Riccati equation,

0 = AY + YAT − YCT
2 C2Y + B1B

T
1 .

Now, if the state has been successfully estimated, it can be shown that
the optimal control signal w2(t) is given by w2(t) = Kû(t) where K is the
full information control gain computed previously. By substituting the explicit
dependence of the two measurements on the state u and the estimated state û,
respectively, into the estimator (3.24) we obtain the second part of the closed-
loop system Gc:

Ge =

(
A + LC2 B1 αL

K 0 0

)

.

Note that the input of Ge is [w1 g]
T and the output is the control signal w2.

The closed-loop system

The cost of solving a Riccati equation is O(n3), which is a computationally
intractable task when n > 105. In the previous section we showed that our
reduced model Gr is able to capture the input-output behavior of the Navier–
Stokes system G. During the design of Gc we can assume that the reduced-
model is the plant that we wish to control. Once we have determined Ge and
Gf for this approximating model, we will apply it to the full Navier–Stokes
system. This means that the feedback gains and have the same dimension (r)
as the reduced-order model Gr.

The final step is to connect the controller Gf and the estimator Ge to the
plant G given by equation (3.21) to obtain the matrices Ac,Bc,Cc and Dc of
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Figure 3.8. Sketch of the closed-loop system Gc. The con-
troller (red borders) of order r consists of an observer and

feedback gain K̂ that forces the plant G of size n with the
control signal w2 based on the noisy measurements y2 so that
the effect of w1 on the output signal y1 is minimized. The
observer is governed by Âo = Â + L̂Ĉ2.

Âoû + B̂2w2 + L̂y2
K̂

G

w1

w2 = K̂û

w2

y1

y2
û

closed-loop system Gc. A straightforward derivation gives

Gc =





A B2K̂ B1 0

−L̂C2 Â + B̂2K̂ + L̂Ĉ2 0 −αL̂
C1 lK̂ 0 0



 .

The output of the system is y1 and the inputs are [w1 g]T . The state for
the above system is [u û]T ∈ R

(n+r)×1 where u ∈ U is the full state and the
û ∈ Rr×1 is the reduced estimated state. A sketch of the closed-loop system
is shown in figure 3.8. It is important to note that in the above closed-loop
system the quantifies marked with hat are of order r ≪ n. This results in a
fast “online” controller running in parallel with the experiments. As shown
in figure 3.8, the controller can be decomposed into an observer governed by
(Â + L̂Ĉ2)û + B̂2w2 + L̂y2 and the feedback gain K̂.

3.4.3. Feedback control of the flat-plate boundary layer

The full input-output system G for the flat-plate boundary layer is shown in
figure 3.3 and was described in section 3.1. Recall that LQG design mini-
mizes the 2-norm of the closed-loop system Gc when the external disturbances
(w1, g) are white noise process. We therefore force both systems G and Gc

with unit-variance white noise signal in w1 and compare the root-mean-square
values (averaged in the directions z, y and the time t) of the streamwise ve-
locity component u. Note that the purpose of the measurement noise g is to
account for uncertainties in the sensor measurements during the control design.
When evaluating the closed-loop performance the system is only forced with
w1. In figure 3.9(a) the performance of a controller is investigated with (control
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Figure 3.9. (a) The streamwise rms-values of the uncon-
trolled system (blacks), and the closed-loop (red) as a func-
tion of the streamwise direction x. (b) Comparison of the
frequency response from disturbances to objective function of
uncontrolled (black) and the closed-loop system (red).
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penalty) l = 0.1 and (sensor noise contamination) α = 0.1. The rms-value of
the disturbance grows exponentially downstream in the uncontrolled case until
x = 800. The rms-value of the perturbation when the control is active grows
only until it reaches the actuator position (x = 400), where it immediately
begins to decay. At the location of the objective function C1 (x = 750), the
amplitude of the perturbation is one order of magnitude smaller than in the
uncontrolled case.

There are a number of additional ways to evaluate the control performance.
In figure 3.9(b) the frequency response from the disturbance B1 to the objective
function C1 of the uncontrolled system is compared to that of the closed-loop
system. The controller suppresses the most dangerous frequencies close to
ω = 0.055 significantly. Note that compared to the uncontrolled model, the
highly damped frequencies ω > 0.11 have larger gain in amplitudes. This
behavior is often observed in closed-loop systems and is related to the “water-
bed” effect, i.e. when certain frequencies are suppressed, the response at other
frequencies is amplified. The 2-norm and the ∞-norm of Gc are compared to
those of the plant in table 3.1, which illustrates the significantly smaller of the
amplifying behavior of Gc.
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We have shown that by using systematic methods from control theory
in combination with localized sensing/actuation, it is possible to reduce the
growth of small-amplitude disturbances in the boundary layer. As demon-
strated in the introduction of this chapter, using this approach, the energy of
three-dimensional disturbances are damped by an order of magnitude. Further
conclusions are provided in the final chapter of this thesis.



CHAPTER 4

Algorithms for global modes

To accurately describe the flow dynamics in two- or three-dimensional domains,
a large number of degrees of freedom is necessary, yielding a high-dimensional
dynamical system (2.2). Table (4.1) shows the dimension of the state space U

for the flow cases studies in this thesis. Dynamical-system analysis involving
the computation of steady solutions, global eigenmodes and Koopman modes
commonly involves solving nonlinear systems or eigenvalue problems of size n.
In systems and control theory the most elegant results require the solution of
various matrix equations, such as the Riccati or Lyapunov equations. All of
these computations scale O(n3), which means that even with the use of super-
computers it is prohibitively expensive to solve such problems for large systems.
Therefore, numerical linear algebra and numerical algorithms to find approxi-
mate solutions have played a central role in computational fluid mechanics.

The main idea of the methods presented here is to identify a low dimensio-
nal subspace Ur ⊂ U with r ≪ n, on which the large systems can be projected
along a certain direction. The problem at hand can then be solved by stan-
dard methods in this low-dimensional subspace. The subspace is spanned by r
prudently chosen states u

Ur = span{u1, . . . ,ur}.
In the simplest case, these states are simply sampled along one or more state
trajectories obtained by integrating the governing equations, whereas in other
cases a recurrence relation provides the necessary states. In either case, all
the methods require flow fields at discrete time and it is therefore convenient
to present the algorithms using discrete-time systems. In this so called “time-
stepper approach”, matrices are never stored explicitly and storage demands
in memory of all algorithms are of the same order as r times the storage of a
single flow field.

Recall that the time-discrete dynamical system representing the discretized
Navier–Stokes equations is given by

uk+1 = g(uk), (4.1)

and let the linearized equations be given by

uk+1 = Aµuk (4.2)

where
Aµuk = exp (A∆t(k + 1))u(k∆t).

53
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Dimension of Ω Dimension of U Storage of A

Ginzburg-Landau 1D 102 1 MB
Flat-plate boundary layer 2D 105 25 GB
Jet in crossflow 3D 107 500 TB

Table 4.1. Example of the state-space dimension for some of
the flow configurations considered in this thesis.

4.1. Linear global eigenmodes

In section 2.2 we defined the linear global eigenmodes as the eigenvectors φj

and eigenvalues λj of the discretized and linearized Navier–Stokes equations A.
Solving the enormous eigenvalue problem for the n× n matrix A using direct
methods (such as the QR algorithm) is not only an unfeasible computational
task when n ≥ 105, but also very wasteful since we are interested in a small
subset of the spectrum only: in order to determine the stability of the baseflow
and to gain insight into the main instability mechanisms it is sufficient to
compute a few, say r ≪ n, of the least stable global modes. Fortunately, it
turns out that we can compute r approximate global modes λ̃j , φ̃j from a small
eigenvalue problem of size r × r.

Note that the jth eigenvalue, λj = σj + iωj , of the time-continuous matrix
A is related to the jth eigenvalue, λµ,j , of the time-discrete matrix Aµ as
follows:

ωj = arg(λµ,j)/∆t, σj = ln(|λµ,j |)/∆t. (4.3)

The eigenvectors of A and Aµ are the same1. Henceforth, the subscript µ on
Aµ and λµ is omitted and we work entirely with discrete-time systems.

Denoting the residual (i.e. the error) introduced by the approximation with
rj , we have

Aφ̃j = φ̃j λ̃j + rj j = 1, . . . , r. (4.4)

One can show that by requiring the residual rj to be orthogonal to a r-

dimensional subspace Ur ⊂ U, we can choose λ̃j , φ̃j such the error is the
smallest possible. Let r of linearly independent vectors given in the matrix,

Xr = [u1 u2 . . . ur] ∈ R
n×r, (4.5)

span Ur. We call λ̃j the Ritz values of Xr associated with the Ritz vectors φ̃j

if
φ̃j ∈ span{Xr}, rj ⊥ span{Xr}.

Since φ̃j ∈ span{Xr}, we can expand it in terms of the columns of Xr,

Φ̃ = [φ̃1 φ̃2 . . . φ̃r] = XrT, (4.6)

1The eigenvectors are the same if the the sampling period ∆t is chosen properly, i.e. so that it
reflects the characteristic time scale of the physical structures in the flow. More specifically,
to avoid aliasing ∆t must be small enough such that two sampling points in one period of
the highest frequency mode are obtained (the Nyquist criterion).
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Algorithm 1 Arnoldi method

[Φ,Λ, r] = Arnoldi(u1)
Input: unit norm initial vector u1

Output: r Ritz vectors Φ

r Ritz values Λ
residuals r

Requires: time stepper Aµ

1: X(:, 1) = u1

2: for j = 1 to r do

3: v = Aµuj

4: for i = 1 to j do

5: M(i, j) = innerproduct(Auj ,ui)
6: v = v − M(i, j)uj

7: M(j + 1, j) = norm(v)
8: uj+1 = v/M(j + 1, j)
9: end for

10: X(:, j + 1) = uj+1

11: end for

12: [T,Λ] = eig(M)
13: Φ = XT

14: r = norm(AΦ − ΦΛ, 1)

where the yet unknown matrix T = [T1 . . . Tr] ∈ Rr×r contains the expansion
coefficients. Inserting this expansion into (4.4), multiplying from left with XT

r

and letting Λ̃ = diag{λ̃1, λ̃2, . . . λ̃r}, we get

XT
r AXr

︸ ︷︷ ︸

Cr

T − XT
r Xr

︸ ︷︷ ︸

Br

TΛ̃ = 0, (4.7)

since XT
r rj = 0 for all j. The expansion coefficients T are thus the eigenvectors

and the Ritz values the eigenvalues of the small r × r matrix B−1
r Cr,

(B−1
r Cr)T = TΛ̃. (4.8)

We have replaced the large eigenvalue problem (2.7) of size n with a smaller
one (4.8) of size r ≪ n. The question is, how fast the Ritz values and vectors
converge to exact linear global eigenmodes and with what accuracy? The
answer depends on the choice of vectors uj in Xr. Note that the matrix Cr

can be interpreted as the orthogonal projection of A onto the space spanned
by the columns of Xr, where the projector is given by Pr = XrB

−1
r XT

r .

4.1.1. Arnoldi algorithm

The best – and computationally the most involved to determine – choice of
basis for Ur, resulting in a fast convergence with a satisfactory accuracy is an
orthonormal basis. The Arnoldi method (Arnoldi 1951) is an algorithm that
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simultaneously computes an orthonormal sequence Br = XT
r Xr = I and an

upper Hessenberg matrix Cr = XT
r AXr.

The method of Arnoldi computes the j + 1 basis vector in Xr by the
recurrence

v = Auj − (h1ju1 + h2ju2 + · · · + hjjuj) (4.9a)

uj+1 = v/hj+1,j (4.9b)

where hij = 〈Auj ,ui〉 and hj+1,j = ‖v‖. This is simply the Gram-Schmidt
method of orthogonalizing and normalizing a sequence. If we start with some
unit-norm initial vector (usually noise) u1 and perform the above recurrence
r + 1 times, we arrive at the following expression,

AXr = XrM + hr+1,rur+1e
T
r ,

where eT
r = [0 0 . . . 0 1] ∈ R1×r and M is a upper Hessenberg matrix

M =










h11 h12 . . . h1r

h21 h22 . . . h2r

0 h32 . . . h3r

...
...

0 0 . . . hrr










∈ R
r×r.

By construction of the Arnoldi algorithm we have ur+1 ⊥ Xr, therefore from
(4.7) it is easy to see that M = B−1

r Cr = Cr. The Ritz values of A in Ur

are the eigenvalues Λ̃ of the upper Hessenberg matrix M and the Ritz vectors
are given by Φ̃ = XrT where the columns of T are the eigenvectors of M (see
algorithm 1).

The residual in equation (4.4) of the jth Ritz pair is thus given by

rj = (A − λ̃jI)φ̃j = hr+1,rTj(r)ur+1,

where Tj(r) is the last component of the jth eigenvector of M. One can stop
the algorithm when the desired accuracy – usually ‖rj‖ ≤ 10−10 – is attained
for the Ritz vectors of interest. To avoid a very large r and still obtain low
residuals, one can repeat the Arnoldi algorithm with the initial vector u1 re-
placed by a Ritz vector or a combination of Ritz vectors (Saad 1980). In
the Arnoldi-software package ARPACK (Lehoucq et al. 1998) a more efficient
method based on polynomial filtering (Sorensen 1992) is applied to obtain an
improved initial guess. Moreover, the standard Gram-Schmid (4.9) gives rise
to severe cancellation errors, so in practice more advanced techniques such as
the modified Gram-Schmid method (Trefethen & Bau 1997) are used.

4.1.2. Dynamic Mode Decomposition

The simplest – and most ill-conditioned – choice of basis for Ur (see Ruhe
1984; Saad 1980) is simply samples (or snapshots) obtained from the time-
stepper

uj+1 = Auj .
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Algorithm 2 Dynamic Mode Decomposition

[Φ,Λ, r] = DMD(X)
Input: r + 1 sequence of observables X = (u1, . . . ,ur+1)
Output: r empirical Ritz vectors Φ

r empirical Ritz values Λ
scalar residual r

1: n = size(X, 1)
2: r = size(X, 2) − 1
3: ur+1 = X(:, r + 1)
4: Xr = X(:, 1 : r)
5: Xr+1 = X(:, 2 : r + 1)
6: c = Xr\ur+1

7: M = companion(c)
8: [T,Λ] = eig(M)
9: Φ = XrT

10: r = norm(Xr+1 − XrC)

The basis Xr = [u1 Au1 Au2 . . . Aur−1] becomes gradually ill-conditioned,
since its columns gradually align with the dominant eigenvectors of A. For some
r, the vector at step r+ 1 becomes nearly linearly dependent of the previous r
vectors, i.e.

ur+1 = c1u1 + c2u2 + · · · + crur + ũr+1, (4.10)

where ũr+1 is the residual, i.e. the part of ur+1 that is not in the span of Xr.
We can write (4.10) in matrix form,

AXr = XrM + ũr+1e
T
r , (4.11)

where eT
r = [0 0 . . . 0 1] ∈ R

1×r and

M =










0 0 . . . 0 c1
1 0 . . . 0 c2
0 1 . . . 0 c3
...

. . .
...

0 0 . . . 1 cr










∈ R
r×r (4.12)

is a matrix in companion form. It remains to determine the scalar elements cj
of M. If we choose them such that ũr+1 ⊥ Xr then from (4.7) it is easy to see

that M = B−1
r Cr: the Ritz values of A in Ur and the Ritz vectors Φ̃ = XrT

are thus attained by diagonalizing the companion matrix M, instead of the
upper Hessenberg matrix obtained via the Arnoldi method.

A few remarks are appropriate at this point. There is no normalization
step in the algorithm, and hence the modes come with amplitudes, ai = |φ̃i|
that provide a way to rank their contribution to the overall energy in the set
Xr. The normalized amplitude ai/a1 for mode φ̃i serves as a condition number
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for that mode. If ai/a1 ≤ τ where τ is some tolerance (usually τ = 10−15),
then the corresponding mode is discarded. See the example in section 4.1.3.

The companion matrix may be a highly nonnormal matrix, which results
in an ill-conditioned eigenvalue decomposition problem. One can improve the
accuracy in several steps as it is done by default in the eigenvalue routines
of Lapack (DxGEEV) and Matlab (EIG); first, balancing (Parlett & Reinsch
1969) of the matrix by a similarity transformation is performed, followed by a
reduction to upper Hessenberg form via a second similarity transformation and
finally the eigenvalues are computed using the QR algorithm. Alternatively,
as a preconditioning, one can perform a similarity transformation (via a singu-

lar value decomposition) of the companion matrix to obtain a full matrix M̃

(Schmid 2009).

The norm of the residual in equation (4.4) of the jth Ritz pair is given by

rj = (A − λ̃jI)φ̃j = ũj+1Tj(r) (4.13)

For a given dimension of Ur, the residuals from this algorithm are significantly
higher than the Arnoldi method. The advantage of this algorithm is that it
provides Ritz vectors and values of any sequence of data. In contrast to the
Arnoldi method, it does not perform Auj at each step and is unaware of A

altogether. As observed by Schmid (2009), the present algorithm which we call
Dynamic mode decomposition algorithm can thus also be used to extract Ritz
vectors and values from experimental data or even from a sequence of snapshots
collected from nonlinear simulations. In the next section we show that in the
nonlinear case the Ritz vectors approximate the Koopman modes. However,
first we compare the DMD and the Arnoldi method for a linear flow.

4.1.3. Example: Linearized Blasius boundary layer

The Arnoldi and the DMD algorithm are applied to the Navier–Stokes equa-
tions linearized about a steady Blasius boundary layer solution to demon-
strate the convergence behavior of the two methods. The resulting matrix
A (n ≈ 105) is stable, i.e. the flow is globally stable but it is locally unstable
to two-dimensional Tollmien–Schlichting wavepackets (see e.g. Bagheri et al.
2009a). Figure 4.1 shows the frequency ωj and growth rates σj associated with
the linear global eigenmode φj computed with both the Arnoldi method (red
symbols) and the DMD algorithm (black and gray symbols). It is interest-
ing to note that, although the DMD algorithm is numerically less stable than
the Arnoldi algorithm, the TS-wave branch in the spectrum matches the Ritz
values obtained from the Arnoldi algorithm.

The residuals ‖rj‖ of the Ritz vectors computed using the Arnoldi method
are of order 10−15. For the DMD algorithm, the average residual of the Ritz
vectors are shown in figure 4.2(a) as a function of the number of snapshots in-
cluded in the matrix Xr. Initially, there is a rapid decay with increasing snap-
shots, but the average residual levels out at a rather large value. As discussed
previously, this is due to the fact that the columns of Xr become increasingly



4.2. KOOPMAN MODES 59

0 0.05 0.1 0.15 0.2
−0.03

−0.02

−0.01

0

Figure 4.1. The two-dimensional global linear spectrum of
the flat-plate boundary layer. Ritz values computed using the
Arnoldi method (red symbol) and the DMD algorithm (black
and gray symbols). DMD Ritz values that correspond to Ritz
vectors with smaller magnitude than 10−15 are shown in gray.
The numerical parameters are given in table 4.2 (case 2D-LIN-
BL) in section 4.4 of this thesis.
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linearly dependent as they align with the most dominant Ritz vectors. The
magnitudes aj of the Ritz vectors from the DMD method are shown in figure
4.2(b), where – in contrast to the residuals – a decay of several orders of mag-
nitude is observed for first few Ritz vectors. The Ritz values obtained from
the DMD algorithm that correspond to Ritz vectors with magnitudes smaller
than 10−15 are shown in gray symbols in the spectrum (figure 4.1). Thus it
seems that the magnitudes (or condition numbers) of the Ritz vectors provide
a way to rank the modes according to their significance; modes with very small
magnitudes can be regarded as numerical noise and thus discarded.

4.2. Koopman modes

The DMD algorithm described in the previous section yields Ritz vectors and
values of a sequence of data without the knowledge of the system that generated
the data sequence. It turns out, as first noticed by Rowley et al. (2009), that
if the nonlinear system g(uk) generated the sequence of data, then the Ritz
vectors are approximations of Koopman modes under the map g.

Let r vectors form the columns of the full-rank matrix,

Xr = [a(u0) a(u1) a(u2) . . . a(ur−1)] (4.14)

where a(uj) could be full flow field snapshots uj ∈ U ⊂ Rn obtained from nu-
merical simulations or vector-valued observables a(uj) ∈ Rp from experimental
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Figure 4.2. The average residuals, given by equation (4.13)
as function of the number of snapshots included in Xr are
shown in (a). The magnitude aj of the 32 first Ritz values
computed for r = 390 is shown in (b).
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measurements. By shifting the sequence with one time step, we obtain

Xr+1 = [a(u1) a(u2) a(u3) . . . a(ur)].

For a sufficiently long time series, we can assume that the rth sample a(ur)
is nearly linearly dependent on the previous r − 1 observables. Denoting the
residual by ũr, we have the following relation between the two sequences

Xr+1 = XrM + ũre
T
r , (4.15)

where M is a companion matrix. If Xr is a sequence from a linear mapping
A, then Xr+1 = AXr and we recover the DMD algorithm for computing Ritz
values and vectors for linear systems. If, on the other hand, (4.14) is sequence
of the observable a on the trajectory of the system g starting at the initial
condition u0, then Xr+1 is given by applying the Koopman operator U on
each element of this sequence

Xr+1 = [Ua(u0) Ua(u1) Ua(u2) . . . Ua(ur−1)] = UXr.

The companion matrix for Xr is uniquely determined by the direction of the
residual ũr. Similar to the previous section, we choose the elements of M such
that ũr ⊥ Xr. Now, we can define the empirical Ritz values of Xr as the
eigenvalues Λ̃ = diag{λ̃0 λ̃1 . . . λ̃r−1} of M associated with the empirical Ritz

vectors Φ̃ = [φ̃0 φ̃1 . . . φ̃r−1] given by

Φ̃ = XrT (4.16)

where the columns of T are the eigenvectors of M. If the Ritz values are
distinct, the matrix containing the left eigenvectors of the companion matrix
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is the Vandermonde matrix

T−1 =








1 λ0 λ2
0 . . . λr−1

0

1 λ1 λ2
1 . . . λr−1

1
...

...
. . .

...
1 λr−1 λ2

r−1 . . . λr−1
r−1







∈ R

r×r. (4.17)

Recall that in section 2.3 the Vandermonde matrix S given in (2.14) was iden-
tified as the expansion coefficients when expanding the sequence of observables
(2.13) in terms of the Koopman modes Φ, i.e. X = ΦS. Similarly, we can
observe that T−1 contains the expansion coefficients when expanding the finite
sequence Xr in terms of the empirical Ritz vectors, Xr = Φ̃T−1; each element
in Xr can be written as

a(uk) =

r−1∑

j=0

λ̃k
j φ̃j k = 0, . . . , r − 1. (4.18)

The empirical Ritz vector φ̃j thus approximates the product of the Koopman

mode and the Koopman eigenfunction, ϕj(u0)φj , and the Ritz value λ̃j ap-
proximates the Koopman eigenvalue λj . Algorithm 2 applied to a set of data
Xr obtained from nonlinear flow provides the approximate Koopman modes
and eigenvalues.

4.2.1. Example: Periodically forced nonlinear Blasius boundary layer

When the sequence (4.14) is periodic, i.e. ur−1 = u0, the companion matrix
becomes

M =










0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0










∈ R
r×r

with the empirical Ritz values given by λk = eiωk , with ωk = 2πk/r. In this
case the Vandermonde matrix T−1 is the discrete Fourier transform matrix.
This means for periodic data the Ritz vectors are Fourier modes, given by the
discrete Fourier transform of the sequence.

Consider again the flow on a flat plate, where forcing is continuously applied
upstream in the boundary layer with a given temporal frequency ωf = 0.036
(non-dimensional frequency F = 120). The amplitude of the forcing is suffi-
ciently high to introduce a few higher harmonics. A snapshot at t = 85 of the
streamwise velocity component from the simulation is shown in figure 4.3(a),
where we observe how the boundary layer is altered due to the periodic forcing.
The snapshots (r = 100) separated by ∆t = 10 from the simulation are stacked
up in the matrix Xr and its empirical Ritz values and vectors were computed
using the DMD algorithm.
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Figure 4.3. The streamwise velocity component of a snap-
shot from the nonlinear simulation at t = 85 (a), the zeroth
(b), first (c) and third (d) Koopman modes computed using
the algorithm explained in section 4.2.
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The Koopman modes φ0,φ1 and φ3 are shown in figure 4.3(b-d). The
zeroth Koopman mode corresponds to the mean flow, which in this case is
close to the steady Blasius boundary-layer flow. The first Koopman mode
corresponds to a TS wave, where the corresponding Koopman eigenvalue λj

has zero growth rate and a frequency that matches the forcing frequency ωf

precisely. The TS wave (figure 4.3c) decays in amplitude short distance down-
stream of the forcing location, but begins to grow exponentially at particular
streamwise location (branch I) until a location further downstream (branch II).
The location of branch I and II for this particular frequency matches the TS
neutral curve found in the literature (see e.g. Schmid & Henningson 2001). As
we expect from the theory in section 2.3, the first pair of Koopman modes
correspond to the flow structure oscillating with the dominant frequency. The
second pair of Koopman modes (one mode shown in figure 4.3d) correspond to
the subharmonic 2ωf frequency generated due to nonlinear interactions. This
mode is also a TS wave but with a higher frequency. This simple example
demonstrates how the DMD algorithm in section 4.2 can be used to decompose
a sequence of flow fields into spatial structures with periodic motion.

4.3. Balanced modes

We turn our attention to the linear input-output system (3.1) introduced in
chapter 3. In the following, it is convenient to represent the time-continuous
system matrix as A and the discrete-time (i.e. time stepper) matrix as Aµ (so
far in this chapter the subscript µ has been omitted).
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4.3.1. Laub’s method

In section 3.3.2 it was shown that the balanced modes are the eigenvectors of the
product of the controllability Gramian P (3.15) and observability Gramian Q

(3.16). It can be shown (Green & Limebeer 1995) that P and Q associated with
the linear system (3.1) satisfy, respectively, the following Lyapunov equations

AP + PAT + BBT = 0

AT Q + QA + CT C = 0.

For low and moderate dimensional systems n ≤ 103, there are efficient direct or
iterative methods for solving the Lyapunov equations (Smith 1968; Hammarling
1982) and for computing balanced modes (Laub et al. 1987; Safonov & Chiang
1989).

One common way (Laub et al. 1987) of computing the balanced modes
is as follows. Solve the two Lyapunov equations and compute their Cholesky
factors X ∈ Rn×n, Y ∈ Rn×n as

P = XXT , Q = YYT

and compute the SVD of the n× n matrix

YT X = UΣVT . (4.20)

The direct and adjoint balanced modes are then, respectively, given by

Φ = XVΣ−1/2, Ψ = YUΣ−1/2 (4.21)

such that ΨTΦ = I. Note that X and Y are the numerical counterparts of
the controllability operator Lc and the observability operator Lo defined in
section 3.3.1. Similarly YT X is the Hankel matrix, representing the Hankel
operator ΓG and the diagonal matrix Σ contains the Hankel singular values.
Unfortunately, the above method is unfeasible for high-dimensional systems as
the computational complexity is O(n3) and storage requirement is O(n2).

4.3.2. Low-rank Cholesky factors

Usually the number of inputs and outputs is much smaller than the state di-
mension, m, p ≪ n. Therefore, the Gramians often have very low numerical
rank k ≪ n and the storage requirements can be reduced to O(nk) and compu-
tational complexity to O(k3). Moreover, if the purpose is model reduction, it
seems imprudent to solve for all n balanced modes, to construct a reduced-order
model of size r ≪ n.

Consider the low-rank Cholesky factors Xr ∈ Rn×r and Yr ∈ Rn×r,

P = XrX
T
r + RP Q = YrY

T
r + RQ (4.22)

where RP and RQ are residuals due to replacing the full Cholesky factors with
partial ones. The SVD given in (4.20) can now be computed for the small r× r
matrix YT

r Xr = UrΣrV
T
r and subsequently r approximate balanced modes

can be obtained from,

Φr = XrVrΣ
−1/2
r , Ψr = YrUrΣ

−1/2
r . (4.23)
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The question is, how close Φr and Ψr using low-rank Cholesky factors are
to the “true” balanced modes Φ and Ψ using full-rank factors. Are the two
important properties (stability and tight error bounds) of the balanced reduced-
model preserved when computed by Φr and Ψr? Antoulas (2005) derives non-
trivial estimates of the residuals given in (4.22). In general, numerical tests
(Ilak & Rowley 2008; Ahuja 2009; Bagheri et al. 2009a,b) show that Φr is
a good approximation and that Σr are close to the true HSV. This can be
attributed, as mentioned earlier, to the low numerical rank of the Gramians,
when m, p ≪ n. Unfortunately, stability of the reduced-model is no longer
guaranteed when using Xr. Note that Ar is stable if AT

r M + MAr + N = 0
has a solution for any N = NT > 0 and M = MT > 0. One can derive (see
e.g. Antoulas 2005),

ArΣr + ΣrA
T
r + BrB

T
r + ΨT

r (ARP + RPAT )Ψr = 0

where the additional term due to the residuals in not necessarily positive defi-
nite.

We have thus dealt with the high-dimensionality problem if we can find
low-rank Cholesky factors. The reduced-order model Gr can be computed for
very large system using algorithm 3. Various methods may be used to find Xr

and Yr: ADI/Smith methods (Penzl 2000; Gugercin et al. 2003), snapshot-
based methods (Lall et al. 2002; Rowley 2005) and Krylov subspace methods
(Jaimoukha & Kasenally 1994). As was observed by Sorensen & Rowley (pri-
vate communication), there exists a close connection between Smith-type of
methods and snapshot-based methods. The former is an iterative process aim-
ing directly at solving the Lyapunov equation and requiring the knowledge of A.
The snapshot-based method on the other hand computes low-rank Cholesky
factors directly from the definition of the Gramians, where the integrals are
approximated by numerical simulations of the linear system.

4.3.3. Snapshot-based method

We describe the snapshot-based method (Rowley 2005) for computing the low-
rank Cholesky factor Xr of the controllability Gramian P. To obtain the factor
Yr of the observability Gramian Q, the method is applied to the dual input-
output system, defined by

G∗ =

(
AT CT

BT 0

)

.

Comparing the above dual equations with (3.4) we observe that the output and
input matrices have exchanged place; the state is now forced with the adjoint
of C and the output is given by the adjoint of B. Note that AT represents
the discretized adjoint Navier–Stokes equations (see Bagheri et al. 2009b, for a
thorough derivation of the dual system). This is a dual problem to G (3.4), in
the sense that the controllability Gramian of G∗ is equal to the observability
Gramian of G.
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Algorithm 3 Balanced reduced model

[Gr, el, eu] = balmodes(Xr,Yr)
Input: low-rank Cholesky factor of P Xr

low-rank Cholesky factor of Q Yr

Output: linear reduced-order model Gr = (Ar,Br,Cr)
lower theoretical error bound el

upper theoretical error bound eu

1: [U,Σ,V] = SVD(YT
r Xr)

2: Φ = XrVΣ−1/2

3: Ψ = YrUΣ−1/2

4: Ar = ΨTAΦ

5: Br = ΨT B

6: Cr = CΦ

7: el = Σ(r + 1, r + 1)
8: eu = 2 (sum(Σ(r + 1:end, r + 1:end))

Suppose that we have p constant input vectors, B = [B1 . . . Bp] ∈ Rn×p

associated with the input signals w(t) = [w1(t) . . . wp(t)] ∈ Rp×1. When
wj = δ(t) and u0 = 0, the state at any time is given by,

uj(t) = eAtBj .

The controllability Gramian can thus be written as a sum of impulse responses
to p inputs,

P =

∫ ∞

0

eAtBBT eA
T t dt =

∫ ∞

0

p
∑

j=1

uj(t)uj(t)
T dt.

Define the empirical controllability Gramian as the quadrature approximation
of P,

P̃r =

r∑

j=1

p
∑

i=1

ui(tj)(ui(tj))
T δj = XrX

T
r ,

where the Cholesky factor Xr ∈ Rn×pr is given by

Xr = [u1(t1)
√

δ1 . . . u1(tr)
√

δr . . . up(t1)
√

δ1 . . . up(tm)
√

δr] (4.24)

and δj are the quadrature coefficients (for example resulting from a trapezoidal
rule). To compute Xr, one needs to perform p numerical simulations of the
linear system. For each simulation r snapshots are collected, which results in
memory requirements of the order O(npr) to store the Cholesky factor.

To obtain the factor Yr of the observability Gramian Q, the above method
is applied to the dual input-output system. Suppose

zj(t) = eA
T tCT

j j = 1, . . . ,m
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is the impulse response of the adjoint system to output vector CT
j . Then the

empirical observability Gramian is

Q̃r =

r∑

j=1

m∑

i=1

zi(tj)(zi(tj))
T δj = YrY

T
r .

Similarly, Yr ∈ Rn×mr is obtained by m numerical simulations of the adjoint
system,

Yr = [z1(t1)
√

δ1 . . . z1(tm)
√

δm . . . zm(t1)
√

δ1 . . . zm(tr)
√

δr]. (4.25)

The snapshot method to compute Cholesky factors thus amounts to collect-
ing snapshots from p simulations of the forward linear system and m simulation
of the adjoint system. In this way, we trade the storage of very large matrices
for numerical simulations.

A few remarks on the method are noteworthy. As shown by Ma et al. (2009)
a theoretical equivalence between snapshot-based balanced truncation and a
system identification technique called eigensystem realization algorithm (ERA)
(Juang & Pappa 1985) exists. Unlike the snapshot-based method, ERA does
not require the dual system (adjoint simulations) and the oblique projection
onto a set of balanced modes is not performed. The method is significantly
cheaper than the snapshot method; the main disadvantage is that it does not
provide a set of global balanced modes, which can be useful for physical insight
into the input-output properties of the linear system.

For more complex three-dimensional configurations, the number of inputs
and output may become of the order p,m ∈ O(102) and a large number of
snapshots r ∈ O(103) must be collected if there are slowly decaying modes that
pulsate with different frequencies. As a consequence the storage requirement
for each Cholesky factor is demanding and the SVD to compute the approx-
imate balanced modes might become computationally intractable. Moreover,
many inputs and outputs may have the same spatial structure and are located
close to each other. This is the situation for actuators and sensors in the three-
dimensional set-up sketched in figure 3.1. In such cases, the states triggered by
the impulse response of each input/output do not differ significantly from each
other. As a consequence the factors Xr,Yr become gradually ill-conditioned
for increasing number of snapshots, since the columns are nearly linearly de-
pendent. There is remedy for very large and ill-conditioned Cholesky factors
as first addressed by Gugercin et al. (2003) for the so called modified Smith’s
method. However, the “modified” method also applies to the method of snap-
shot for computing low-rank Cholesky factors.

4.4. Time stepping

The methods presented to compute global modes are all ”matrix-free“ and
based on flow field snapshots. These snapshots are obtained by abstract notion
of a time stepper g,

uk+1 = g(uk). (4.26)
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In practice, the implementation of a validated, three-dimensional and efficient
time-stepper to solve the time-dependent nonlinear Navier–Stokes equations is
a formidable task to undertake. The Navier–Stokes equations given by (2.1)
can be solved by splitting the task into a number of subproblems. Examples of
subproblems are a scheme for time advancement, method for spatial discretiza-
tion and how to address the pressure term in the Navier–Stokes equations (since
an evolution equation for the pressure is missing in explicit form, the equations
are not fully parabolic in time). Moreover, the choice of numerical method for
each subproblem depends on the complexity of the geometry, numerical accu-
racy, efficiency, ability to parallelize etc. For example, even small modifications
of a highly efficient parallelized Fortran implementation, where the different
subproblems are tightly coupled might turn out to be very time consuming
and prone to errors. In other cases, flexible codes for example implemented
using object-oriented design, makes the switch between different equations (lin-
ear, nonlinear, adjoint) simple and advanced algorithms (for computing global
modes, steady solutions) can easily be “wrapped” around the code.

4.4.1. Overview of Simson code

Essentially, all the results presented in this thesis are based on an existing sim-
ulation code called Simson. The main structure of the code and the simulation
parameters are given in the following. For details, the reader is referred to the
comprehensive user guide (Chevalier et al. 2007).

The approach adopted in the Simson code, is based on pressure-free formu-
lation of the Navier–Stokes equation (2.1). By applying the Laplace and curl
operators to the momentum equations given by equation (2.1a), the Navier–
Stokes equations in primitive variables u = (u, v, w) can be replaced with
a nonlinear advection-diffusion equation, describing quantities related to the
wall-normal component of the velocity and vorticity.

The Simson code implements a spectral algorithm, where the solution is
approximated by an expansion in Fourier functions in the wall-parallel direc-
tions (x, z) and Chebyshev polynomials in the wall-normal direction (y). In the
so called pseudo-spectral approach, the nonlinear advection term is computed
by forming products in physical space, whereas the linear diffusion term is
computed in Fourier space. Therefore, efficient transformations between phys-
ical and spectral space are performed at each time-step using FFT routines
and aliasing errors from the evaluation of the nonlinear terms are removed by
the 3/2-rule. For sufficiently smooth velocity fields, the spectral approach is
a significantly more accurate approximation compared to other discretization
methods, such as finite difference or finite element. To preserve the spectral
accuracy however, mapping of grid-points cannot be applied, and therefore
more complex geometries are difficult (and inefficient) to model. The time
advancement is a four-step third-order Runge-Kutta method for the nonlin-
ear advection term, and a second-order Crank-Nicolson method the the linear
diffusion term.
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Box Grid B.C.
Case Reδ∗

0
(Lx, Ly, Lz) (nx, ny, nz) y = 0/y = Ly

JCF 165 (75, 20, 30) (256, 201, 144) Parabolic/Neumann
2D-LIN-BL 103 (1000, 30, 1) (768, 101, 1) No-slip/Dirichlet
3D-LIN-BL 103 (1000, 30, 370) (768, 101, 120) No-slip/Dirichlet
3D-NLIN-BL 103 (1000, 30, 250) (768, 101, 256) No-slip/Neumann

Table 4.2. Parameters of the numerical simulations per-
formed in this thesis. For all simulations the fringe region
is 20% of the length of the domain (Lx).

4.4.2. Boundary conditions

Fourier expansion in the wall-parallel directions requires periodic boundary
conditions in x and z, i.e.

u(0, y, z) = u(Lx, y, z) u(x, y,−Lz/2) = u(x, y, Lz/2). (4.27)

However, since neither the boundary-layer flow nor the jet in crossflow are
periodic in the streamwise direction x, a “fringe” region can be added at the
downstream end of the computational box. In this region, the forcing function

F (u) = λf (x)(v − u), (4.28)

is applied. The desired inflow velocity is denoted by v, which for simulations
of boundary layer and the jet in crossflow is chosen as the laminar Blasius
boundary-layer profile. The fringe function λf (x) is identically zero inside the
physically relevant domain, and raises smoothly to order one inside the fringe
region. The length of the region with λf > 0 is about 20% of the complete
domain length. The fringe forcing has been thoroughly validated and we re-
fer to Nordström et al. (1999) for details on the convergence properties and
upstream influence of the method. The computation of the linear global eigen-
modes is slightly dependent on the fringe (shape of the forcing and position).
As discussed by Åkervik et al. (2008) the growth rate of individual damped
eigenvalues might depend on the outflow boundary condition. Moreover, there
are also additional modes in the global spectrum related to the fringe forc-
ing. However, these changes have been observed in the damped part of the
spectrum; due to the nature of the fringe forcing, there is no growing fringe
eigenmode to be expected.

For the simulation of disturbances evolving in the boundary layer, homo-
geneous no-slip condition is prescribed on the flat plate (y = 0). Far away from
the wall, in the free-stream the perturbation velocity is vanishingly small, where
a Dirichlet boundary condition can be imposed. The boundary conditions in
the wall-normal direction for the jet in crossflow are as follows. On the flat
plate, no-slip conditions for the wall-parallel velocity components u and w are
prescribed. The jet discharging into the crossflow is imposed by a wall-normal
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velocity

v(r, y = 0) =
Vjet

U∞
(1 − r2) exp(−(r/0.7)4) ,

with r being the distance from the jet center (xjet, zjet), normalized by half the
jet diameterD. This inflow profile corresponds to a (laminar) parabolic velocity
profile of the pipe flow, smoothened with a super-Gaussian function to allow for
an efficient treatment with the spectral discretization of the simulation code.
At top boundary of the computational box y = Ly the following Neumann
condition is imposed,

∂u

∂y

∣
∣
∣
∣
y=Ly

=
∂U

∂y

∣
∣
∣
∣
y=Ly

, (4.29)

where U(x, y) is a Blasius solution.

In table 4.2 the parameters of the simulations performed in this thesis are
listed.



CHAPTER 5

Conclusions

This chapter contains an overview of the results of this thesis and a few sug-
gestions for future work.

5.1. Analysis of complex flows

For complex flow configurations, assumptions like periodicity in a direction, a
separation in space or time between the development of perturbations and the
basic flow and other similar simplifications are not obvious to make. In many
applications, there are a number of flow mechanisms and dynamic structures
developing at different temporal and spatial scales. Moreover, the various struc-
tures might be tightly coupled, competing and interacting with each other. To
get a complete picture of the dynamical structures that are present and their
significance to the overall flow, it is necessary to adopt a global viewpoint.

The work presented in this thesis is among the first to apply a linear
and a nonlinear analysis, using tools that have a theoretical foundation, to
a fully three dimensional and highly unsteady flow, namely the jet in cross-
flow. In practice, the analysis is performed by the use of DNS in conjunction
with “matrix-free” techniques from numerical linear algebra (e.g. Arnoldi and
DMD). The work on the jet in crossflow can be considered as a “proof-of-
concept” as it shows that is possible and numerically feasible to perform linear
and nonlinear analysis of complex flows without making a number of simplifi-
cations on the geometry, the fluid properties or the flow parameters.

In the study performed here, the unsteady dynamics of the jet in crossflow
was broken into two parts; the linear stability analysis of the steady flow and
the nonlinear attractor analysis of the unsteady flow. The results and phys-
ical insights gained can be summarized as follows. Analysis of the computed
global eigenmodes and the unstable steady solution of the jet in crossflow at a
velocity ratio R = 3 have revealed the presence of three types of elementary in-
stabilities: elliptic instability; Kelvin-Helmholtz instability and a von Kármán
type of instability. These instabilities have been studied extensively on simple
canonical flows, and it is important to identify them in more complex flows,
since they provide an understanding of the elementary physical mechanism for
perturbation growth. This knowledge is indispensable for the modification of
the flow behavior by external means, since the perturbations are responsible
for the initial stage of the transition between different flow regimes.

70
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In flows exhibiting vortex shedding, identifying precisely where in the do-
main the oscillations have a significant effect is useful both for the physical
understanding and for applications. For the jet in crossflow, placing probes
in single points in the domain gave supporting evidence of two distinct sus-
tained global oscillations: one high-frequency associated with the jet flow and
one low-frequency associated with the wall region. However, probe placement
is a local analysis, and collecting spectral data of each relevant spatial point
in a three-dimensional domain is an impossible task. In this thesis, we have
presented a method based on spectral analysis of the Koopman operator – that
can be applied to experimental data as well – to extract global flow structures
with periodic motion. The analysis identified a shear mode and wall mode
corresponding to the high and low oscillations respectively.

The work presented in this thesis provides a number of future research
directions. We outline a few examples.

Sensitivity analysis and passive control: Recent theoretical results (Gi-
annetti & Luchini 2007) show that much physical insight can be gained by
investigating the sensitivities of various flow properties to different parameters.
The methods have their roots in calculus of variations and generally involve
adjoint-based analysis and optimization. By solving the adjoint equations we
can locate regions where the flow is most sensitive to forcing and we can com-
pute the perturbations that are the most dangerous to the flow.

Oscillator versus amplifier region: Absolute and convective instabilities
are local concepts applicable to weakly non-parallel flows and is not straight-
forward to conduct such an analysis for the jet in crossflow. However, due to
the fact that globally unstable flows have a region or pocket of local absolute
instability somewhere in the flow (Chomaz et al. 1991) and that this pocket is
connected to a region of significant backflow (Hammond & Redekopp 1998), it
is likely that the separated region acts as an oscillator in the jet in crossflow.
A local analysis of the steady solution could reveal regions in the flow that act
as oscillators and regions that act as amplifiers.

Bifurcation analysis: We have performed linear global stability analysis
of a steady solution of the jet in crossflow at a single velocity ratio. To fully
understand the type of bifurcation that the flow undergoes, a more encompass-
ing global stability analysis of the jet in crossflow, where the velocity ratio is
varied should be performed. If the critical velocity ratio is found, a weakly non-
linear analysis could be employed by tracing a global instability in time from
its inception through its small-amplitude linear stage to saturation in order to
evaluate the coefficients of the Landau equation.

Koopman modes of the transient regime: The theory based on the Koop-
man operator presented in this thesis considered the asymptotic nonlinear dy-
namics, whereas the linear analysis considered the dynamics in a small neigh-
borhood of the steady solution. In the transition from a steady to unsteady
flow, the transient time from the unstable fixed point to the attractor has not
been considered. It could be possible to incorporate the spectral theory of the
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Koopman operator to account for this regime. An accurate description of the
transient regime using global modes is important for reduced-order modeling
of globally unstable flows (Noack et al. 2003).

5.2. Laminar-turbulent transition delay

Many aspects in flow control have traditionally been based on intuition and
physical insight into the specific flow configuration. There are a number of sit-
uations where this approach has proven successful. Nevertheless, there is a well
established theory and a large number of methods for a more systematic ap-
proach to flow control. The advantages are that even small improvements in the
control performance in many applications may have important consequences.
For instance, the world-wide shipping consumes over 2.1 billion barrels of oil
per year and the airline industry consumes more than 1.5 billion barrels per
year. Finding the best possible solution, given certain constrains, that results in
a few percents increase of performance can save a lot of money and resources.
The work in this thesis takes us one step closer to incorporating theoretical
tools into the flow control community.

The starting point of modern optimal and robust control design is an input-
output formulation. Given the physical distribution of the inputs and outputs,
the control design process amounts to the determination of input signals when
output signals are given. Therefore, for successful control design it is suf-
ficient to capture only a fraction of the dynamics, namely the relationships
between the input and output signals. We have built a model of low dimension
that captures the input-output behavior of the flat-plate boundary layer, and
used this model for optimal feedback control design. We have shown that by
using systematic methods from control theory in combination with localized
sensing/actuation, it is possible to reduce the growth of small-amplitude dist-
urbances in the boundary layer. It was demonstrated that the energy of two
and three-dimensional disturbances are damped by an order of magnitude.

Although the significance of the order-of-magnitude reduction of perturba-
tion energy for transition control remains to be tested, such a drastic energy
reduction is likely to result in a delay of the initial stages of the transition pro-
cess. If the actuators and sensors represent realistic models of physically imple-
mentable devices, it is possible to use the low-dimensional controller designed
numerically in laboratory experiments. The fact that we have modeled the
inputs and outputs as volume forcing does not mean that they are unrealistic
(see Bagheri et al. 2009a, for a similar analysis, but instead of volume forcing,
the actuators are inhomogeneous boundary conditions). It is the effect of an
actuator that is important to model, and not the actuator itself. Therefore, the
action that the volume forcing has on the flow, could possibly be reproduced
for example using plasma actuators. Another issue that needs to be taken into
account is control robustness. If the numerically-designed controller is used
in laboratory experiments, it is unavoidable that some parameters (such as
Reynolds number and pressure gradients) will mismatch. Fortunately, modern
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developments in robust control theory take rigorously into account uncertain-
ties that may be present in the design process. The method for optimal control
presented in this thesis, can be incorporated into a robust control framework.
Another way that numerical investigations can be useful for wind-tunnel ex-
periments, is by providing guidelines for the shape and spatial distribution of
actuators and sensors. In this sense, one can set-up experiments after evalu-
ating a large number of numerical simulations, in order to understand how to
design and place actuators and sensors.

We have focused on the flat-plate geometry which still poses a computa-
tional challenge, however, the flow control techniques presented in this thesis
do not rely on physical insight into the specific flow configuration and can in
principle be applied to any geometry. A similar analysis on more complex
flows, such as flows in ducts, corners, diffusers and on elliptic leading edges are
waiting to be undertaken.
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Bagheri, S., Åkervik, E., Brandt, L. & Henningson, D. S. 2009a Matrix-free
methods for the stability and control of boundary layers. AIAA J. 47, 1057–1068.

Bagheri, S., Brandt, L. & Henningson, D. S. 2009b Input-output analysis, model
reduction and control design of the flat-plate boundary layer. J. Fluid Mech. 620,
263–298.

Bagheri, S., Hœpffner, J., Schmid, P. J. & Henningson, D. S. 2009c Input-
output analysis and control design applied to a linear model of spatially devel-
oping flows. Appl. Mech. Rev. 62 (2).

Bagheri, S., Schlatter, P., Schmid, P. J. & Henningson, D. S. 2009d Global
stability of a jet in crossflow. J. Fluid Mech. 624, 33–44.

Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett.
75, 750–756.

Barkley, D., Gomes, M. G. & Henderson, R. D. 2002 Three-dimensional insta-
bility in flow over a backward-facing step. J. Fluid Mech. 473, 167–190.

77



78 BIBLIOGRAPHY

Batchelor, G. 1967 An Introduction to Fluid Dynamics. Cambridge University
Press.

Bewley, T. R. 2001 Flow control: New challenges for a new renaissance. Progr.
Aerospace. Sci. 37, 21–58.

Bewley, T. R. & Liu, S. 1998 Optimal and robust control and estimation of linear
paths to transition. J. Fluid Mech. 365, 305–349.

Blasius, P. 1908 Grenzschichten in flussigkeiten mit kleiner reibung. Z. Math. Phys.
56 (1).

Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S. 2007 A
pseudo spectral solver for incompressible boundary layer flows. Trita-Mek 7.
KTH Mechanics, Stockholm, Sweden.

Chomaz, J. M. 2005 Global instabilities in spatially developing flows: Non-normality
and nonlinearity. Ann. Rev. Fluid Mech. 37, 357–392.

Chomaz, J. M., Huerre, P. & Redekopp, L. G. 1987 Models of hydrodynamic
resonances in separated shear flows. Symposium on Turbulent Shear Flows, 6th,
Toulouse, France.

Chomaz, J. M., Huerre, P. & Redekopp, L. G. 1991 A frequency selection crite-
rion in spatially developing flows. Stud. Appl. Math. 84, 119-114.

Ding, J. 1998 The point spectrum of Frobenius-perron and Koopman operators.
Proc. Amer. Math. Soc. 126 (5), 1355–1361.

Doyle, J. C. 1978 Guaranteed margins for LQG regulators. IEEE Trans. Automat.
Control 23, 756–757.

Doyle, J. C., Glover, K., Khargonekar, P. P. & Francis, B. A. 1989 State-
space solutions to standard H2 and H∞ control problems. IEEE Trans. Automat.
Control 34, 831–847.

Dullerud, E. G. & Paganini, F. 1999 A course in robust control theory. A convex
approach. Springer Verlag, New York.

Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet.
J. Fluid Mech. 279, 1–47.

Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of
the cylinder wake. J. Fluid Mech. 581, 167–197.

Glover, K. 1999 All optimal Hankel-norm approximations of linear multivariable
systems and the l∞-error bounds. Int. J. Control 39, 1115–1193.

Goldstein, M. E. & Hultgren, L. S. 1989 Boundary-layer receptivity to long-wave
free-stream disturbances. Ann. Rev. Fluid Mech. 21 (1), 137–166.

Green, M. & Limebeer, J. N. 1995 Linear Robust Control . Prentice Hall, New
Jersey.

Grundmann, S. & Tropea, C. 2008 Active cancellation of artificially introduced
Tollmien–Schlichting waves using plasma actuators. Exp. Fluids 44 (5), 795–806.

Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical system
and Bifuracations of vector fields. Springer Verlag, New York.

Gugercin, S., Sorensen, D. & Antoulas, A. 2003 A modified low-rank Smith
method for large-scale Lypunov eqations. Num. Algorithms. 32, 27–55.

Hammarling, S. J. 1982 Numerical solution of the stable, non-negative definite
Lyapunov equation. IMA J. Numer. Anal. 2, 303–323.

Hammond, D. A. & Redekopp, L. G. 1998 Local and global instability properties
of separation bubbles. Eur. J. Mech. B/Fluids 17 (2), 145 – 164.



BIBLIOGRAPHY 79

Hammond, E. P., Bewley, T. R. & Moin, P. 1998 Observed mechanisms for
turbulence attenuation and enhancement in opposition-controlled wall-bounded
flows. Phys. Fluids 10 (9), 2421–2423.
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This review presents a framework for the input-output analysis, model reduc-
tion and control design for fluid dynamical systems using examples applied
to the linear complex Ginzburg-Landau equation. Major advances in hydro-
dynamics stability, such as global modes in spatially inhomogeneous systems
and transient growth of non-normal systems is reviewed. Input-output anal-
ysis generalizes hydrodynamic stability analysis by considering a finite-time
horizon over which energy amplification, driven by a specific input (disturban-
ces/actuator) and measured at a specific output (sensor), is observed. In the
control design the loop is closed between the output and the input through
a feedback gain. Model reduction approximates the system with a low-order
model, making modern control design computationally tractable for systems
of large dimensions. Methods from control theory are reviewed and applied
to the Ginzburg-Landau equation in a manner that is readily generalized to
fluid mechanics problems, thus giving a fluid mechanics audience an accessible
introduction to the subject.

1. Introduction

Whereas stability theory has long occupied a central role in fluid mechanics re-
search, control theory has only recently been applied to fluid systems. Despite
its long history, stability theory has undergone remarkable changes over the
past decades. The incorporation of short-term instabilities into a traditionally
asymptotic stability concept, the equal treatment of stability and response be-
havior within the same mathematical framework, and use of system-theoretical
tools to probe the disturbance behavior of fluid systems have reinvigorated
hydrodynamic stability theory and developed it into a modern tool of fluid
dynamic research. Especially the formulation of the governing equations in
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Marseille, F-13384 Marseille, France
2Laboratoire d’Hydrodynamique (LadHyX), CNRS-École Polytechnique,
F-91128 Palaiseau, France
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state-space form combined with an input-output viewpoint of the perturbation
dynamics has brought the two fields of stability and control theory closer to-
gether. Whereas stability theory is concerned with all aspects of the open-loop
dynamics of the governing equations, control theory connects the output to the
input and focuses on the closed-loop characteristics — including optimal design
and performance analysis — of the underlying dynamical system. These two
closely related disciplines, and the unifying formulation that connects them, are
the subject of this review. Due to the vastness of these two fields, we restrict
ourselves to concepts of direct relevance to fluid dynamical systems as well as to
a simple model equation. The Ginzburg-Landau equation, a well-known model
equation displaying a great variety of phenomena observed in fluid systems, will
be used to demonstrate and exemplify concepts and techniques from stability,
systems and control theory.

The recognition that short-term instabilities play an important role in
fluid dynamical systems can be traced back nearly two decades when scien-
tists searched for disturbances that optimize energy amplification over a finite
time span (Farrell 1988; Butler & Farrell 1992; Reddy et al. 1993; Reddy &
Henningson 1993). These disturbances did not resemble the most unstable
eigenvectors of the system which led to the development of a theoretical foun-
dation to describe short-term nonmodal phenomena (Trefethen et al. 2005;
Farrell & Ioannou 1996; Schmid & Henningson 2001; Schmid 2007). In fact,
even if the flow is asymptotically stable, substantial amplification of the input
signal (initial condition or external forcing) into an output signal (energy) can
occur. By now, the associated theory has matured into an important compo-
nent for understanding the transition process from laminar to turbulent fluid
motion and has been able to explain a variety of observed fluid structures in
transitional and turbulent shear flows (Schmid & Henningson 2001). In a fur-
ther step, an input-output framework has been suggested Jovanovic & Bamieh
(2005) which brings the analysis of stability characteristics closer to a system
theoretic interpretation, with impulse response, frequency response and trans-
fer functions as the principal tools of investigation.

At the same time, flow control based on control theory has emerged as a
new discipline of fluid mechanics (Joshi et al. 1997; Bewley & Liu 1998; Lee
et al. 2001; Högberg et al. 2003a,b; Hœpffner et al. 2005; Chevalier et al. 2006,
2007; Åkervik et al. 2007; Monokrousos et al. 2008). Starting with simple
feedback control laws and full-state information control, it has progressed to-
ward more realistic configurations by incorporating the estimation problem and
partial-state information control. During the control design process, a strategy
is determined that feeds information from the measurements (sensors) back to
the input signal (actuators) such that a given control objective is achieved. The
accompanying theoretical basis, adapted from control theory (Kwakernaak &
Sivan 1972; Anderson & Moore 1990; Lewis & Syrmos 1995; Zhou et al. 2002),
to determine these strategies has evolved substantially, and flow control has ad-
vanced into an independent and active field of fluid dynamics. Comprehensive
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Figure 1. Overview of the open-loop and closed-loop analysis
performed in this review. The response in terms of the flow
state, kinetic energy and sensor signal to impulse, harmonic
and stochastic inputs of the parallel, non-parallel, convectively
unstable and globally unstable Ginzburg-Landau equation is
investigated in sections 2 and 3. Model reduction of the system
is performed in section 4 followed by optimal (LQG), robust
(H∞) and reduced-order control design in section 5.

accounts on recent progress in the rapidly expanding field of flow control can
be found in Gal-El-Hak (1996); Bewley (2001); Kim (2003) and Kim & Bewley
(2007).

The input-output framework provides not only a convenient way of analyz-
ing stability and receptivity characteristics (Hill 1995; Luchini & Bottaro 1998)
of fluid systems, it represents the natural starting point for control design. Sta-
bility and receptivity analysis as well as control design can thus be accomplished
within the same formal setting. This unified analysis shall be exemplified in
this review article by investigating the stability and response properties of the
Ginzburg-Landau equation and by devising effective control strategies includ-
ing the evaluation of their efficiency and performance. The Ginzburg-Landau
equation has frequently been used as a model for instabilities in fluid systems,
see e.g. Huerre & Monkewitz (1990) and Chomaz (2005). We will use it here
with two different sets of parameters: one set to model globally unstable flows
(so-called oscillators), and another set to describe convectively unstable flows
(so-called noise amplifiers). The Ginzburg-Landau equation has also been the
subject to several flow control studies (Monkewitz 1989; Park et al. 1993; Lauga
& Bewley 2003, 2004; Cohen et al. 2005).

The review is organized as follows (see also figure 1): we start with a
summary of stability results for the Ginzburg-Landau equation in section 2
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where results for both asymptotic behavior and transient growth will be pre-
sented. In section 3 we investigate the input-output behavior of linear systems
in general, and the Ginzburg-Landau equation in particular. The response to
impulsive, harmonic and stochastic forcing will be considered, and the con-
cepts of controllability and observability will be introduced. In section 4 we re-
view the projection method of model reduction using global eigenmodes, POD
modes and balanced truncation. Section 5 deals with the control design for
the Ginzburg-Landau equation. We present a detailed derivation of the LQG
(Linear Quadratic Gaussian) control framework, raise the important issue of
actuator and sensor placement, and conclude by discussing robust control. Con-
cluding remarks and a summary of the presented material are offered in the
last section.

2. Asymptotic and transient behavior

2.1. Parallel flows — fundamental concepts

Before applying modern techniques of hydrodynamic stability theory (Schmid
& Henningson 2001) to the full Ginzburg-Landau model describing spatially
varying flows, we will first introduce and analyze a simpler version of the
Ginzburg-Landau equation. By neglecting the spatial dependence of the flow,
thus arriving at the parallel (i.e. constant-coefficient) Ginzburg-Landau equa-
tion, we will apply concepts of linear stability analysis to describe the growth
and decay of disturbances in time and/or space.

The parallel Ginzburg-Landau equation on the infinite interval −∞ < x <
∞ reads

∂q

∂t
= Aq =

(

−ν ∂
∂x

+ γ
∂2

∂x2
+ µ

)

q, (1a)

q(x, t) → 0 as x→ ±∞, (1b)

with initial condition q(x, 0) = q0(x) and A as the Ginzburg-Landau operator.
The solutions q(x, t) are complex valued and the inner-product is defined as
〈f, g〉 =

∫∞

−∞
g∗fdx. We occasionally refer to the this norm as the energy

norm. The superscript ∗ denotes the complex conjugate. The convective and
the dissipative nature of the modeled flow is represented by the complex terms
ν = U+2icu and γ = 1+icd, respectively. The above equation is of convection-
diffusion type with an extra real-valued term µ = µ0−c2u to model the presence
of exponential instabilities. The significance of the complex terms cd and cu
will become clearer when we decompose the system into wave-like solutions.

We first investigate the linear stability of the parallel Ginzburg-Landau
equation, i.e. the spatio-temporal evolution of the perturbation q(x, t) about
the basic state qB(x, t) = 0. As introduced by Briggs (1964), this spatio-
temporal evolution of perturbations in fluid flow can be described by three
basic types of local behavior: (i) stable, (ii) convectively unstable and (iii)
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Figure 2. Local stability concepts based on the linear re-
sponse of the parallel Ginzburg-Landau equation to a tempo-
rally and spatially localized pulse at t = 0 and x = 0, displayed
in the x-t-plane. (a) stable configuration µ0 ≤ 0 : the solution
at t = t1 > 0 is damped everywhere; (b) convectively unstable
configuration 0 < µ0 < µt : the solution at t = t1 is ampli-
fied, but is zero along the ray x/t = 0; (c) absolutely unstable
configuration µt ≤ µ0 : the state is amplified at t = t1 and
nonzero along the ray x/t = 0.

absolutely unstable. Our model equation, in fact, has by construction the min-
imum number of required terms to give rise to a successive transition through
the three types of instability.

The three types of disturbance behavior can be probed by computing the
response to a spatially and temporally localized pulse as this pulse evolves in
space and time. Figure 2 demonstrates the three types of responses that may be
observed. First, the amplitude may asymptotically decay in time throughout
the entire domain (see figure 2a). In this case, the basic flow is deemed linearly
stable. Second, a convectively unstable flow is shown in figure 2(b); in this
case, the perturbation grows in time, but is convected away from the location
at which it was generated, so that the response eventually decays to zero at
every spatial location. Finally, for an absolutely unstable flow (see figure 2c)
the perturbation is amplified both upstream and downstream of the location it
was generated and thus contaminates the entire spatial domain over time.

The response behavior to a δ-function applied at (x, t) = (0, 0) is equivalent
to the Green’s function or impulse response of the complex Ginzburg-Landau
equation. We will return to this concept in a subsequent section of this review.
In what follows, we will first exploit the homogeneity in space and time and
seek solutions in the wavenumber/frequency (Fourier) space. The dispersion
relation linking wavenumber and frequency then fully describes the evolution
of wavelike (and by superposition) non-wavelike solutions. Criteria for stability
or instability of the solutions, as well as the type of instability, follow easily
from the dispersion relation.

We express the solutions q(x, t) as a superposition of normal modes

q̃(k, ω) exp(ikx− iωt) (2)
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with wavenumber k, frequency ω, and (complex) amplitude q̃. The imaginary
part of k and ω determines the stability of the associated solution, whereas the
real part describes the oscillatory behavior in x and t, respectively. Introducing
this normal mode decomposition into (1) results in the dispersion relation,
D(k, ω;µ0) = 0, which takes the form

ω = Uk + cdk
2 + i(µ0 − (k − cu)2). (3)

Within the temporal framework, an initial periodic perturbation with real
wavenumber k grows exponentially in time when µ0 in (3) exceeds (k − cu)2,
i.e. when exponential growth exceeds diffusion. In this case, ωi(k) > 0 and
the associated normal mode q̃ exhibits exponential temporal growth. Further-
more, we observe a finite interval k ∈ [cu −√

µ0, cu +
√
µ0] of unstable spatial

wavenumbers. A simple criterion for linear stability of the flow can be deduced
by considering the growth rate ωi = ωi,max of the most unstable wave k = kmax

in this interval. For the dispersion relation (3), we observe that kmax = cu and
the corresponding growth rate is ωi,max = µ0. Thus, the condition for a local
linear instability becomes,

µ0 ≤ 0 locally stable, (4a)

µ0 > 0 locally unstable. (4b)

In figure 3(a), the neutral curve, defined by ωi,max = 0, is displayed as a
function of µ0 and k. We see that the range of unstable wavenumbers increases
as µ0 increases.

To further investigate the two types of locally unstable configurations —
convectively unstable and absolutely unstable — it is instructive to consider
perturbations that consist of a superposition of normal modes near k = cu
which form a travelling wavepacket. From the dispersion relation (3) we con-
clude that individual wave components of this wavepacket travel at the phase
velocity

ωr/k = U + cdk, (5)

whereas the wavepacket itself, and therefore the perturbation, travels at the
group velocity

Umax =
∂ω

∂k
= U + 2cdcu. (6)

In general, the group velocity is complex but carries a physical meaning when
it is real, which is always the case for the most unstable wavenumber cu.

The disturbance behavior in the unstable region depends on the compe-
tition between convection and instability. For the Ginzburg-Landau equation
we find that the flow is convectively unstable if Umax > 2

√
µ0|γ|, i.e., when

the group velocity exceeds the exponential instability of the unstable region
(for constant diffusion). This means that, for convection-dominated flows, per-
turbations grow as they enter the unstable domain but are quickly convected
downstream, beyond the unstable region where they decay, and the basic state
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Figure 3. (a) The neutral stability curve for the parallel
Ginzburg-Landau equation (with cu = 0.2) in the (µ0, k)-
plane. (b) The neutral absolute stability curve for the parallel
Ginzburg-Landau equation (with γ = 1− i) in the (µ0, Umax)-
plane.

relaxes back to its original state (see figure 2b). However, when µ0 exceeds the
critical value of

µt =
U2

max

4|γ|2 , (7)

there exists an unstable wavelength with zero group velocity. As the pertur-
bation is amplified in the unstable domain, it will gradually contaminate the
entire physical domain and render the flow absolutely unstable. In figure 3(b),
the neutral curve, defined by µt = 0, is displayed as a function µ0 and Umax.
The critical value µt is obtained by considering a wavepacket with a zero group
velocity ∂ω/∂k = 0 (see Huerre 2000, for an exact derivation). The associated
growth rate ωi = ωi,0 is the absolute growth rate. Unlike for our case, the
absolute frequency ω0 for realistic flow configurations can seldom be found in
analytic form. Instead, one has to resort to Briggs’ method (Briggs 1964), see
also Huerre (2000) which amounts to locating pinch points in the complex k-
plane. In addition to the criterion of zero group velocity, one must ensure that
the two spatial branches k+(ω) and k−(ω) (for real ω) in (3) originate from the
upper and lower halves of the complex k-plane.

2.2. Spatially developing flows — a global approach

Despite the limitations of a parallel flow assumption, the above results carry
over to weakly non-parallel flows as described in Monkewitz (1990); Huerre
& Monkewitz (1990); Chomaz et al. (1991); Le Dizés et al. (1996). Within
a Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation, one can draw
conclusions about the global stability behavior from investigating the disper-
sion relation locally. Many realistic flows, however, are strongly non-parallel



94 S. Bagheri, J. Hœpffner, P.J. Schmid & D.S. Henningson

Figure 4. (a) The spatio-temporal evolution of a distur-
bance in a globally unstable flow. The disturbance grows ex-
ponentially until the cubic nonlinear term −|q|2q (see Chomaz
et al. 1990; Chomaz 2005, for details of the nonlinear Ginzburg-
Landau equation) causes the disturbance to saturate and os-
cillate. (b) The energy that corresponds to the evolution in
(a) is shown in red, and the linear exponential growth for the
linear Ginzburg-Landau equation is shown in dashed black.

which requires us to resort to a global stability analysis. In this section, we will
adopt this global point of view to investigate the stability properties of a sim-
ple model flow which depends on the flow direction x. We will see that a rich
disturbance behavior is uncovered which has its roots in the non-normality of
the underlying evolution operator (Trefethen 1997; Trefethen & Embree 2005;
Davies 2002). As a first step, one solves a global eigenvalue problem. Assum-
ing completeness, any perturbation can then be decomposed into the global
eigenfunctions of the governing operator. If there exists an unstable global
mode, it is amplified until it saturates due to nonlinearity and may lead to
self-sustained oscillations in the flow (figure 4a, b). The short-time, or tran-
sient, behavior can also be captured by global modes (Cossu & Chomaz 1997;
Henningson & Åkervik 2008), if one considers a superposition of them. For a
non-normal stability operator with corresponding non-orthogonal global modes
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Figure 5. (a) Linear transient growth of a perturbation in
space and time: an optimal initial perturbation grows as it
enters the unstable domain at branch I at x = −8.2 until it
reaches branch II at x = 8.2. The two dashed lines depict
branch I and II. (b) The corresponding optimal energy growth
of the convectively unstable flow in (a).

a superposition of decaying global modes can result in a large transient am-
plification of perturbation energy (figure 5a, b). As demonstrated by Cossu &
Chomaz (1997), this transient behavior often corresponds to a local convective
instability when using a local approach.

The linear complex Ginzburg-Landau equation serves as a simple model for
capturing both the short-time and long-time evolution of small perturbations
q(x, t) in spatially developing flows. We will use this model equation to illus-
trate fundamental concepts of linear global stability analysis. If the parameter
µ, responsible for the local instability in equation (1), is now taken as a func-
tion of x, the Ginzburg-Landau equation becomes a variable-coefficient partial
differential equation modeling non-parallel flows (Hunt & Crighton 1991). The
Ginzburg-Landau equation with µ as a linear function in x can be used to
mimic flows on the interval [0,∞) as shown in Chomaz et al. (1988). We will
adopt the commonly used quadratic function (Hunt & Crighton 1991; Cossu &
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Chomaz 1997),

µ(x) = (µ0 − c2u) + µ2
x2

2
, µ2 < 0. (8)

The flow is now susceptible to instabilities only when µ(x) > 0, which defines a

confined unstable region in the x-direction given by −
√

−2(µ0 − c2u)/µ2 < x <
√

−2(µ0 − c2u)/µ2. The upstream and downstream edge of the unstable domain
are referred to as branch I and II, respectively, and are indicated by the two
black dashed lines in figures 4(a) and 5(a). The extent of this region depends
on the parameter µ2 which can be interpreted as the degree of non-parallelism
of the flow. The operator A in (1) is non-normal if the term involving µ2 and
the convection term ν are non-zero. As demonstrated in Cossu & Chomaz
(1997) and Chomaz (2005) the smaller µ2 and/or the larger ν the stronger the
non-normality of the operator A. The parameter µ2 thus plays a dual role: for
large values of µ2 the system is strongly non-parallel but weakly non-normal,
while for very small values of µ2 the system represents weakly non-parallel but
strongly non-normal flow. For the latter case, a local analysis may be more ap-
propriate as the resulting global eigensystem is rather ill-conditioned (Chomaz
2005; Trefethen & Embree 2005).

A global mode of the Ginzburg-Landau equation is defined as

q(x, t) = φ(x) exp(λt) (9)

and is a solution to the eigenvalue problem

λφ(x) = Aφ(x) φ(x) → 0 as x→ ±∞, (10)

where A is the operator defined in (1). The flow is globally unstable when
the real part of any eigenvalue λ is positive which results in self-excited linear
oscillations in the flow of a frequency given by the imaginary part of λ. For the
case µ2 6= 0 the eigenvalue problem (10) for the Ginzburg-Landau equation (1)
can be solved analytically (Chomaz et al. 1987). One obtains

λn = (µ0 − c2c) − (ν2/4γ)− (n+ 1/2)h, (11a)

φn(x) = exp{(ν/2γ)x− χ2x2/2}Hn(χx), (11b)

with h =
√−2µ2γ, n = 0, 1 . . . and Hn as the nth Hermite polynomial, scaled

with χ = (−µ2/2γ)
1/4. Global instability is determined by the sign of the first

eigenvalue (n = 0) which yields the criterion for global instability as µ0 > µc

where

µc = µt +
|h|
2

cos

(
Arg γ

2

)

(12)

and µt is the threshold value for absolute instability (7). The term Arg denotes
the phase angle of γ. We therefore conclude from (12) that the threshold for a
global instability is higher than the one for an absolute instability. Formulated
in another way, an absolute instability is a necessary condition for a global
instability.
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The short-time behavior of a disturbance cannot be predicted by studying
individual eigenmodes. Instead, a more detailed analysis of the properties of
the stability operator A is necessary. When µ2 6= 0 and ν 6= 0 the Ginzburg-
Landau operator A is non-self-adjoint (Davies 2002), i.e., 〈q1,Aq2〉 6= 〈Aq1, q2〉.
As a consequence, the global modes are non-orthogonal 〈φn, φm〉 6= δnm, and
although they may form a complete basis, they are nearly colinear and their
superposition may lead to large transient growth (figure 5a). We will study
this issue in more detail by considering an expansion in global modes. To this
end, we find the adjoint global modes as

ψn(x) = exp{(−ν∗/γ∗)x}φ∗n(x) (13)

which satisfy the adjoint eigenvalue problem

λ∗nψn(x) = A+ψn(x), (14)

where

A+ = ν∗
∂

∂x
+ γ∗

∂2

∂x2
+ µ∗(x) (15)

with boundary condition ψn(x) → 0 as x → ±∞. The superscript ∗ denotes
the complex conjugate. The adjoint global modes ψn are bi-orthogonal to the
global modes (11) according to

〈ψn, φm〉 = Nnmδn,m (16)

with Nnm as a normalization factor that we choose such that ‖φn‖ = ‖ψn‖ = 1.
The adjoint mode (13) distinguishes itself from its direct counterpart (11b)
mainly by the sign of the basic flow convection term ν. This manifests itself
by a characteristic separation of the direct and adjoint global mode in space.
In figure 6(a, b) the two first direct and adjoint global modes of the Ginzburg-
Landau equation are shown where the separation in x is seen to increase for
higher modes, until the support of the direct and adjoint mode is nearly disjoint.
Consequently, Nnn = 〈φn, ψn〉 becomes increasingly small, a phenomenon we
shall investigate further in what follows.

We continue by stating that a sequence of global modes {φn}∞n=0 forms a
basis if any solution of the Ginzburg-Landau equation has a norm-convergent
expansion

q(x, t) =

∞∑

n=0

κnφn(x) exp(λnt), (17)

where the expansion coefficients κn are obtained using the adjoint global modes
and the initial condition q0 according to

κn =
〈q0, ψn〉
〈φn, ψn〉

. (18)

The denominator of the above expression, i.e. Nnn, becomes very small when
the direct and adjoint global modes have nearly disjoint spatial support. In this
case, the expansion coefficients (18) of q become large. Although the amplitude
of all stable global modes decreases monotonically in time, their superposition
produces a wavepacket that transiently grows in time as it propagates in space.
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Figure 6. The absolute value of the first (a) and second (b)
global (black lines) and adjoint eigenmode (dashed lines) of
the Ginzburg-Landau equation. The real part of the modes
are in dotted lines. The gray area marks the region of insta-
bility

Although it is possible (Ehrenstein & Gallaire 2005; Åkervik et al. 2007,
2008; Henningson & Åkervik 2008), in practice the short-time amplification of
disturbances is rarely computed using global modes. Instead one computes the
norm of the exponential matrix (Trefethen & Bau 1997), ‖eAt‖, as we shall
demonstrate next.

2.3. Optimal energy growth and resolvent norms

For sufficiently large transient amplifications nonlinear effects can no longer be
neglected, and, in real flows, more complex instabilities or transition to tur-
bulence are often triggered. For this reason it seems important to investigate
the most dangerous initial condition that results in a maximum energy ampli-
fication over a specified time interval (Reddy et al. 1993; Reddy & Henningson
1993; Farrell 1988; Corbett & Bottaro 2001; Andersson et al. 1999; Luchini
2000).
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Subcritical Supercritical

{µ0, µ2} {0.38,−0.01} {0.41,−0.01}
{ν, γ} {2 + 0.2i, 1 − i} {2 + 0.2i, 1 − i}
{xI , xII} {±8.2} {±8.2}
{xw, xs, xu, s} {−11, 0,−3, 0.4} {−11, 9,−9, 0.1}
{R,W,G, γ0} {1, 1., 0.1/1.0, 9} {1, 0.1, 9}

Table 1. Parameters {µ0, µ2}, {ν, γ} of the Ginzburg-Landau
equation given in (1) and (8). The critical values for global and
absolute stability are µc = 0.3977 and µt = 0.32, respectively.
External disturbances (B1), sensor (C2) and actuator (B2) are
Gaussian functions (see equations 108) with mean given by
xw, xs and xu, respectively and a width of s = 0.4. Design
parameters {R,W,G, γ0} for the LQG- and H∞-compensators
are the control penalty (R), the covariance of the disturbance
(W ) and sensor noise (G), and a bound on the ∞-norm, (γ0).

For simplicity, we will formulate and present results using the discrete
Ginzburg-Landau operator A. See Appendix A for details of the numerical ap-
proximation of the operator A. The continuous approach can be found in Tre-
fethen & Embree (2005). The values of the Ginzburg-Landau parameters used
in the computations that follows can be found in table 1.

The discrete energy norm given by (107) can, after a Cholesky decom-
position of the energy weight matrix M = FHF, be related to the standard
Euclidean norm of a disturbance by

E(t) = ‖q‖2
M = ‖Fq‖2

2. (19)

We can now define the maximum transient growth of the perturbation
energy at time t as

Emax(t) = max
‖q0‖>0

‖q(t)‖2
M

‖q0‖2
M

(20)

= max
‖q0‖>0

‖FeAtq0‖2
2

‖Fq0‖2
2

= ‖FeAtF−1‖2
2 = σ2

1

where σ1 is determined from a singular value decomposition,

FeAtF−1 = UΣV H , Σ = diag{σ1, . . . , σn}. (21)

The above expression contains an optimization over all possible initial condi-
tions, and the peak value of σ2

1(t) is the maximum energy amplification over
time. Optimal initial disturbances can be calculated according to q0 = F−1V1

where V1 is the right principal singular vector of the SVD in equation (21).
The maximum growth and the corresponding optimal disturbance can also be
obtained from power iterations (Andersson et al. 1999; Schmid & Henningson
2001).
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Figure 7. (a) Shape of an optimal disturbance with the abso-
lute value shown in solid, the real and imaginary part shown in
dashed and dotted, respectively. The gray region markes the
unstable region, where disturbances grow exponentially. The
maximum value of the optimal disturbance is located close to
branch I. (b) Optimal energy growth, Emax, as a function of
time. (S) stable configuration µ0 < 0: the perturbation energy
decays exponentially for all time; (CU) convectively unstable
configuration 0 < µ0 < µc: the perturbation energy is ampli-
fied initially but decays to zero asymptotically; (GU) globally
unstable configuration µc < µ0: the perturbation energy grows
exponentially asymptotically. The values of the parameters
used in the computations are listed in table 1.

The optimal initial disturbance of the Ginzburg-Landau equation shown
in figure 7(a) is located at the upstream boundary of the unstable domain. As
time evolves it traverses the unstable domain (gray region), where it can exhibit
either decay, transient growth or asymptotic exponential growth as illustrated
in figure 7(b) depending on the value of bifurcation parameter µ0 (i.e. the
Reynolds number for Navier–Stokes equations). The optimal energy growth
curves shown in figure 7(b) corresponds to a stable (S), convectively unstable
(CU) and globally unstable (GU) flow configuration. Note that, for both (S)
and (CU) configurations, all global modes are stable. However, only for the
latter case do we have µ0 > 0 yielding a locally convectively unstable spatial
region. Consequently, a transient energy growth of two orders of magnitude
can be observed before asymptotic decay sets in (Cossu & Chomaz 1997).

To conclude this section, we investigate the effect on global modes and on
the global spectrum as the operator A is discretized. The spectrum of A is
displayed in figure 8 by the green symbols using the analytical expression (11).
The spectrum of the discretized Ginzburg-Landau operator A is shown by the
blue symbols. A characteristic split of the eigenvalue branch is observed which
is rather common in finite-precision stability computations of strongly non-
normal flows. The reason for this split is the insufficient resolution to accurately
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capture the increasingly oscillatory behavior of the associated eigenfunctions.
These observations are closely related to the notion of pseudospectra (Trefethen
& Embree 2005).

It is misleading to assume that if Aφ ≈ sφ, then s is close the spectrum
of A. If s is taken as an approximate eigenvalue in the sense that ‖Aφ −
sφ‖M < ǫ‖φ‖M , we can conclude that, for normal systems, ǫ can be as chosen
as small as one wishes. For non-normal systems, however, the minimum value
of ǫ can become very large. This observation suggests the definition of the
pseudospectrum of A as the sets in the complex plane such that

{s ∈ C : ‖R(s)‖M = ‖(sI −A)−1‖M > ǫ−1}. (22)

The pseudospectrum of A (shown in figure 8) is visualized as a contour plot of
the norm of the resolvent

‖R(s)‖M = ‖FR(s)F−1‖2 = σ1(s) (23)

where σ1(s) is the largest singular value of FR(s)F−1. It is then straightforward
to conclude that the eigenvalues of the discretized Ginzburg-Landau operator A
are in fact ǫ-pseudoeigenvalues for ǫ equal to machine precision and thus align
with the 1015-contour of the resolvent norm in figure 8. For an alternative
approach to characterize the system sensitivity see Biau & Bottaro (2004).

The resolvent contours moreover give an indication of the existence of non-
normal effects, since the amount by which the contours protrude into the un-
stable half-plane can be used to estimate the maximum transient growth of
energy (Trefethen & Embree 2005; Schmid 2007). We will return to this con-
cept and use the resolvent norm from an input-output viewpoint in the next
section, where we generalize the resolvent to transfer functions — one of the
most central concepts in the design of control strategies.

2.4. Stability of supercritical and subcritical flows

Based on the global and local stability concepts introduced in the previous
sections we are now in a position to define two fundamentally different scenarios
that model the behavior of disturbances in a large number of flows.

The first model is known as the supercritical case, in which any flow distur-
bance will grow exponentially until it saturates due to nonlinearities, as shown
in figure 4(a, b). A global analysis shows at least one unstable eigenmode of
A, yielding a globally unstable flow. This type of scenario prevails when the
bifurcation parameter µ0 of the Ginzburg-Landau equation is larger than the
threshold µc. A local analysis confirms an absolutely unstable region since
µc > µt in (12) with µt as the threshold for a local absolute instability (given
by equation 7). For more details on how the absolutely unstable region acts as
a “wavemaker” that sheds waves in the downstream and upstream direction,
see Chomaz (2005). Here, we will simply state the fact that linear local stabil-
ity theory can predict the occurrence of unstable global modes and provide an
estimate of the frequency at which these modes oscillate. The Karman vortex
street behind a circular cylinder is a generic supercritical flow configuration,
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Figure 8. Global spectrum of the subcritical Ginzburg-
Landau equation (see table 1), where all the eigenvalues (blue
dots) are in the stable half-plane. The unstable domain is
in gray and the exact global spectrum is indicated in green.
The numerically computed global eigenvalues (blue dots) ex-
hibit a characteristic split, aligning with the resolvent contour
that approximately represents machine precision. The resol-
vent norm contours range from 10−1 to 1015.

and a global and local analysis of the cylinder wake can be found in Pier (2002)
and Giannetti & Luchini (2007). It was first shown Provansal et al. (1987) that
the transition in a wake behind a cylinder close to the critical Reynolds num-
ber is described by the Landau equation, i.e. the nonlinear Ginzburg-Landau
equation without diffusion term. Since then, the Ginzburg-Landau equation
(often in its nonlinear form) has been used extensively to model cylinder wakes,
see Albarède & Monkewitz (1992); Monkewitz et al. (1996); Roussopoulos &
Monkewitz (1996); Lauga & Bewley (2004); Cohen et al. (2005). Other globally
unstable flow examples that have been investigated as to their self-sustained
oscillatory behavior are, among others, hot jets (Lesshafft et al. 2006; Nichols
et al. 2007) and a separated boundary layer flow over a bump (Marquillie &
Ehrenstein 2002).

The second model is known as the subcritical case and describes the be-
havior of disturbances in convectively unstable flows (figure 5a, b). As a result
of the non-normality of A, a global analysis reveals the presence of transient
energy growth (figure 5b) which cannot be captured by considering individual
eigenmodes of the operator A. Instead, one has to consider a superposition
of global modes or the norm of the exponential matrix to accurately describe
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this short-term phenomenon. Transient growth is observed for the Ginzburg-
Landau equation when 0 < µ0 < µc. A local analysis shows that this corre-
sponds to a region where the flow is convectively unstable. The wavepacket
in figure 5(a) travels with a group velocity (Umax) composed of a dominant
wave (cu) which is associated with the local dispersion relation (3) analyzed
in section 2.1. Prototypical convectively unstable flow configurations contain,
among others, the boundary layer on a flat plate (Ehrenstein & Gallaire 2005;
Åkervik et al. 2008), homogeneous jets and mixing layers (Ho & Huerre 1984).

The Ginzburg-Landau parameters {ν, µ0, µ2, γ} for modeling the linear sta-
bility of a subcritical or supercritical flow are listed in table 1. The critical value
which delineates the two scenarios is µc = 0.4.

3. Input-output behavior

Input-output analysis is a type of analysis of linear systems that is common-
place in systems theory (Kailath 1980). It is concerned with the general re-
sponse behavior to various excitations of the linear system. In its generality,
it goes beyond the concept of classical stability theory commonly practiced in
fluid dynamics, as it is not only concerned with issues of stability (i.e., the
response to various initial conditions), but also with the short-term dynamics,
the response to external (deterministic or stochastic) excitations and the in-
fluence of uncertainties in the underlying system (Jovanovic & Bamieh 2005;
Schmid 2007). As such, it is thought of as an extension of stability analysis and
helps reveal a more complete picture of the behavior of disturbances governed
by the linear system.

The temporal response of the Ginzburg-Landau equation to initial condi-
tions (both short-term transient and long-term asymptotic) has been consid-
ered in the previous section. In this section, we recast the Ginzburg-Landau
model into an input-output framework. The analysis is applied to the convec-
tively unstable case only, since these types of flows are sensitive to forcing and
act as noise amplifiers (Huerre 2000). Globally unstable flows behave as flow
oscillators with a well-defined frequency that is rather insensitive to external
forcing.

This framework will build the foundation for the subsequent design of con-
trol schemes, since it allows the quantitative description of the open-loop dy-
namics, i.e. the response to, for example, excitation in the free-stream or to
blowing/suction at the wall. We will denote the input sources by u(t) and the
measured outputs by y(t). In many realistic flow cases, the output y(t) will
only be a subset of the state variable q(t). For example, only shear or pressure
measurements at the wall (or another specific location) will be available.
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The common format for an input-output analysis is given by the state-space
formulation

q̇(t) = Aq(t) +Bu(t) (24a)

y(t) = Cq(t) (24b)

q(0) = q0 (24c)

where A represents the discrete Ginzburg-Landau operator, the matrices B and
C govern the type and location of the inputs u(t) and outputs y(t), respectively,
and q0 stands for the initial condition. For the state-space formulation of the
linearized incompressible Navier–Stokes equations see Farrell & Ioannou (1993)
and Jovanovic & Bamieh (2005).

The continuous equations are discretized in space using a spectral Hermite
collocation method described in Appendix A. The inputs B = {B1, . . . , Bp}
and outputs C = {C1, . . . , Cr}H have spatial distributions of the form of Gauss-
ian functions given by equation (108). In what follows, we will formulate and
present results based on matrices and the discrete Ginzburg-Landau operator
A.

The corresponding adjoint state-space equations of (24) describing the evo-
lution of adjoint state variable r(t) can be written as (van der Schaft 1991)

ṙ(t) = A+r(t) + C+v(t) (25a)

z(t) = B+r(t) (25b)

r(0) = r0. (25c)

The discrete adjoint matrices are not simply the complex conjugate transpose
(in other words, (A+, B+, C+) 6= (AH , BH , CH)), unless the inner-product
used to derive the adjoint operator (14) has an associated weight M which is
unity. For the more general case, M 6= I, we have

A+ = M−1AHM, (26a)

B+ = BHM, (26b)

C+ = M−1CH , (26c)

where M is a positive-definite and Hermitian weight-matrix. In this work, M
is chosen such that the inner-product produces the energy of the state variable
(see Appendix A).

The system of equations (24) has the formal solution

y(t) = CeAtq0 + C

∫ t

0

eA(t−τ)Bu(τ) dτ (27)

where we identify the first part of the right-hand side with the homogeneous
solution and the second part with the particular solution stemming from the
forcing term Bu. Having covered the homogeneous solution (for C = I) in detail
in the previous section, we now turn our attention to the particular solution.
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Figure 9. Example of the input-output behavior of the
Ginzburg-Landau equation with one input and two outputs.
In (a) the evolution in space and time of the state when forced
by random noise is shown. The region between the dashed
lines is convectively unstable. The locations of the forcing B
(x = −11), the first output C1 (at branch I) and the second
output C2 (at branch II) are marked by arrows. In (b) and
(c) the output signals y1 = C1q and y2 = C2q and in (d) the
input signal u are shown. Note that, in (c) the amplitude of
the output signal y1 is less than one, but further downstream
in (b), the second output signal y2 has an amplitude close to
10. This illustrates the amplifying behavior of the system.

Setting q0 = 0 leaves us with the input-output relation

y(t) = C

∫ t

0

eA(t−τ)Bu(τ) dτ (28)

from which we will develop tools to capture and characterize aspects of the
transfer behavior of an input signal u(t) as it is passes through the linear
system given by A.

Before analyzing the above input-output relation in all generality, a first
simple numerical experiment shall demonstrate the response behavior of the
convectively unstable Ginzburg-Landau equation (see figure 9). As an input
signal u(t) we choose white noise — drawn from a normal distribution with
zero mean and unit variance — introduced at a location just upstream of the
unstable region; the corresponding response y(t) = Cq(t) is extracted at the two
boundaries of the unstable domain, i.e., at branch I and II. A first observation
confirms the amplification of the signal as it traverses the unstable domain as
well as the emergence of a distinct frequency from the noisy input. The system,
thus, seems to act as both a noise amplifier (Huerre & Monkewitz 1990) and a
filter. These two characteristics will be analyzed in more detail below.
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Figure 10. Impulse response of the Ginzburg-Landau equa-
tion: (a) The state response to an impulse introduced at t = 0
and xw = −11. (b) The impulse response at branch II. The
convective character of the instability is evident: a wavepacket
grows as it enters the unstable domain, but is gradually con-
vected away from this domain before it begins to decay.

3.1. Impulsive and harmonic forcing

The above introductory example has shed some light on the response behavior
of the Ginzburg-Landau equations to external forcing. Even though the signal
has demonstrated amplification and frequency selection of the linear system, a
more general analysis is pursued that parameterizes the input-output behavior
more precisely.

For this reason, we will consider two distinct input signals: an impulsive
signal applied at a specified location xw = −11 which will trigger what is
referred to as the impulse response, and a harmonic signal, again applied at a
given location, that yields the frequency response of the linear system.

For the impulse response we thus assume

u(t) = δ(t) (29)

which, according to (28), results in

y(t) = CeAtB = g(t). (30)

The spatial localization of the impulsive input signal is contained in the matrix
B (see equation 108a). For C = I, the above solution (30) represents the
Green’s function of the Ginzburg-Landau equation. It forms the fundamental



Input–output analysis and control of spatially developing flows 107

solution of the linear system since particular solutions to more general external
excitations can be constructed by a simple convolution of the input signal with
the Green’s function. The input-output system (24) is defined as stable if and
only if the impulse response (30) decays as time tends to infinity. Consequently,
the convectively unstable flow is input-output stable, which is in contrast to the
globally unstable flow where an impulse will trigger the growth of an unstable
global mode with a well defined frequency. For the convectively unstable case,
the state impulse response q(t) = eAtB for a pulse introduced at xw = −11 is
displayed in figure 10(a); the impulse response (30) is shown in figure 10(b).
We observe the rise of a wavepacket with a distinct spatial wavenumber and
propagation speed. As expected from the introductory example (figure 5a), the
amplitude of the wavepacket grows throughout the unstable domain before it
decays as the wavepacket passes branch II. For larger times, only the remnants
of the wavepacket near branch II are observed.

The impulsive signal u(t) = δ(t) contains all temporal frequencies with
equal amplitude. It is thus ideally suited to extract and analyze a frequency
selection behavior from an unbiased input. On the other hand, we could choose
an input signal with only one frequency (rather than all frequencies), i.e.

u(t) = est s ∈ C. (31)

Inserting the above input into (28), assuming A is globally stable and t = ∞
yields

y(t) =

∫ ∞

0

g(τ)es(t−τ) dτ = (32)

=

∫ ∞

0

g(τ)e−sτ dτ

︸ ︷︷ ︸

G(s)

est = |G(s)|e(st+φ).

We can identify the transfer matrix of dimension r × p

G(s) = C(sI −A)−1B s ∈ C, (33)

as the Laplace transform of the impulse response g(t). Due to the linear nature
of the Ginzburg-Landau equation an input est will generate an output with the
same frequency but with a phase shift φ = Arg G(s) and an amplitude of
|G(s)|. Since G(s) is usually a rectangular matrix, the amplitude is defined as

|G(s)| = σ1, (34)

where σ1{·} denotes the largest singular value of G(s). The transfer function
G(s) fully describes the input-output behavior of the system, whereas the state-
space formulation (24) describes the dynamics of flow.

The transfer function can be regarded as a generalization of the resol-
vent (22) introduced earlier. In fact, the pseudospectra in figure 8 are contours
of |G(s)| for the case B = I which corresponds to a uniform distribution of the
input and C = F (where M = FHF ) which corresponds to the measurement
of the flow energy. As discussed in section 2.4, the contours represent locations
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Figure 11. Input-output pseudospectra where
the black transfer function contour levels are
{100, 101, 103, 104, 105, 106}. The red contour (with level
208) represents the largest contour value that crosses the
imaginary axis. The blue symbols indicate the eigenvalues of
A.

in the complex plane where approximate eigenvalues of A can be found for
a given error norm (ǫ = 1/|G(s)|). Figure 11 displays pseudospectra of the
input-output system with B defined as in (108) and C = F. In this case, the
contour levels correspond to the response amplitude of the output for a unit
amplitude input of the form est.

As an example, we will concentrate on a purely harmonic forcing and set
s = iω. The response of the linear system to this type of excitation is given by
the expression

G(iω) = C(iωI −A)−1B ω ∈ R, (35)

and the largest response to a harmonic input can be defined as the maximum
value of |G(iω)|,

‖G‖∞ = max
ω

|G(iω)|. (36)

A remark on the choice of notation seems necessary: in the stability section,
we defined the energy norm of the state vector q(t) as ‖q‖2

M = qHMq, whereas
the definition (36) of ‖G‖∞ represents a norm of all stable transfer functions
in the complex frequency space.

For normal systems the largest response to harmonic forcing is proportional
to the distance of the real part of the largest eigenvalue of A to the imaginary
axis, i.e.,

‖G‖∞ ∼ 1/|Re(λ1)|. (37)
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Figure 12. (a) The state response to harmonic forcing lo-
cated upstream of branch I (lower of the two dashed lines).
The largest response is at branch II (upper dashed line) for
ω = −0.65. (b) The frequency response, where the output is a
Gaussian function (see Appendix A) located at branch II. In
the gray area all forcing frequencies are amplified in the un-
stable domain, all other frequencies are damped illustrating a
filtering effect. This response corresponds to the thick dashed
line representing the imaginary axis in the pseudospectra plot
in figure 11, and the peak value ‖G‖∞ = 208 corresponds to
the red contour level.

For non-normal systems, however, the response of the system can be substantial
even though the forcing frequency is nowhere close to an eigenvalue. The largest
response ‖G‖∞, in this case, is proportional to the largest value of the contour
|G(s)| that crosses the imaginary axis.

This feature is exemplified on the Ginzburg-Landau equation in figures 11
and 12. The state response (i.e., the special case with C = I) to spatially
localized, harmonic forcing at xw = −11 is shown in figure 12(a). The largest
response is obtained for a frequency of ω = −0.65, and the location of the most
amplified response in space is — not surprisingly — in the vicinity of branch II.
In figure 12(b) the frequency response |G(iω)| is shown which corresponds to the
dashed line in the contour plot of figure 11. The peak of this response ‖Gc‖∞ =
208 is associated with the red contour in the pseudospectra plot (figure 11). The
response computed from the distance to the nearest eigenvalue (37) has a value
of only 56. It is thus confirmed that the frequency response for non-normal
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systems is substantially larger than what can be inferred from the distance of
the forcing frequency to the nearest eigenvalue.

3.2. Stochastic forcing

Under realistic conditions we rarely possess the exact knowledge of the dist-
urbances influencing the flow system, and it is therefore essential to account
for a certain amount of uncertainty. In this section we present fundamental
techniques to characterize the response behavior within a statistical frame-
work. This framework also gives insight into inherent stability properties of
the flow (Hœpffner 2006; Schmid 2007), as for example in the case of channel
flow studied by Farrell & Ioannou (1993); Bamieh & Dahleh (2001); Jovanovic
& Bamieh (2005) and boundary layer by Hœpffner & Brandt (2008). When
a fluid system is externally excited by stochastic disturbances, its response is
best characterized by the state statistics, for instance, the rms values of the ve-
locity components, the mean energy, or two-point correlations. In the context
of aerodynamic flows, stochastic excitation can be attributed, among others,
to free-stream turbulence, wall roughness, or incident acoustic waves.

A naive statistical analysis may consist of performing a large number of
simulations by choosing sample realizations of the forcing and by subsequent
averaging of the resulting flow quantities to obtain the desired statistics. A
more direct approach involves the derivation of evolution equations for the
statistical properties, such as e.g. two-point correlations, of the flow quantities.
For linear systems it is possible to solve directly for the two-point correlations
of the flow quantities in terms of the two-point correlations of the external
excitation. The key equation relating second-order statistics of the excitation
to second-order statistics of the state is the Lyapunov equation. In this section
we will derive the Lyapunov equation and give examples of how to extract
relevant information from its solution.

An introductory example can be seen in figure 13(a) where the temporal
evolution of the state energy is displayed as a random forcing with zero mean
and unit variance applied upstream of branch I. The results of five simulations
are shown. Due to the stochastic nature of the forcing each simulation yields
different results but, nevertheless, reveals a general trend: no energy is observed
at the beginning of each simulation (since the initial condition is identically
zero), but considerable energy levels are reached after an initial transient of
approximately 100 time units and a quasi-steady regime in which the energy
fluctuates about a mean value is established. Because of this observed noise
amplification, convective unstable flows are also referred to as noise amplifiers.
Furthermore, the dashed line shows the average of 50 simulations, representing
the evolution of the mean energy. This curve is compared to the mean energy
(red solid line) computed from the algebraic Lyapunov equation; this mean
energy level is increasingly better approached as the number of simulations
comprising the average is increased.
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Figure 13. The response to stochastic forcing. (a) The evo-
lution of the state energy for five different simulations (black
lines), the mean state energy given by the solution of the al-
gebraic Lyapunov equation (red solid line) and the energy av-
eraged over 50 simulations (thick dashed line). (b) The thick
red line shows the rms-value of the Ginzburg-Landau equation
when excited by random forcing w at the location marked with
an arrow. Five representative snapshots of the response to this
forcing are shown by black thin lines; the average over 50 sim-
ulations is displayed by a thick blue dashed line.

Although the above experiment already demonstrates the amplification
behavior of a convectively unstable linear system driven by stochastic forcing,
the relation between the forcing covariance and the resulting state covariance
will be established next.

We again consider the linear system given by equation (24), now driven by
a stochastic process u(t), i.e. a random time-varying input signal. We assume
that A is globally stable but convectively unstable. To simplify the analysis, we
also assume that the random variable u is normally distributed, i.e., that the
probability density function of the stochastic process is Gaussian, completely
characterized by its mean and its variance.

To represent the mean and the variance of a random variable, we introduce
the expectation operator E . The mean of a scalar random variable ξ is then
m = E{ξ}, its variance is the quadratic expression σ = E{ξξH}. From a
statistical point of view, E can be thought of as an averaging operator (for
example the action of an integral in time.)

We can similarly characterize the covariance of two random variables ξ and
η as Pξη = E{ξηH}. The covariance of two random variables gives information
about the degree of similarity of the two signals. The above definition of the
covariance is readily extended to vectors of random variables. The covariance
of two random vector variables f(t) and g(t) of dimension n is simply the n×n
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matrix,
Pfg(t) = E{f(t)g(t)HM}. (38)

Using the energy weight matrix M , we recover the kinetic energy of a state by
simply taking the trace of the covariance matrix,

E(t) = E{trace(q(t)q(t)HM)} = trace(Pqq). (39)

Furthermore, the diagonal elements of Pqq are the variance of the individual
elements of q(t). In particular, we define the root-mean-square (rms-value) of
the disturbance as

qrms(t) =
√

diag{Pqq} (40)

From the above equations (39) and (40), it is clear that the covariance of
the state contains all the essential statistics that is necessary for evaluating
the response to stochastic forcing. We now return to our dynamical system
(24) and derive an explicit expression of the state covariance in terms of the
forcing covariance. For simplicity, we will assume that the applied forcing is
uncorrelated in time, that is, it is a temporal white noise process:

E{u(t)u(t′)HM} = WMδ(t− t′) (41)

where t and t′ are two instances in time, and W denotes the spatial covariance
of u. For example, if u is a vector of random variables, Wij = E{uiuj

H}.
To derive an evolution equation for the covariance of the state, we start

with the expression describing the time evolution of the state forced by u (i.e.
equation 28 with C = I),

q(t) =

∫ t

0

eA(t−t′)Bu(t′)dt′. (42)

As before, we have assumed a zero initial condition q0 = 0.

We begin with the definition of the covariance matrix Pqq of the state at
time t

P = E{q(t)q(t)HM}

=

∫ t

0

∫ t

0

eA(t−t′)B E{u(t′)u(t′′)HM}
︸ ︷︷ ︸

WMδ(t′−t′′)

BHeAH(t−t′′)dt′dt′′

=

∫ t

0

eA(t−t′)BWB+eA+(t−t′)dt′ (43)

where we have used the fact that u is uncorrelated in time and omitted the
subscript qq. We can differentiate this last expression in (43) with respect to
time to obtain an evolution equation for P of the form

Ṗ = AP + PA+ +BWB+ P (0) = 0. (44)

In this expression Ṗ denotes the time derivative of the covariance matrix. The
above equation is referred to as a differential Lyapunov equation. Given the
covariance W of the forcing term u, we obtain the time evolution of the state
covariance P. If the system A is asymptotically stable and, furthermore, A,W
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and B are time-independent, the stochastically driven system relaxes after an
initial transient into a statistical steady state. To obtain this steady state, we
set Ṗ = 0 and recover the algebraic Lyapunov equation

AP + PA+ +BWB+ = 0. (45)

This statistical steady state is of interest if we study a system that is exposed
to external forcing for a long time horizon, e.g., the flow over a wing under
cruise conditions. We like to emphasize that despite the presence of a steady
statistical state, the state vector of the system as well as the external forcing
are varying in time.

To illustrate the above statistical description of the system dynamics, we
revisit the Ginzburg-Landau equation forced at the upstream edge of the con-
vectively unstable region where we apply the external excitation of Gaussian
form shown in equation (108a), with u(t) as a scalar white noise process with
zero mean and unit variance W = 1. The covariance of the state obtained
by solving the algebraic Lyapunov equation (Datta 2003) is depicted in fig-
ure 15(a). The rms-value of this state-covariance is shown with a red line in
figure 13(b) and the gray area marks the region of convective instability. In
addition, we have represented the instantaneous state of five realizations of the
forcing as well as the mean of 50 of these realizations, as we did in figure 13(a)
for the total energy evolution in time. We see that the average of 50 realizations
is close to the mean obtained from the Lyapunov equation, but a sample set of
50 realization is not yet enough for a converged statistical result. We will see
more examples of this kind in the control section where we will quantify the
performance of the controller using mean energy.

We conclude this section by stressing that transient growth mechanisms
in hydrodynamic stability theory as well as the spatio-temporal evolution of
disturbances can be recast into an input-output framework. For example, in
this framework, the output signal y(t) to random, impulsive or harmonic inputs
shown in figures 9, 10 and 12, respectively, exhibits an initial growth in time
before the signal either decays to zero or stabilizes around a steady state.

3.3. Controllability and observability

An important issue in the analysis of linear systems in state-space form con-
cerns the mapping between input signals and the state vector and between the
state vector and the output signals. Since for many realistic configurations
the matrices B and C are rectangular, reflecting the fact that we force the
system only at a few points in space and/or measure the system only at a
limited number of sensors, we need to address the topic of controllability and
observability (Kailath 1980).

In this section we will characterize the controllability and observability of
a system in terms of covariance matrices of the state and the adjoint state,
which in this context are called Gramians. We will continue to consider one
input and one output and assume that A is stable (subcritical Ginzburg-Landau
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equation), even though the theory extends to unstable systems as well (Zhou
et al. 1999).

3.3.1. Controllability — the POD modes

The controllability of a system is concerned with finding the flow states most
easily influenced by a given input. It can be shown (Lewis & Syrmos 1995;
Antoulas 2005) that the minimum amount of input energy ‖u‖2

2 to bring the
state from zero to the given initial condition q0 is given by the expression

qH
0 P

−1q0 (46)

where P is the unique n× n matrix

P =

∫ ∞

0

eAτBB+eA+τ dτ, (47)

referred to as the controllability Gramian (for a derivation of this result in
terms of an optimal control problem see Lewis & Syrmos 1995). Also note that
the adjoint operators with superscript + are related to the conjugate transpose
H according to (26).

Since for linear systems the state for an impulsive input at any given time
is q(t) = eAtB, we recognize that the controllability Gramian (47) equals an
infinite-horizon state covariance (43) with covariance W = I. This is not very
surprising since one can interpret white noise as a set of impulse inputs that
are uncorrelated in time. Furthermore, assuming A is stable, the controllability
Gramian can be computed by solving the algebraic Lyapunov equation (45).
In figure 15(a) the controllability matrix of the Ginzburg-Landau equation is
shown graphically. The state components that respond to an input located
just upstream of the unstable region are situated downstream of the unstable
domain.

By diagonalizing the matrix P we obtain a measure of controllability for
each component of the state vector. The diagonalization of the covariance
matrix or, in the linear framework, the controllability Gramian is commonly
referred to as the proper orthogonal decomposition (POD) (Lumley 1970) but is
also known as empirical eigenfunction (EOF) decomposition, Karhunen-Loève
decomposition or principal component analysis (PCA). The eigenvectors and
eigenvalues of P are given by

Pφi = λiφi, λ1 ≥ · · · ≥ λn ≥ 0. (48)

Since P is positive semidefinite, the eigenvalues are real and positive and the
eigenvectors are orthogonal. The first two POD modes of the Ginzburg-Landau
equation are shown in figure 14. Traditionally, the interpretation of these modes
is that they represent decorrelated energy-ranked flow states. For example,
the first POD mode φ1 is the most energetic structure in the flow containing
λ1/

∑n
i=1 λi of the total flow energy. From a linear systems point of view, POD

modes can be considered as the most controllable structures of the system for
a given input. In this case the eigenvalue λi is a measure of how much the state
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Figure 14. The first (a) and second (b) proper orthogonal de-
composition (POD) mode obtained from an eigenvalue decom-
position of the controllability Gramian in figure 15(a). Note
that these modes are orthogonal. The absolute value is shown
in solid and real part in dashed. The gray area marks the
region of instability.

φi is influenced by the input. In particular, if P is rank deficient, there exists
a zero eigenvalue, λi = 0, which would mean according to equation (46) that
the energy required to influence the corresponding state is infinite. If P is not
rank-deficient, we say that (A,B) is controllable.

3.3.2. Observability — the adjoint POD modes

The POD modes capture the response to input and thus span a controllable sub-
space of the state space. Equally important in the input-output analysis is to
take into account the observable subspace by considering the relation between
the outputs and flow states. A similar analysis as in the previous section for
POD modes is thus performed, but this time for the adjoint system (25). Com-
paring the direct state-space equations (24) with their corresponding adjoint
state-space equations (25) we observe that the output of the direct equations
is related to the input of the adjoint equations.

The observability of a system is concerned with finding the initial conditions
q0 that will produce the largest output energy. For zero input the solution to
the state-space equations is

y = CeAtq0. (49)
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The output energy is then given by

‖y‖2
2 = qH

0 Qq0 (50)

where the observability Gramian,

Q =

∫ ∞

0

eA+τC+CeAτ dτ, (51)

is a unique matrix of dimension n× n.

If we note that the impulse response of the adjoint state-space equa-
tions (25) is given by

r(t) = eA+tC+ (52)

the observability Gramian can be written as the state correlation matrix of the
adjoint system

Q = E{rrHM}, (53)

and the Gramian can be computed by solving the algebraic Lyapunov equation

A+Q+QA+ C+C = 0. (54)

In figure 15(b) the observability matrix of the Ginzburg-Landau equation is
shown. The observable components of the state vector are located upstream
of the unstable domain when the output location is at branch II (red dot in
figure 15b).

By diagonalizing the observability Gramian,

Qψi = λiψi, λ1 ≥ · · · ≥ λn ≥ 0, (55)

we obtain an orthogonal set of functions called the adjoint POD modes or
the most observable modes. These modes are flow structures that are ranked
according to their contribution to the output energy. The corresponding eigen-
values λi provide a means to measure how observable the corresponding eigen-
vectors are. If there exist zero eigenvalues, λi = 0, Q is rank deficient, which
means according to equation (50) that the corresponding adjoint POD mode
does not contribute to sensor output. If Q has full rank, we say that (C,A) is
observable.

It should be evident that in order to build an effective control system,
both sufficient controllability and observability has to be established. Only
in this case will the actuation have an appreciable effect on the flow system
whose response, in turn, will be detectable by the sensors. Without adequate
controllability or observability the flow of information from the system’s output
to the system’s input will be compromised, and any control effort will be futile.
Within the LQG-based feedback control framework, the controller will always
stabilize the system if the unstable global eigenmodes are both controllable and
observable. We will show how the controllability and observability of global
eigenmodes can be determined in the next section.
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Figure 15. (a) The state covariance/controllability Gramian
P of the Ginzburg-Landau equation. The Gramian describing
how the state components are influenced by an input corre-
sponds in a stochastic framework to the state covariance for
white noise as input. The red circle signifies the forcing loca-
tion (xw = −11), the dashed box marks the region of insta-
bility. The states that are most sensitive to forcing, and thus
controllable, are located downstream, at branch II. (b) The
observability Gramian Q of the Ginzburg-Landau equation.
The red circle markes the location of the output C at branch
II. The initial states that contribute most to the output are
located upstream, at branch I.

4. Model reduction

Any type of significant flow control applied to the discretized two- or three-
dimensional Navier–Stokes equations requires some form of model reduction.
Model reduction is concerned with the transformation of a system with a
large number of degrees of freedom to an approximately equivalent system of
markedly smaller size. The term “approximately equivalent” is often difficult
to quantify and usually encompasses a measure of preservation of important
system characteristics under the model reduction transformation. In this sense,
model reduction becomes problem-dependent: for example, a transformation
that preserves the inherent dynamics of the system may be inappropriate in
capturing the input-output behavior.

Model reduction techniques for fluid systems typically rely on physical
insight into the specific flow situation rather than on a systematic approach
detached from the application. For instance, for spatially invariant systems
it is possible to decouple the linear state-space equations in Fourier space.
Control, estimation and other types of optimization can then be performed
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independently for each wavenumber and then transformed back to physical
space. This approach has been adopted in Högberg et al. (2003a,b); Hœpffner
et al. (2005); Chevalier et al. (2006, 2007); Monokrousos et al. (2008).

The model reduction (or projection) technique (Obintata & Andersson
2001; Antoulas 2005) discussed in this paper involves three steps.

The first step consists of finding an expansion basis {φi}r
i=1 that spans an

appropriate subspace of order r of the state space of order n, with r ≪ n. We
will present and compare three different subspaces using the Ginzburg-Landau
equation: the subspace spanned by the least stable global eigenmodes, POD
modes and the balanced modes (described in the next section).

In a second step, the state-system given by (24) is projected onto this
subspace yielding the reduced-order model

κ̇(t) = Âκ(t) + B̂u(t) (56a)

y(t) = Ĉκ(t) (56b)

κ(0) = κ0. (56c)

When the expansion basis is non-orthogonal, we can use a set of adjoint modes
{ψi}r

i=1 associated with {φi}r
i=1, to obtain the entries of κ, Â, B̂ and Ĉ,

κ̂i =
〈q, φi〉
〈ψi, φi〉

(57a)

Âi,j =
〈ψi, Aφj〉
〈ψi, φi〉

(57b)

B̂i =
〈ψi, B〉
〈ψi, φi〉

(57c)

Ĉi = Cφi (57d)

with i, j = 1, . . . , r. The term 〈ψi, φi〉 is a normalization factor that we choose
such that ‖φn‖ = ‖ψn‖ = 1 and is smaller than one if the modes are non-
orthogonal, that is ψi 6= φi. The subscript M in the above inner products is
omitted for brevity and we have assumed that B is a column vector and C a
row vector, i.e. we continue to consider one input and one output.

The third and final step consists of estimating the error of the reduced
order model (56). For control purposes it is not necessary for the reduced-
order model to capture the entire dynamics described by the general state-
space formulation (24), rather it suffices to accurately capture the input-output
behavior described by the transfer function G(s) = C(sI − A)−1B. It thus
seems reasonable to estimate the error of a reduced-order system by comparing
the norms of the transfer function (35) of the full system G and the reduced

system Gr = Ĉ(sI − Â)−1B̂, e.g. ‖G − Gr‖∞ (Obintata & Andersson 2001;
Zhou et al. 2002; Green & Limebeer 1995). This is equivalent to calculating
the difference of the peak values of the frequency response between the two
models.
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Figure 16. The spatial support of the first 20 global (a),
POD (b) and balanced modes (c). The spatial support is de-
fined as the region where the amplitude of a particular mode
is larger than 2% of its maximum amplitude. The location of
the input (just upstream of branch I) and output (at branch
II) is marked with red and green dashed lines, respectively.
The global modes span only the region around branch II. The
first POD modes (b) are located at branch II, even though the
higher modes quickly recover the input. The balanced modes
(c) cover the region between input and output with only two
modes. The areas marked with light gray in (a) and (c) rep-
resent the spatial support of the adjoint modes for the global
and balanced modes. The spatial separation in x of the direct
and adjoint modes, shown in (a) for global modes, is absent in
(b) for the balanced modes.

(a) (b) (c)

4.1. Global modes and input/output residuals

Global modes (figure 6a, b) preserve the dynamical characteristics of the system
matrix A. Model reduction using global modes simply consists of an expansion
of the state vector q into the leading global eigenmodes (10), where eigenmodes
with substantial decay rates will be neglected. By this process, the resulting
new system matrix Â in (56) will consist of a diagonal matrix of the retained
global eigenvalues. The new reduced state vector κ is given by the eigenfunction
expansion coefficients, and the expansion coefficients of B (57c) and C (57d) are
called the controllability modal residuals and the observability modal residuals,
respectively (see also Bewley & Liu 1998).

It is clear that if 〈ψi, B〉 is zero in (57c), we will not be able to act on the
corresponding state component κi and therefore on the global mode φi. Thus,
we can use the controllability modal residual as a measure of controllability of
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Figure 17. (a) The controllability modal residuals (crosses)
of the first 20 global modes given by equation (57c) which is the
product of the overlap of the actuator and adjoint mode 〈ψi, B〉
(diamonds) and the sensitivity defined by (〈ψi, φi〉)−1 (circles).
Although, the overlap of the spatial support of the actuator
decreases for higher modes, the controllability still increases
due to the rapid growth of the receptivity of higher modes
to forcing, quantified by the inverse of 〈ψi, φi〉. (b) Model
reduction error of the POD (circles), balanced (diamonds) and
global (squares) modes. For the balanced modes the error
always decays by increasing the number of modes, in contrast
to the error of POD modes. The error does not decay at all for
the first 50 global modes due to the failure to project the input
B located upstream of branch I onto the global eigenmodes
located close and downstream to branch II.

the global mode by considering the amount of overlap between the support of
the input and the support of the corresponding adjoint global mode. If this
overlap is zero, the global mode is not controllable (Chomaz 2005; Lauga &
Bewley 2004).

A similar derivation based on (57d) shows that in order for (C,A) to be
observable, the spatial support of the sensor and the support of the global mode
must overlap. If Ĉi = Cφi is zero, we will not be able to detect the eigenmode
φi using a sensor characterized by C. This eigenmode is thus unobservable.

Owing to the term 〈ψi, φi〉 in the denominator of (57c), additional atten-
tion has to be paid to the system’s sensitivity due to non-normal effects: the
forcing response or controllability of φi is inversely proportional to 〈ψi, φi〉, i.e.
the separation of global and adjoint modes. This separation is illustrated in
figure 16(a), where the spatial support — defined as the region where the ampli-
tude of a particular mode is larger than 2% of its maximum amplitude (see also
Lauga & Bewley 2003) — of the first 20 global and adjoint modes is shown.
We see that the global modes only span a small part of the domain, which
is located near and downstream of the unstable domain (green dashed line),
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whereas the corresponding adjoint modes are located upstream of the unstable
domain (red dashed line); this results in a large sensitivity, 〈ψi, φi〉 ≪ 1.

In figure 17(a) we display the controllability as the number of global modes
is increased, together with the numerator and denominator of expression (57c).
Whereas the numerator represents a measure of overlap between the input
and the adjoint global modes, the denominator measures the degree of non-
normality. The marked rise in controllability as more global modes are added
is thus a compound effect of these two components. It illustrates that non-
normal systems can be very sensitive to the external perturbation environment
and that it is possible to manipulate the flow using very small actuator effort.

An upper limit of the error for reduced-order models based on global modes
is given by (Skogestad & Postlethwaite 2005; Antoulas 2005)

‖G−Gr‖∞ ≤
n∑

i=r+1

|ĈiB̂i|
|Re(λi)|

. (58)

From the above expression it is evident that choosing a subspace based on
the criterion of dominant eigenvalues may not be appropriate if one wishes to
approximate the input-output behavior. The reason is that the error norm
(58) depends on the matrices B and C. Although the eigenvalues may exhibit

substantial decay, for highly non-normal systems B̂ is large yielding a large
model reduction error as shown in figure 17(b) using square symbols.

In figure 18 we compare the frequency response of the full model |G(iω)|
of order r = 220 (blue dashed line) to the frequency response of the reduced
models |Gr(iω)| of order r = 2, 4 and 6 (green solid line). As before, the input B
(at branch I) is located upstream and the output C (at branch II) downstream.
The frequency response of the reduced models shows a large deviation from the
true frequency response, even as the number of included modes is increased.

4.2. POD modes

For an improved transfer behavior of the reduced model we can base our sub-
space on the response of the linear system to external forcing. In this case,
both the system matrix A and the control matrix B determine the dynamics of
the driven system. To reduce a driven model, we will expand the state vector
into the POD modes (48) (figure 14). The expansion in POD modes will be
truncated at a convenient level that results in a significantly lower-dimensional
system matrix but still retains the most energetic structures. These modes
are ideal in detecting and extracting coherent fluid structures in a hierarchical
manner that is based on their contribution to the overall perturbation energy of
the flow. However, for control and input-output behavior low-energy features
that are not captured by this expansion may be critically important.

We like to point out that the controllable subspace adequately spans the
response to inputs but not necessarily the inputs themselves. This is illustrated
in figure 16(b), where the spatial support of the first 20 POD modes are shown.
The first POD modes capture the largest structures, located at branch II;
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Figure 18. Comparison of the frequency response of the full
Ginzburg-Landau equation with three reduced-order models.
Blue dashed lines represent the full model of order n = 220.
The performance of reduced-order models based on r = 2, 4
and 6 modes are shown in the (a), (b) and (c), respectively.
Red lines represent the balanced modes, black lines the POD
modes and green lines the global eigenmodes. We observe that
the balanced modes capture the peak value of the frequency
response which represents the main characteristic of the input-
output behavior. The approximation of the frequency response
for the open-loop case is unsatisfactory for POD models of
order 2 and 4 and for all global-mode models.
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Figure 19. The first (a) and second (b) balanced mode. The
modes are non-orthogonal and the adjoint balanced modes are
shown in dashed line. The absolute value is shown in solid
(direct) and dashed (adjoint), whereas the real part is shown
with dotted lines. The gray area marks the region of instabil-
ity.

however, in contrast to the global modes, the higher modes eventually cover
the entire unstable domain including our input location. For this reason the
error norm shown with black circles in figure 17(b) is not decreasing for the
first three POD-modes; only when the fourth mode, which captures some of
the input structure, is included in the expansion basis does the error norm begin
to decrease. An explicit error estimate does not exist for POD modes; only after
computing the frequency response of the two systems can one determine the
error (given by the difference of the peak values in the frequency response).

Finally, in figure 18 the frequency response of the POD-based reduced
model (black line) |Gr(iω)| of order r = 2, 4 and 6 is observed to gradually
approach the response of the full model.

4.3. Balanced modes

The third subspace is based on balancing the system and involves the three
matrices A,B and C. It is based on the idea of reducing the dimensions of
the original system by (i) removing the redundant states for characterizing the
input-output behavior — the uncontrollable and unobservable states — and
(ii) removing the states that are nearly uncontrollable and unobservable. This
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technique of model reduction is referred to as balanced truncation (Moore
1981).

The balanced modes {φi}r
i=1 are defined as the eigenvectors of the product

of the two Gramians,

PQφi = φiσ
2
i , σ1 ≥ · · · ≥ σr ≥ 0. (59)

The eigenvalues σi are called the Hankel singular values (HSV). First two bal-
anced modes are shown in figure 19.

To illustrate what balancing refers to, let us consider the projection of the
Gramian matrices P and Q on a set of modes, for instance any of the modes
introduced in this section. The projected matrices, denoted by P̂ and Q̂, have
the elements

P̂i,j = 〈ψi, Pψj〉 (60a)

Q̂i,j = 〈φi, Qφj〉 (60b)

where ψi denotes the adjoint mode associated with φi. Balancing refers to the
fact that if P̂ and Q̂ are obtained from a projection onto balanced modes, they
become diagonal and equal to the Hankel singular values, i.e.

P̂ = Q̂ = Σ = diag(σ1, . . . σr). (61)

The balanced modes are flow structures that are ranked according to their
contribution to the input-output behavior. These modes are influenced by the
input and, in turn influence the output by the same amount, given by the
corresponding Hankel singular values σi.

A very attractive feature of balanced truncation is the existence of an a
priori error bound that is of the same order as the lowest bound achievable for
any basis,

σr+1 < ‖G−Gr‖∞ ≤ 2

n∑

j=r+1

σj . (62)

In contrast to equation (58) the above error norm is independent of the input
and output matrices B and C. The error norm for the balanced truncation
model in figure 17(b) shows a rapid decay. In figure 18 we notice that the
performance of balanced reduced-order models (red lines) |Gr(iω)| is very good,
and only two balanced modes are required to capture the peak response of the
full system.

In summary, we would like to recall that each of the three sets of basis vec-
tors (global modes, POD modes, balanced modes) span different subspaces of
the state space and are therefore suitable for different applications. The spatial
support is shown in figure 16 for the first 20 modes of each of the three sets.
The balanced modes (right plot), by construction, cover the region between the
input and the output with very few modes and are thus the appropriate set of
functions to accurately capture the input-output behavior of our linear system.
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Figure 20. Hankel singular values of the approximate bal-
anced truncation and the exact balanced truncation with open
circles. The number of singular values that are correctly cap-
tured increases with the number of snapshots (squares: 1000,
diamonds: 500 and filled circles: 70 snapshots).

4.4. The snapshot method

To compute the POD modes or balanced modes we must first solve Lyapunov
equations. This becomes prohibitively expensive as n exceeds approximately
105 which usually is the case when discretizing the Navier–stokes equations in
two or three dimensions. Recently, numerous iterative methods to solve these
equations have appeared (Antoulas 2005; Antoulas et al. 2001).

A different approach to approximate the Gramians without solving the
Lyapunov equations — the so-called snapshot-based balanced truncation — has
recently been introduced (Willcox & Peraire 2002; Rowley 2005). It is based
on the snapshot technique first introduced by Sirovich (1987) for computing
POD modes. We will demonstrate the method for one input and one output,
see Rowley (2005) for additional details.

We begin with collecting r snapshots q(tj) at discrete times t1, . . . , tr, of
the response of the system (24) to an impulse δ(t). These snapshot are gathered
as columns in a n× r matrix X , i.e.

X = [eAt1B, eAt2B, . . . , eAtrB]
√

∆r, (63)

where ∆r stands for the quadrature coefficients of the time integral in equa-
tion (47). Instead of solving the Lyapunov equation (45), we can approximate
its solution, i.e. the controllability Gramian P as

P ≈ XXHM. (64)

If we observe that eA+tC+ is the impulse response of the adjoint state-
space equation (25), we can construct an approximation of the observability
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Gramian Q

Q ≈ Y Y HM (65)

by collecting a sequence of snapshots of the adjoint impulse response in the
n× r matrix

Y = [eA+t1C+, eA+t2C+, . . . , eA+trC+]
√

∆r. (66)

In the method of snapshots, instead of solving the large n×n eigenvalue prob-
lem (59) one can form the singular value decomposition of the r × r matrix,

Y HMX = UΣV H . (67)

The approximate Hankel singular values (HSV) are given in the diagonal matrix
Σ. The normalized balanced modes and the associated adjoint balanced modes
are recovered from

T = XVΣ−1/2, S = Y UΣ−1/2. (68)

Usually the number of snapshots r is significantly smaller than the number of
states n, which makes this method computationally tractable for systems of
very large dimensions.

Figure 20 shows the HSVs for the exact balanced truncation (solving two
Lyapunov equations) and the approximate HSVs (using the snapshot method).
For improved results more snapshots may be taken during periods of large
transient energy growth and fewer snapshots as the energy decreases. Snapshot-
based balanced truncation has been applied to channel flow (Ilak & Rowley
2008) and to the flow around a pitching airfoil (Ahuja et al. 2007).

5. Control

The natural extension to the investigations of the previous sections — the
response behavior of a linear system to initial conditions and external exci-
tations — is concerned with attempts to manipulate the inherent dynamics
of a system or to control it. A substantial body of literature on flow control
has accumulated over the past decade, with topics ranging from laminar flow
control (Joslin 1998) to control of turbulence (Moin & Bewley 1994), from op-
position control (Choi et al. 1994) to suboptimal (Bewley & Moin 1994) and
nonlinear control (Bewley et al. 2001; Zuccher & Bottaro 2004; Guégan et al.
2006). Reviews on the subject of flow control can be found in Gunzburger
(1995); Gal-El-Hak (1996, 2000); Bewley (2001); Kim (2003); Kim & Bewley
(2007).

The framework laid out in the following sections falls in the category of lin-
ear feedback control (Kwakernaak & Sivan 1972; Anderson & Moore 1990; Zhou
et al. 2002; Skelton et al. 1998; Skogestad & Postlethwaite 2005). In particular,
our objective is to minimize the perturbation energy resulting from asymptotic
or transient instabilities of the uncontrolled system during the transition pro-
cess in order to suppress or delay turbulence (Joshi et al. 1997; Bewley & Liu
1998; Högberg et al. 2003a). Since the disturbance energy growth is initially
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a linear process (Schmid & Henningson 2001) it seems prudent to design con-
trol schemes for the linearized governing equations. However, linear control
has also been applied with considerable success to the full Navier–Stokes equa-
tions (Chevalier et al. 2007), and attempts have been made to relaminarize a
fully developed turbulent flow (Högberg et al. 2003b).

We will consider two fundamentally different stability scenarios for the
evolution of perturbations q governed by the non-parallel Ginzburg-Landau
equation: (i) local convective instabilities and (ii) global instabilities. The
parameters for the two cases are listed in table 1.

5.1. The concept of feedback

The actuation on the flow can be accomplished by various means, such as,
for example, the injection of fluid through blowing/suction holes in the wall.
Within the region of validity of our underlying physical model, it is possible
to compute a control strategy in advance that will retain the flow in a laminar
state. This procedure is referred to as open-loop control. However, under
the presence of uncertainty over the exact disturbance environment (or the
validity of our physical model), open-loop control will fail. Instead, one can
monitor the flow through measurements and adjust the actuation accordingly
such that predefined objectives are met. A control setup of this type is known
as closed-loop control. It uses feedback to establish a connection between the
output from the system (i.e. the measurement signal) and the input to the
system (i.e. the control signal). Under realistic conditions, we are faced with a
wide range of unknown variations, such as modeling errors or sensor noise, and
a feedback-type control system is required to efficiently compensate for these
uncertainties.

The main idea of linear feedback control is shown in figure 1. The entire
system is described in state-space form as follows

q̇ = Aq +B1w +B2u, (69a)

z = C1q +Du, (69b)

y = C2q + g. (69c)

This set of equations is commonly referred to as the plant. The first equation
(69a) describes the dynamics of our linear system captured in the system matrix
A as external forces, modeled by B1w and B2u, are applied. We have decom-
posed the input into two terms with B1w(t) describing the effect of external
sources of excitations and B2u(t) representing the control input. The variable
z(t) given by the second equation (69b) represents the objective function as
described below. The third equation (69c) describes a connection between the
state q and the measurements y, where the additional term g accounts for noise
contaminating the measurements. In general, the objective is to find a control
signal u(t) such that the influence of the external disturbances w and g on the
output z is minimized. The above set of equations (69) has been discretized
using a Hermite collocation method as described in Appendix A.
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Our objective is to find a control signal u(t) such that the perturbation
energy contained in the state variable q(t) is minimized. Furthermore, the
energy input expended by the control must be smaller than the amount of
energy gained by it. Thus, in addition to focusing on the perturbation energy
we also have to penalize our control effort. This results in a objective (or cost)
functional of the form

‖z‖2
2 = ‖C1q‖2

2 + ‖Du‖2
2 =

∫ T

0

qH CH
1 C1
︸ ︷︷ ︸

M

q + uH DHD
︸ ︷︷ ︸

R

u dt (70)

where M and R are positive semi-definite matrices; we have furthermore as-
sumed thatDH [C1 D] = [0 I] in order to get zero cross terms (Zhou et al. 2002).
It is important to realize that the 2-norm in the above expression is defined
both over time and space. Note that if C1 is chosen as F in equation (19) then
the kinetic energy of the disturbance will be minimized. In the above setup
we have assumed that the full state q is known, but for realistic flow situations
the complete instantaneous velocity field is not available for determining an
appropriate feedback. We thus have to estimate the full state vector resulting
in an approximate state vector q̂, reconstructed from the measurements y(t)
via an estimation problem. A controller based on an estimated state vector is
known as an output feedback controller or a compensator.

5.2. The LQG framework

If we assume that the unknown disturbance noise w and the measurement noise
g are given by white-noise stochastic processes with zero mean and respective
covariances W and G, a compensator can be found that minimizes the cost
functional (70). In addition, the closed-loop control is guaranteed to be stable,
if the plant is both observable and controllable. In fact, a sufficient condition for
a global minimum value of (70) is that the system is stabilizable and detectable.
A system is stabilizable (detectable) if all unstable global modes are controllable
(observable).

The control will be optimal in minimizing (70) which stems, in one part,
from the optimal filtering of noise that has corrupted our signal (Kalman 1960)
and, in another part, from the optimal control when the entire state vector is
assumed to be available. These two separate problems — the estimation prob-
lem and the full-information problem — can then be combined to construct a
compensator. This two-step procedural framework matured in the 1960’s into
what we now refer to as Linear Quadratic Gaussian (LQG) control (Kwaker-
naak & Sivan 1972; Anderson & Moore 1990). The assumption that w(t) and
g(t) are white-noise stochastic processes may be far from reality in some appli-
cations; it is, however, possible to describe a plant with colored-noise input in
terms of an augmented system with white-noise input (Lewis & Syrmos 1995).

In applications LQG control is particularly successful when the system
operator A (in our case the Ginzburg-Landau equation) accurately describes
the modeled physical phenomenon. The remaining uncertainties in the overall



Input–output analysis and control of spatially developing flows 129

model are thus restricted to the inputs represented by stochastic disturbances
with known statistical properties. For this reason, the LQG framework is ap-
propriate when we can rely on an accurate plant, while a precise knowledge of
external disturbances and the degree of noise contamination of the measure-
ments are not available.

If the external disturbances are stochastic variables, the state will as well
be a stochastic process, and the objective function (70) can therefore be written
as

‖z‖2
2 = E

{
qHMq + uHRu

}
. (71)

As alluded to above, we will determine the optimal control u(t) in (69)
based on noisy measurements y(t) such that the cost functional (71) is mini-
mized. The first step in constructing such a compensator is to estimate the full
state q(t) given only the noisy measurements. After the state has been suc-
cessfully estimated, we assume, in a second step, that the control u(t) and the
estimate of the state q̂(t) satisfy a linear relation involving some yet unknown
matrix K, i.e.,

u(t) = Kq̂(t). (72)

The goal of this second step is then to find such a matrix K, which is referred
to as the control gain.

At the heart of the LQG-framework is the separation principle (Skogestad
& Postlethwaite 2005) which states that the controller that minimizes (70)
can be computed in two independent steps: (i) we can solve the estimation
problem to obtain an approximation q̂ of the true state q without any reference
to the control problem; (ii) to find the control gain K in (72) we do not need
the estimate q̂ in (72) but instead can assume the full-information relation
u(t) = Kq(t). One of the important consequences of the separation principle
is the fact that the final compensator, using (72) based on the control gain K
obtained by considering q(t) (not q̂), will always yield a closed-loop system that
is stable if and only if each of the two separate problems (estimation and full-
information control) are themselves stable (see Zhou et al. 2002). In addition
to stability, the closed-loop system will be optimal. To simplify the expressions
in the following analysis we assume that the adjoint system is derived using a
standard Euclidean inner-product, i.e. the dual or the adjoint of the plant (69)
is given simply by its complex conjugate transpose.

5.2.1. The estimation problem

Under the assumption that the measurements capture a sufficient amount of the
system’s dynamics (i.e. that we have significant observability), it is possible to
estimate or observe the state vector by using a Kalman filter (Kalman 1960).
In this section we derive the algebraic Riccati equation for estimation and
show examples on the Ginzburg-Landau equation. For additional details see
e.g. Lewis & Syrmos (1995); Anderson & Moore (1990).

We assume zero initial conditions, since we are interested in the controller
performance as an average over long time while the system is excited by external
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perturbations. We further assume white-noise stochastic processes for w(t) and
g(t) with zero mean. The estimator then takes on the form

˙̂q = Aq̂ +B2u− L(y − ŷ), (73a)

ŷ = C2q̂. (73b)

In the above expression, we compare the measurement y from the state and the
measurement ŷ from the estimated state and feed back the mismatch in these
two quantities using the estimator gain L. To analyze the performance of the
estimation problem, it is instructive to derive the dynamics of the estimation
error q̃ = q − q̂. Combining (69) and (73) we obtain

˙̃q = Aq̃ +B1w + L(y − ŷ). (74)

Substituting the explicit dependence of the two measurements on the state q
and estimated state q̂, respectively, we obtain

˙̃q = (A+ LC2)q̃ +B1w + Lg (75)

where the estimation error dynamics is governed by the matrix Ae = A+LC2

and is driven by two source terms, namely the external excitation w and the
sensor noise g. We aim at finding an estimator gain L such that Ae is asymp-
totically stable and is not sensitive to the external perturbations B1w + Lg.
Since (69) is driven by noise, the state q(t) and the output y(t) are consequently
random processes whose stochastic properties have to be considered in finding
the estimator gain L. The error covariance is given as

P (t) = E{q̃q̃H} (76)

which represents a measure of uncertainty in the estimate. Smaller values
of P (t) indicate a better estimate as the estimation error is more tightly dis-
tributed about its mean value of zero. If the estimator (75) is stable, the error
q̃(t) will eventually reach a steady-state with a constant mean and covariance.
The steady-state covariance can be readily obtained by solving the Lyapunov
equation

AeP + PAH
e + LGLH +B1WBH

1 = 0 (77)

where G and W are the covariance matrices of g(t) and w(t), respectively. The
optimal estimation feedback gain L is then chosen to both keep (75) stable
and to minimize the mean of the steady-state estimation error. We obtain the
mean estimation error from the covariance (76) using the expression (39),

J = E{q̃} = trace(PM), (78)

where the mean is chosen as the kinetic energy. This minimization has to
be accomplished under the constraint that P satisfies the above Lyapunov
equation (77). We add this constraint to the cost functional J via a Lagrange
multiplier Λ and obtain the Lagrangian M

M = trace(PM) +

+trace[Λ(AeP + PAH
e + LGLH +B1WBH

1 )].
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Figure 21. (a) The mean of the error covariance trace(PM)
(lower dashed line) obtained by solving the Riccati-equation
(81) is compared to the estimation error (blue line) obtained
by marching the estimator in time (73). Also, the mean value
of the state (top dashed line/red line) is shown and found to
be nearly three orders of magnitude larger than the estimation
error. It is evident that both the state and the estimation error
reach a steady state. (b) The rms-value of the error and the
state are shown in blue and red lines, respectively. The red and
green Gaussian functions represent the location of the input
(stochastic disturbances) and the sensor. The error attains its
minimum value just downstream of the sensor location and
increases upstream as well as downstream of it.

We thus minimize J subject to the constraint (77) by equivalently finding
stationary points of M without imposed constraints. The necessary conditions
for a minimum are given by:

∂M
∂P

= AH
e Λ + ΛHAe +M = 0, (79a)

∂M
∂Λ

= AeP + PAH
e + LGLH +B1WBH

1 = 0, (79b)

∂M
∂L

= 2Λ(PCH
2 + LG) = 0. (79c)

We can eliminate Λ from equation (79c) to obtain an expression for the esti-
mator gain

L = −PCH
2 G

−1. (80)

Inserting the expression above into the second condition (79b) leads to a qua-
dratic matrix equation for the error covariance P

AP + PAH − PCH
2 G

−1C2P +B1WBH
1 = 0 (81)
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which is referred to as an algebraic Riccati equation. In Laub (1991); Datta
(2003) efficient methods of solving the Riccati equations can be found. We
can thus determine the optimal estimation gain L by solving (81) for the error
covariance P which, using (80), results in L. No requirements of observability
or controllability have to be explicitly imposed on the estimation problem;
however, if we place the input describing external disturbances B1 and the
sensor C2 such that (C2, A) is observable and (A,B1) is controllable, then the
resulting Riccati equation (81) will have a unique positive definite solution.
Moreover, the closed-loop estimator will then be asymptotically stable.

One way to investigate the performance of the estimator, is to compare
the energy of the true flow state with the energy of the estimation error. In
figure 21(a) the temporal evolution of the state energy (red line) and of the
estimation error (blue line) are shown. The energy of the estimation error is
nearly three orders of magnitude smaller than the energy of the true state. In
the same figure, the mean energy of the estimation error — obtained by solving
the Riccati-equation (81) — and the mean energy of the state — obtained by
solving the Lyapunov equation (45) — are plotted with dashed lines. We
observe that the solutions of the Riccati equation and the Lyapunov equation
provide the mean energy in which, respectively, the estimation error and state
energy fluctuate about. In figure 21(b), the corresponding rms of the error q̃rms

together with the rms of state qrms are shown.

5.2.2. Full-information control

The second step in the design of an LQG-compensator involves the solution of
an optimal control state-feedback problem. We show in this section that the
optimal solution is, again provided by the solution of a Riccati equation. The
reader is directed to Anderson & Moore (1990); Lewis & Syrmos (1995) for
more detailed derivations.

We seek a control u(t) as a linear function of the flow state q(t) that
minimizes the deterministic cost functional

J =
1

2

∫ T

0

qHMq + uHRu dt, M,R > 0, (82)

while satisfying the initial value problem

q̇ = Aq +B2u, q(t = 0) = q0. (83)

We perform the steps analogous to the estimation problem by first defining an
augmented Lagrangian N of the form (Lewis & Syrmos 1995)

N =
1

2

∫ T

0

(qHMq + uHRu) + λT (−q̇ +Aq +B2u) dt (84)

where λ is again a Lagrange multiplier which enforces the initial value problem
(83). The necessary conditions for a minimum of N result in the following set
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of equations

∂N
∂λ

= −q̇ +Aq +B2u = 0, (85a)

∂N
∂q

= λ̇+Mq +AHλ = 0, (85b)

∂N
∂u

= Ru+BH
2 λ = 0. (85c)

We proceed by assuming a linear relation between the state q(t) and the La-
grange multiplier λ(t)

λ(t) = X(t)q(t), (86)

where X(t) is self-adjoint and positive semidefinite. Using this linear relation
and the optimality condition (85c) yields the following feedback law:

u(t) = −R−1BH
2 X(t)

︸ ︷︷ ︸

K(t)

q(t). (87)

To find X(t) we differentiate (86) and use the state equation (85a) to obtain

− λ̇ = Ẋq +X(Aq −BH
2 R

−1B2Xq). (88)

Substituting equation (85b) into this last expression leads to a quadratic ma-
trix equation for X(t) that (assuming controllability of (A,B2)) asymptotically
converges to

AHX +XA−XB2R
−1BH

2 X +M = 0. (89)

As before, we obtain a Riccati equation for the linear mapping X. The solution
to this equation provides the optimal steady feedback gain via the relation (87).

Moreover, stabilizability of (A,B2) and detectability of (A,C1) imply ad-
ditional desirable properties: the feedback gain K is guaranteed to stabilize
the plant and to yield a global minimum value of (82). We recall that a sys-
tem is stabilizable (detectable) if all unstable global modes are controllable
(observable). In other words, if we place our actuators such that we ensure
controllability of the unstable global modes and if we choose M as the kinetic
energy weight matrix, then the closed-loop system is guaranteed to be stable.
In the limit as T → ∞ the cost functional is given by (Högberg 2001)

J = qH
0 Xq0, (90)

and any other stabilizing controller will result in a larger value of this objective
functional.

5.2.3. The LQG-compensator

Combining the estimator and controller we can now control our plant by solely
relying on the measurements y(t). To validate the separation principle, we may
write the control (72) in terms of the full state q and the estimation error q̃,

u = Kq −Kq̃. (91)
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We can combine the plant (69) and the equation for the estimation error (75)
into the augmented system

(
q̇
˙̃q

)

=

(
A+ B2K −B2K

0 A+ LC2

)(
q
q̃

)

+

(
B1 0
B1 L

)(
w
g

)

. (92)

Since this augmented system is block-triangular, the eigenvalues of the aug-
mented closed-loop system consist of the union of the eigenvalues of Ac =
A + B2K and Ae = A + LC2. Thus, if the full-information controller Ac and
the estimator Ae are stable, then the closed-loop system, i.e., the compensator,
obtained by combining the plant (69) and estimator (73),

(
q̇
˙̂q

)

=

(
A B2K

−LC2 A+B2K + LC2

)

︸ ︷︷ ︸

A

(
q
q̂

)

+

(
B1 0
0 −L

)

︸ ︷︷ ︸

B

(
w
g

)

(93a)

z = (C1 DK)
︸ ︷︷ ︸

C

(
q
q̂

)

(93b)

is also stable. As the separation principle suggests, the compensator consisting
of an optimal estimator and an optimal full-state controller is itself optimal.
The closed-loop system, given by equation (93), has two inputs, the external
disturbances w and the measurements noise g, and one output, the objective
function z. This closed-loop system is treated as a new dynamical system whose
properties, such as stability, input-output behavior and performance, have to
be investigated. Next, we discuss these issues for the two prototypical flow
cases.

5.3. Control of subcritical flow

For a choice of parameters that results in a convectively unstable plant (table 1),
the objective is to apply control schemes that lower transient energy growth
or reduce the amplification of external disturbances. We will now construct a
LQG-compensator for the Ginzburg-Landau equation to illustrate how a typical
convectively unstable flow system may react to control. Similar to the analysis
of the uncontrolled system in sections 2 and 3, the response behavior of the
closed-loop system — in terms of spatio-temporal evolution of the state, kinetic
energy and sensor signal — will be investigated for various inputs: optimal
initial disturbance, harmonic forcing and stochastic forcing.

Before control schemes can be designed, one has to decide on the placement
of actuators and sensors, the choice of which is reflected in the matrices B2

and C2. We assume the spatial distribution of the inputs and the outputs as
Gaussian functions of the form given by (108). The width parameter s = 0.4
is chosen such that 95% of the spatial extent of the input/output distributions
are ∼ 5% of the length of the unstable domain (see figure 22a). In this way, we
are restricted — as in any practical implementation of control schemes — to
only a limited number of noisy measurements and to actuation in a rather small
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region of the full domain. An additional simplification is made by considering
only one actuator and one sensor.

Identifying regions of the flow where sensing and actuation are favorable
to the feedback control of a convectively unstable system is significantly com-
plicated by the convective nature of the flow. Usually one has to use physical
intuition and a trial-and-error approach. Transient growth of energy due to
the non-normality of A is associated with the local exponential growth of dist-
urbances between branch I and II. As a consequence — and in contrast to the
globally unstable case (see next section), where it suffices to estimate at branch
II and control at branch I — the entire unstable domain between branch I and
II is of great importance for the flow dynamics.

Appropriate choices for the location of an actuator and a sensor for the
subcritical Ginzburg-Landau equation is found to be xu = −3 and xs = 0,
respectively. In figure 22(a), the actuator and sensor placement are shown that
result in an acceptable closed-loop performance.

5.3.1. Stochastic disturbance

Consider a system driven by white noise B1w(t) just upstream of branch I.
From the noisy measurements y(t) = C2q(t) + g between branch I and II an
estimated state is obtained. Based on this estimate, the control signal B2u(t)
is applied upstream to the sensor. The placement of the excitation, sensor and
actuator is shown in figure 22(a).

The covariance of the external and measurement noise should be chosen to
match as closely as possible the uncertainties that are expected for the chosen
design configuration, but it is difficult to make more specific statements. It has
however been found (Hœpffner et al. 2005; Chevalier et al. 2006; Hœpffner &
Brandt 2008) that the performance of the estimator can be improved dramati-
cally if the covariances are chosen to reflect physically relevant flow structures
rather than generic probability distributions. For our problem, the sensor noise
g is chosen to have a variance of G = 0.1 which is 10% of the variance of a
random input with W = 1.

Since (69) is driven by white noise w(t), the state q(t) is consequently a
random process and is defined by its stochastic properties, e.g. its covariance
P = E{qqH}. As we have shown in section 3.2, these properties are linked to
the statistical characteristics of the forcing via a Lyapunov equation (45).

In figure 22(a) the rms-values (40) of the state without control (red) and
with control (black) are shown. The rms-value of the uncontrolled state grows
exponentially as it enters the unstable domain at branch I; this growth prevails
until branch II. The rms of the controlled state, however, grows only slightly
in the unstable region and is considerably lower than the rms-value of the
uncontrolled state at branch II.

In figure 22(b, c) the performance of the compensator is shown more ex-
plicitly in form of a temporal simulation of the closed-loop system (93) in time.
The control is only engaged for t ∈ [250, 750]. Without control the stochastic
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Figure 22. The controlled Ginzburg-Landau equation with
stochastic excitation: (a) white noise w with zero mean and
unit variance W = 1 forces the system at x = −11, just up-
stream of unstable region with input B1 as a Gaussian function
(green). Measurements y(t) of the state (red Gaussian) con-
taminated by white noise with zero mean and varianceG = 0.1
are taken at xs = 0. The actuator u with control penalty R = 1
is placed upstream of the sensor at xu = −3. The rms-values
of the uncontrolled and LQG-controlled state are given by the
solid red and black lines, respectively. The absolute value of
the state |q| is shown in an x-t-plane in (b), while the lower
plot (c) displays the kinetic energy E = ‖q‖2

M as a function of
time. The control is only engaged for t ∈ [250, 750]. Dashed
lines in (c) indicate the mean value computed from Lyapunov
equation.

disturbances grow exponentially as they enter the unstable region at x = −8.2
and decay as they exit the region at x = 8.2. When the control is activated
the perturbation energy is reduced from E ≈ 103 to E ≈ 1. When the con-
trol is disengaged, the disturbances immediately start to grow again. During
and after the time when the control is applied the perturbation energy reaches
a steady-state at a level that can be determined from the covariance of the
state according to E = trace(PM), (equation 39). Dashed lines in figure 22(c)
indicate these levels.

5.3.2. Harmonic and optimal disturbance

The aim of feedback control for subcritical flows is to design closed-loop sys-
tems with small transfer function norms compared to the stable open-loop
system. Maximum transient energy growth of a perturbation and the norm of
the system transfer function G are linked for highly non-normal systems (see
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Figure 23. (a) Comparison of the frequency response of the
open-loop (red), LQG-controlled (black) and H∞-controlled
(blue) Ginzburg-Landau equation. For the open-loop, the ∞-
norm corresponding to the peak value of the response is 151,
whereas the 2-norm corresponding the to integral of the re-
sponse is 20.5. The H∞ controller minimizes the peak value
to 18.4 and reduces the 2-norm to 8.7. The LQG/H2 con-
troller, on the other hand, minimizes the 2-norm to 6.1 and
reduces the peak value to 20.8. (b) The energy evolution of
an optimal disturbance is shown for the convectively unsta-
ble Ginzburg-Landau equation (red line) and the closed-loop
system computed with LQG/H2 (black) and H∞ (blue ).

section 3.1 for details). To show this link, we will pose the LQG problem as
a control problem in the frequency domain with the objective to minimize the
2-norm of the closed-loop transfer function.

The relation between the input and output signals, that is, between dis-
turbance and measurement noise and the objective function, (w → z, g → z),
of the closed-loop system (93) (displayed schematically in figure 1) can be de-
scribed by the transfer function,

Gc(s) = C(sI − A)−1B s ∈ C. (94)

The relation between the objective function (70) in the time-domain and
in the frequency domain can easily be found from Parseval’s identity,

∫ ∞

−∞

z2 dt =
1

2π

∫ ∞

−∞

trace|Gc(iω)|22dω = ‖Gc(iω)‖2
2 (95)

with |Gc|22 = GH
c Gc. We have thus defined the 2-norm of the transfer function

Gc(s) as the integral over the 2-norm of the amplitude of the transfer function
along the imaginary axis. The H2 problem is then to minimize (95). The
symbol H2 stands for the “Hardy space” (Zhou et al. 2002) which contains the
set of stable transfer functions with bounded 2-norms.
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Figure 24. Actuator and sensor placement for the supercrit-
ical Ginzburg-Landau equation which yields a stabilizable and
detectable system. The spatial support of the actuator (blue
bar), sensor (red bar), the unstable domain (gray region) as
well as the unstable global mode (black lines) together with
its corresponding adjoint mode (red lines) are shown.

In figure 23(a) the frequency response (w → z, g → z) of the open-loop
system is shown (red line) for the subcritical Ginzburg-Landau equation; we
observe a 2-norm of 20.5. The corresponding LQG/H2 closed-loop transfer
function (94) is displayed (black line) in figure 23, where the 2-norm is now
minimized to a value of ‖Gc‖2 = 6.1. In figure 23(b) the optimal energy growth
(section 2.3) of the uncontrolled and controlled system are compared. The
maximum transient energy growth (peak value) is reduced by an order of mag-
nitude.

5.4. Control of supercritical flow

For a globally unstable flow (parameters given in table 1), i.e., an unstable plant
(69), the influence of uncertainties (w(t) and g(t)) on the system dynamics is
rather small compared to the asymptotic behavior of the most unstable global
mode. This mode will grow exponentially as soon as any disturbance (assuming
it is not orthogonal to the unstable mode) enters the unstable region. For this
reason disturbance modeling may not play a decisive role for globally unstable
flows, in contrast to convectively unstable flows.

The goal of any control effort is to stabilize an otherwise unstable system;
this task is particularly straightforward using LQG-based feedback control,
since the closed-loop system (93) is guaranteed to be stable as long as the
actuator and the sensor are placed such that the system is both stabilizable
and detectable.

In other words, the performance of a controller to a globally unstable
Ginzburg-Landau equation can only be successful if all unstable global modes
are controllable and observable. It was concluded in section 4.1 that a global
mode is controllable (observable) if the overlap of the actuator (sensor) and
the adjoint mode (global modes) is nonzero. In figure 24, a configuration for



Input–output analysis and control of spatially developing flows 139

Figure 25. The spatio-temporal response to an impulse in
time induced at x = −10 for the uncontrolled system (a) and
LQG-controlled system (b).

the actuator and sensor is shown that yields a plant which is both stabilizable
and detectable.

For this set-up a LQG compensator (93) is constructed by solving the
Riccati equations (89) and (81). The perturbation energy, the impulse response
and the spectrum of the uncontrolled plant (69) and controlled closed-loop
system (93) are shown in figures 25 and 26. We observe that the closed-loop
system has all eigenvalues in the stable half-plane yielding an asymptotically
stable flow.

For a point-wise spatial distribution of actuators δ(x − xu) it has been
shown in Lauga & Bewley (2003) that the Ginzburg-Landau equation gradu-
ally loses stabilizability as the parameter µ0 is increased. This loss is due to the
increasing number of unstable global modes which are located further down-
stream. Controllability of the unstable global modes is gradually diminished as
the support of the actuator and the support of the corresponding unstable ad-
joint global modes (57c) move apart until controllability is entirely lost. At this
point no compensator will be able to stabilize the system using one pointwise
actuator.

5.5. The H∞ framework — robust control

In the previous sections we have tacitly assumed that the system matrices A,B
and C are known exactly. In reality, however, this is not the case, since mod-
eling errors (for example, a small mismatch in the Reynolds number between
the model and the actual flow) are always present. The presence of these errors
raises the important issue of robustness of a specific control design.

Concentrating for simplicity on the dynamic model error, let us consider a
model system given by A. The real flow, on the other hand, shall be subject
to a small deviation from this model and is described by the dynamic matrix
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Figure 26. Left figure: The perturbation energy of an initial
condition which illustrates the asymptotic growth and decay
of the global mode of the controlled and uncontrolled systems.
Right figure: The spectrum of the uncontrolled (circles) and
LQG-controlled (crosses) Ginzburg-Landau equation. The ex-
ponential growth of the wavepacket in figure 25(a) is due to
one unstable global mode of the open-loop shown by the red
circle in the unstable half-plane (gray region). The LQG-based
closed-loop is stable with no unstable eigenvalues.

A + ǫ∆ with ∆ as a unit-norm uncertainty matrix and with ǫ parameterizing
the magnitude of the uncertainty. For a given value of ǫ, the controller de-
signed for A has the ”robust stability” property if the closed-loop system is
stable for all unit-norm uncertainty matrices ∆ and, similarly, has the ”robust
performance” property if the performance of the closed-loop system is satis-
factory for all possible unit-norm uncertainty matrices ∆. If information about
the specific form of the uncertainties is available, one can restrict the structure
of the uncertainty matrix ∆ to reflect this information and thus reduce the
“uncertainty set”. In a similar fashion, the magnitude ǫ of the uncertainty may
be estimated or bounded.

Unfortunately, the LQG/H2-control design does not account explicitly for
uncertainties in the system matrices, which is needed to guarantee robust per-
formance or even robust stability. For a given controller, the smallest value
of ǫ such that the closed-loop system is unstable is referred to as the stability
margin. It is known (Doyle 1978) that there are no guaranteed stability mar-
gins for LQG/H2-controllers. However, this does not necessarily mean that
the H2-controller will be unstable for very small values of ǫ; instead, it merely
means that the search for robustness is not accounted for.

To incorporate the presence of uncertainties into the control design frame-
work one can adjust the actuation penalty and sensor noise which, in turn,
directly affects the strength of the controller and may help push the control
design toward robustness. This approach has led to the development of con-
trol optimization based on the H∞-norm. Instead of minimizing the energy of
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the transfer function (i.e., the integral of the frequency response over all fre-
quencies), it concentrates instead on reducing the peak value of the frequency
response. These are two very different objectives: for instance, a strong peak in
the frequency response localized about one single frequency may not contribute
significantly to the energy (integral) of the response. This new H∞-objective
plays a pivotal role in the search for robustness since closed-loop instabilities
can be quantified by the relation between the magnitude of the dynamic un-
certainty and the maximum frequency response (Zhou et al. 2002).

The steps to compute H∞-controllers closely follow the ones for LQG/H2-
design except that a new term is added to the objective functional that will
represent the worst possible external forcing. The subsequent optimization
scheme will search for a controller that achieves the best performance for the
worst perturbation (Bewley & Liu 1998; Bewley 2001). Mathematically, this
is equivalent to searching for a saddle point of this new objective functional
rather than a minimum. The augmented objective functional reads

J =

∫ T

0

qHMq + uHRu− γ2wHWw dt. (96)

In this expression w represents both external disturbances and measurement
noise. We then wish to find the control u which minimizes the control ob-
jective (70) in the presence of a disturbance w that maximally disrupts this
objective. A new free parameter γ appears that plays the role of ǫ in parame-
terizing the magnitude of the worst perturbation.

To simplify the following derivation we assume for now that W = 1 and
R = 1. Similar to the LQG-design in 5.2.3, we can also specify the control
objective in the frequency domain instead of the time domain (96). In this case
we simply aim at restricting the maximum values of the closed-loop transfer
function as given by (see e.g. Green & Limebeer 1995),

‖Gc(iω)‖∞ ≤ ‖z‖2

‖w‖2
≤ γ. (97)

The above transfer function norm was defined in (36).

The H∞-problem consists of finding a control signal u(t) that minimizes
both the perturbation energy and control effort while maximizing the effects
of the external disturbances w. As the parameter γ approaches infinity the
objective functional (and the optimal control) reduces to the one of the LQG-
problem. In this review we will merely present the solution of the H∞-problem
and show how it relates to the LQG-solution. For a more detailed derivation
of this link see Zhou et al. (2002) or Green & Limebeer (1995).

The solution of the above H∞-problem is, similar to the LQG-problem, ob-
tained by solving two Riccati equations which stem from two separate problems:
the estimation and the full-information control problem. The full-information
control problem leads to the Riccati equation of the form

AHX +XA−X(−γ−2B1B
H
1 +B2B

H
2 )X +M = 0 (98)
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with the control given by
u = −BH

2 X
︸ ︷︷ ︸

K

q. (99)

Furthermore, one finds that the worst-case disturbance w is given by

wworst = γ−2BH
1 Xq. (100)

The Riccati equation (98), whose solution yields the control feedback gain
for H∞, is modified such that it takes into account the worst-case disturbance
acting on the system. We notice that the term −γ−2B1B

H
1 is absent in the

Riccati equation (89) of the LQG-problem. Rather, by modeling and incorpo-
rating the structure of the disturbances B1 when computing the feedback gain
K, the components of the state that are expected to be most influenced by
external disturbances are forced by the largest feedback, Kq̂. We would like to
point out that the parameter γ is supplied by the user and that the resulting
control (99) is only suboptimal rather than optimal. For large values of γ,
the full-information solution of the associated LQG-problem and the optimal
control signal are recovered.

The estimated state is also computed in the presence of worst-case distur-
bances ŵworst = γ−2BH

1 Xq̂ and is therefore the result of the following estima-
tion problem

˙̂q = Aq̂ +B1ŵworst +B2u− L(y − ŷ), (101a)

ŷ = C2q̂. (101b)

Similar to the LQG-estimation problem, the difference between the true mea-
surement y and the estimated measurement ŷ is fed back using the estimator
gain L. There is, however, no longer any assumption on the disturbances w
and g. Instead the additional term B1ŵworst provides the estimator with infor-
mation on the worst-case disturbance. The estimation gain in equation (101)
is given by L = −ZY CH

2 , where Y is the solution of the following Riccati
equation (for a derivation of this result see, e.g. Zhou et al. 2002)

AY + Y AH − Y (−γ−2CH
1 C1 + CH

2 G
−1C2)Y +B1B

H
1 = 0, (102)

and Z is a constant matrix given by

Z = (I − γ−2Y X)−1. (103)

Equation (102) can now be compared to the Riccati equation (81) for the LQG-
problem. The additional term −γ−2CH

1 C1 is present in the above equation
which reflects the fact that the computation of the estimation gain L depends
on the weights in the cost functional. The components of the estimated state
that most contribute to the objective functional are forced stronger by the
feedback L(y − ŷ). In addition we notice that the estimation gain L depends
via equation (103) on the solution of the full-state Riccati solution X.

By combining the estimator (101) and the plant (69) it is straightforward
to formulate the H∞-compensator as a closed-loop system. Even though the
required calculations (the solution of two Riccati equations) are reminiscent
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of the LQG-approach, in the H∞ case we face additional restrictions for the
stability of the closed-loop system and a more demanding computational effort
for finding an optimal controller.

First, stabilizability and detectability is no longer a sufficient condition to
guarantee the stability of the closed-loop system. For the H∞-problem to be
solvable, the spectral radius ρ of XY has to be smaller than γ2 (Doyle et al.
Aug 1989).

Secondly, the solution presented above is merely suboptimal; finding an
optimal robust controller involves an iterative process that terminates when a
lower bound γ0 of γ is found which still satisfies ρ(XY ) < γ2. This optimal
γ0 can typically be found with fewer than 20 iterations using the bisection
algorithm.

We use the Ginzburg-Landau equation to exemplify the techniques intro-
duced above. For a more detailed investigation we refer to Lauga & Bewley
(2004). In figure 23(a) the frequency response (i.e., the mapping w, g → z)
of the open-loop system is shown with a red line for the subcritical Ginzburg-
Landau equation, displaying a ∞-norm of 151. The corresponding H∞ closed-
loop design is shown with a blue line where the ∞-norm is now reduced to
‖Gc‖∞ = 18.4. Comparing the frequency responses of the controlled systems
based on the H2 and H∞, we can confirm that in the former case the 2-norm
‖Gc‖2 is minimized while in the latter case ‖Gc‖∞ is minimized. Consequently,
the most amplified frequencies are more damped in the H∞-case at the expense
of the higher frequencies which are amplified compared to the uncontrolled case.
The H2 controller, on the other hand, shows a smaller reduction of the most
unstable open-loop frequencies (i.e. the peak value in the frequency response).
This is not surprising, since the H2-controller minimizes the energy — the
integral of the transfer function along the imaginary axis — whereas the H∞-
controller minimizes the peak value of the transfer function on the imaginary
axis.

The optimal energy growth (see equation 21) in figure 23(b) demonstrates
that the maximum energy growth is smaller for the H∞-design which suggests
that reducing the most amplified frequencies, rather than all the frequencies,
is a more efficient strategy for damping maximum energy growth. However,
to achieve its goal the H∞-controller expends more control energy than the
corresponding H2-controller (Lauga & Bewley 2004).

Using the Ginzburg-Landau equation for a set of parameters that yields a
globally unstable flow Lauga & Bewley (2004) compared the H∞-controller to
the H2-controller for a range of control penalties and various levels of measure-
ment noise. They found that the H∞ control design always uses more control
energy (for the same control penalty) than the corresponding H2 control de-
sign. A robust controller uses this additional control energy to ensure that
the constraint on the maximum value of the transfer function norm ‖Gc‖∞ is
satisfied.
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Figure 27. The frequency response of the closed feedback-
loop based on a LQG-compensator. Blue dashed lines rep-
resent the full model of order n = 220. The performance of
reduced-order models based on r = 2, 4 and 6 modes are shown
in the (a), (b) and (c), respectively. Red lines represent bal-
anced modes, black lines POD modes and green lines global
eigenmodes. We observe that reduced order controller based
on balanced modes outperforms the other two models. The
poor performance of the reduced-order based on POD and
global modes, is directly associated with the unsatisfactory
approximation of the open-loop case in figure 18.

5.6. Reduced-order controllers

The process of systematic control design as presented above involves the solu-
tion of two Riccati equations. The cost of computing a Riccati solution is of
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order n3 where n is the number of components in the discretized state vector.
Whereas for the Ginzburg-Landau equation n is still sufficiently low to allow
a direct solution of the Riccati equations, for the Navier–Stokes equations the
number of state vector components is rather large. The cost of a direct Riccati
solution is prohibitively expensive when n > 105 which is easily reached for
two- and three-dimensional flow configurations. As discussed in section 4, this
high cost can be avoided by developing a reduced-order model which preserves
the essential flow dynamics.

Similar to solving a Lyapunov equation, there exist “matrix-free” methods
to solve a Riccati equation. One common approach that significantly reduces
the cost of directly solving the Riccati equation — if the number of inputs
and outputs is much smaller than the number of states — is known as the
Chandrasekhar method (Kailath 1973). In this method the Riccati solution
is expressed as the solution to a coupled system of ordinary differential equa-
tions which needs to be integrated in time (see Hœpffner et al. 2005, for an
application).

Even if we manage to obtain the feedback gains from the full system,
however, there still remains the issue that the controller is of very high order,
which requires a rather fast feedback-system running next to the experiment.

We will return to the issue of model reduction (see section 4) based on the
projection of the original high-dimensional system onto a smaller system using
a given basis. One of the main advantages of this approach is that the error
in the reduced-order model can be quantified in terms of transfer functions as
shown in equation (62) and (58).

Once a reduced-order model is devised (using the techniques in section 4)
whose transfer function is a sufficiently good approximation of the open-loop
transfer function, we can design an H2- or an H∞-controller for this reduced
model. This results in a reduced-order controller which, coupled to the full-
order open-loop system, will result in the following augmented system

(
q̇
˙̂q

)

=

(
A B2K̂

−L̂C Â+ B̂2K̂ + L̂Ĉ

)(
q
q̂

)

+

(
B1 0

0 −L̂

)(
w
g

)

. (104)

The expression of the reduced-order controller is equivalent to the full-order
given by equation (93), except that the quantities marked withˆare of order
r ≪ n. Note that the feedback gainK and estimation gain L have the dimension
of the reduced model resulting in a fast online controller.

We can now compare the frequency response of the reduced-order models
with and without control. The frequency response of the full model without
control was shown by the dashed blue lines in figures 18. The frequency re-
sponse of reduced-order models using global modes (green), proper orthogonal
decomposition (POD) modes (black) and balanced modes (red) were also shown
in the figures.

In figures 27(a, b, c) we display with dashed blue lines the frequency re-
sponse Gc(iω) of the LQG closed-loop system when solving the full-order
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(n = 220) Riccati equations. Comparing the dashed blue lines in figure 18,
where the frequency response of the reduced-model of the open-loop is shown,
with the ones of the closed loop in figure 27, we see that the most unstable
frequencies are reduced by an order of magnitude. Solving the Riccati equa-
tions for the reduced models of order r = 2, 4 and 6 for the three sets of modes
(global, POD, balanced modes) we observe the same trend for the closed-loop
system as we saw for the open-loop system: the reduced-order model based
on two balanced modes (red line in figure 27b) is able to obtain a closed-loop
performance very similar to the full model, whereas POD modes require a
substantially larger basis and global modes fail entirely.

It should be mentioned that model reduction for unstable systems is also
possible using global modes (Åkervik et al. 2007), POD modes (Gillies 1998)
and, more recently, balanced modes (Ahuja & Rowley 2008).

6. Conclusions

A unifying framework for linear fluid dynamical systems has been presented
and reviewed that allows the analysis of stability and response characteristics
as well as the design of optimal and robust control schemes. An input-output
formulation of the governing equations yields a flexible formulation for treating
stability problems and for developing control strategies that optimize given
objectives while still satisfying prescribed constraints.

The linear Ginzburg-Landau equation on the infinite domain has been used
as a model equation to demonstrate the various concepts and tools. It has been
modified to capture both subcritical and supercritical disturbance dynamics
and thus span the range of fluid behavior observed in various generic shear
flow configurations. With a small modification, the equation can also be used
to mimic instabilities in other spatially developing flows, for instance flows
on semi-infinite domains such as inhomogeneous jets and wakes. We should
however keep in mind that Ginzburg-Landau is a great simplification of the
dynamics described by linearized Navier–Stokes equations, modelling merely
the fundamental behavior of different types of local and global instabilities and
the transition between them.

Input-output-based analysis tools, such as the impulse response or the fre-
quency response, have been applied to the model equation. This type of analysis
lays the foundation for a thorough understanding of the disturbance behavior
and the design of effective control strategies. Concepts such as controllability
and observability play an important role for both the input-output behavior
and the control design.

The design of effective and efficient control strategies is a challenging task,
starting with the placement of actuators and sensors and ending with the ju-
dicious choice of a model reduction basis in order to numerically solve the
compensator problem. Along the way, compromises between optimality (H2-
control) and robustness (H∞-control) have to be made that influence the overall
performance of the feedback system.
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It is hoped that this review has given a comprehensive and modern intro-
duction to the fields of stability and control theory and has shown the close
link between them. It is further hoped that it will spark interest in the fluid
dynamics community to continue the exploration of these two exciting disci-
plines.

The Matlab files to reproduce the results and figures of this review article
are available from the FTP server ftp://ftp.mech.kth.se/pub/review.

This work was partially sponsored by the Air Force Office of Scientific Re-
search, under grant/contract number FA8655-07-1-3053 through the EOARD.

The first author acknowledges financial support by École Polytechnique and
the Swedish research council (VR) for his stay at LadHyX where part of this
work was performed.

Appendix A. Discretization

The numerical studies in this review article are based on a pseudospectral
discretization of the Ginzburg-Landau operator A using Hermite functions and
the corresponding differentiation matrices provided by Weideman & Reddy
(2000). To approximate the derivatives in (1), we expand the solution q(x, t)
in n Hermite functions

q(x, t) =

n∑

j=1

αj(t) exp(−1

2
b2x2)Hj−1(bx) (105)

where Hj(bx) refers to the jth Hermite polynomial. The differentiation process
is exact for solutions of the form

f(x) = exp(−1

2
b2x2)p(bx) (106)

where p(bx) is any polynomial of degree n − 1 or less. The scaling parameter
b can be used to optimize the accuracy of the spectral discretization (Tang
1993). A comparison of the above expression with the analytical form of the
global Ginzburg-Landau eigenmodes (11b) shows that they are of the same form
except for the exponential term exp{(ν/2γ)x} stemming from the convective
part of the Ginzburg-Landau equation. This exponential term is responsible for
the non-orthogonality of the eigenmodes of A. The Hermite functions are thus
the “orthogonal part” of the global modes. By choosing the Hermite function
scaling factor b = χ we obtain a highly accurate approximation of A, since any
solution of the Ginzburg-Landau equation will decay with the same exponential
rate as the Hermite functions in the limit as the domain tends to infinity.

The collocation points x1, . . . , xn are given by the roots of Hn(bx). We also
notice that the boundary conditions are enforced implicitly and that −x1 =
xn = O(

√
bn) in the limit as n → ∞ (Abramowitz & Stegun 1964). The

discretization converts the operator A into a matrix A of size n× n (with n as



148 S. Bagheri, J. Hœpffner, P.J. Schmid & D.S. Henningson

the number of collocation points). Throughout this review article we present
results for n = 220 yielding a computational domain with x ∈ [−85, 85].

Discretization transforms flow variable q(x, t) into a column vector q̂(t) of
dimension n, and the inner product is defined as

〈f, g〉 =

∫ ∞

−∞

f(x)∗g(x)dx (107)

≈
n∑

i=1

n∑

j=1

f̂H
i ĝjwi,j = f̂HMĝ = 〈f̂ , ĝ〉M ,

where f̂ = [f̂1 . . . f̂n]H and ĝ = [ĝ1, . . . , ĝn]H are column vectors consisting of,
respectively, f(x) and g(x) evaluated at the collocation points. The symbol H

denotes the Hermitian (complex conjugate transpose) operation. The positive-
definite matrix M contains the weights wi,j of the chosen quadrature rule. For
instance, applying the trapezoidal rule to the Hermite collocation points results
in a diagonal matrixM = 1

2diag{∆x1,∆x2+∆x1, . . . ,∆xn−1+∆xn−2,∆xn−1},
with ∆xi = xi+1 − xi. In this paper, the discrete variables f̂ are denoted by f .

The operators B and C, describing the input and output configuration,
are represented at their respective collocation points. We assume a spatial
distribution of inputs B = {B1, . . . , Bp} and outputs C = {C1 . . . Cr}T in the
form of Gaussian functions

Biu(t) = exp

[

−
(
x− xw,i

s

)2
]

u(t), (108a)

Ciq(t) = exp

[

−
(
x− xs,i

s

)2
]H

Mq(t), (108b)

where x represents the Hermite collocation points.
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The dynamics and control of two-dimensional disturbances in the spatially
evolving boundary layer on a flat plate are investigated from an input-output
viewpoint. A setup of spatially localized inputs (external disturbances and
actuators) and outputs (objective functions and sensors) is introduced for the
control design of convectively unstable flow configurations. From the linearized
Navier–Stokes equations with inputs and outputs, controllable, observable and
balanced modes are extracted using the snapshot method. A balanced reduced-
order model is constructed and shown to capture the input-output behavior of
the linearized Navier–Stokes equations. This model is finally used to design a
H2-feedback controller to suppress the growth of two-dimensional perturbations
inside the boundary layer.

1. Introduction

Many powerful linear systems and control theoretical tools have been out of
reach for the fluids community due to the complexity of the Navier–Stokes
equations. Two elements that have enabled a systematic approach to flow
control are the availability of increasingly powerful computer resources and
recent advances of matrix-free methods. In this paper, the linearized Navier–
Stokes equations including inputs and outputs are analyzed using systematic
tools from linear systems and control theory. The techniques do not rely on
physical insight into the specific flow configuration and can in principle be
applied to any geometry.

We will focus on the flat-plate geometry which still poses a computational
challenge. The two-dimensional Blasius boundary layer is non-parallel, i.e. spa-
tially evolving and therefore has two inhomogeneous spatial directions. Many
tools in both stability analysis and control theory rely on the linearized stability
operator, which even for two-dimensional flows becomes very large when it is
discretized. As an example, a moderate grid resolution with 200 points in two
directions leads to a system matrix with a memory demand of 10 Gigabytes,
whereas to store a flow field requires only 3 Megabytes. It is therefore essential
to either approximate or develop algorithms where large matrices are avoided
and the storage demands are of the order of few flow fields. Matrix-free methods
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employ the “timestepper approach” in which given a flow field a Navier–Stokes
code is used to provide a field at a later time. The timestepper technique
has become increasingly popular in stability analysis, both for computing the
largest transient growth (Blackburn et al. 2008) and performing asymptotic
analysis (Barkley et al. 2002). Another example of a matrix-free method is
the snapshot method introduced by Sirovich (1987), which allows the proper
orthogonal decomposition (POD) of flow fields without solving large eigenvalue
problems.

The starting point of modern optimal and robust control design, also de-
noted as H2– and H∞–control, is an input-output formulation referred to as the
standard state-space formulation (Zhou et al. 1999). The well-known stochastic
approach to optimal control referred to as LQG (Linear Quadratic Gaussian) is
an example of a H2 controller. In this work, we consider three inputs and two
outputs; the inputs represent external disturbances, measurement noise and
the actuator whereas the outputs represent measurements for estimation and
of the objective functional to be minimized. The control problem is to supply
the actuator with an optimal signal based on the measurements taken from the
first sensor, such that the effect of external disturbances and measurement noise
on the disturbance energy is minimized at the location of the second sensor.
Given the physical distribution of the inputs and outputs, the control design
process amounts to the determination of input signals when output signals are
given. Therefore, for successful control design it is sufficient to capture only
a fraction of the dynamics, namely the relationships between the input and
output signals.

The aim of this study is to build a model of low dimension that captures the
input-output behavior of the flat-plate boundary layer, and use this model for
optimal feedback control design. With the help of the adjoint Navier–Stokes
equations two fundamental dynamical structures are identified; (i) the flow
structures that are influenced by the inputs (ii) the flow structures that the
outputs are sensitive to. These controllable and observable structures deter-
mine the input-output behavior completely for linear systems. It is well known
in systems theory that these two set of modes can be balanced, and represented
by one set of modes, called the balanced modes. In this way, the flow structures
that capture most of the input-output behavior are extracted and used as pro-
jection basis for model reduction. The method employed in this work to com-
pute the balanced modes is called snapshot-based balanced truncation (Rowley
2005; Willcox & Peraire 2002). This method has been applied to the channel
flow (Ilak & Rowley 2008) and the flow around a pitching airfoil (Ahuja et al.
2007). Unlike previous work, we do not combine the snapshot-based balanced
truncation with an output projection approach in order to describe the flow
dynamics. Our control design and performance evaluation is based on input
and output signals rather than on the space-time evolution of the entire flow.

Previous work in flow control involving model reduction and control design
has typically relied on physical insight into the specific flow situation rather
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than on a systematic approach detached from the application (see Kim & Be-
wley 2007, for a recent review). For parallel flows, for instance, it is possible to
decouple the linear equations in Fourier space. Control, estimation and other
types of optimization can then be performed independently for each wavenum-
ber and then transformed back to physical space. This approach has been
adopted for channel flow in Högberg et al. (2003) and even extended to weakly
nonparallel flows by Chevalier et al. (2007a). Another example is the projec-
tion of the linearized Navier–Stokes equations on a set of modes such as global
eigenmodes of the stability operator or POD modes. Although, these meth-
ods have been applied with considerable success to various flows (Gillies 1998;
Åkervik et al. 2007) their success is strongly dependent on the dynamics of the
specific flow situation. For many open shear flows the global eigenmodes and
their associated adjoint modes can become widely separated in the streamwise
direction (Chomaz 2005) and gradually move away from the locations of the in-
puts and outputs (Lauga & Bewley 2003). As a consequence controllability and
observability of the global eigenmodes is gradually diminished. If controllabil-
ity/observability is lost for any unstable eigenmode, no control scheme will be
able to stabilize the system. The POD basis also has limitations for describing
the input-output behavior. Although it is optimal for capturing the energy of
the response to an input, it does not always capture the input itself and takes
no consideration of the output. However, examples of successful adaptations
of POD modes can be found e.g. in Noack et al. (2003); Siegel et al. (2008) for
the globally unstable flow past a circular cylinder.

The paper is organized as follows: we start with describing the flow domain,
the inputs, outputs and the control problem in section 2. In this section the
mathematical framework is presented with evolution, controllability and ob-
servability operators and their associated adjoint operators. These operators
are used to introduce the Gramians and balanced modes in section 3, where we
also investigate the input-output behavior of our linear system and discuss the
controllable, observable and balanced modes. In section 4 the impulse and har-
monic response of the balanced reduced-order model are compared to the full
Navier–Stokes equations and the model reduction error is quantified. Section 5
deals with the control design. We briefly introduce the H2 framework and eval-
uate the closed-loop performance. Concluding remarks and a summary of the
presented material are offered in the last section. Finally, in the appendix we
derive the adjoint operators, describe the snapshot method, the solution of the
H2 problem and our timestepper.

2. Problem formulation

2.1. Governing equations

We consider the linear spatio-temporal evolution of two-dimensional distur-
bances in a viscous, incompressible flow over a flat plate. The geometry of
the problem and the physical domain, Ω = (0, Lx) × (0, Ly), are shown in fig-
ure 1. The disturbance behavior is governed by the Navier–Stokes equations
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Figure 1. Conceptual figure of the input-output configura-
tion used for the control of perturbations in a two-dimensional
flat-plate geometry. The computational domain Ω = (0, Lx)×
(0, Ly), shown by the gray region, extends from x = 0 to
x = 1000 with the fringe region starting at x = 800. The first
input B1, located at (xw, yw) = (35, 1), models the initial re-
ceptivity phase, where disturbances are induced by free-stream
turbulence, acoustic waves or wall roughness. The actuator,
B2, provides a mean to manipulate the flow, in this case by a
localized volume forcing, and is centered at (xu, yu) = (400, 1).
Two sensors, C1 and C2, are located at (xv, yv) = (300, 1) and
(xz, yz) = (750, 1) respectively. The upstream measurements
are used to estimate the incoming perturbations, while the
downstream sensor quantifies the effect of the control. Note
that in this work all the inputs and outputs are Gaussian func-
tions given by expression (13).

linearized about a spatially evolving zero-pressure-gradient boundary layer,

∂u

∂t
= −(U · ∇)u − (u · ∇)U −∇p+ Re−1∇2u + λ(x)u, (1a)

0 = ∇ · u, (1b)

u = u0 at t = 0. (1c)

The disturbance velocity and pressure field at position x = (x, y) and time t
are represented by u(x, t) = (u, v)T and p(x, t), respectively. The divergence
operator is denoted by ∇ = (∂x, ∂y)T . The Reynolds number is defined as
Re = U∞δ

∗
0/ν, where U∞ is the free-stream velocity and δ∗0 the displacement

thickness at the computational inflow x0 = 0. All the simulations were per-
formed at Re = 1000 which corresponds to a distance of 341δ∗0 from the leading
edge to the inlet of the computational domain. The base flow U = (U, V )T (x, y)
is a solution to the steady nonlinear, Navier–Stokes equations.

The term λ(x) is used to enforce periodicity of the physical flow in the
streamwise direction, so that a spectral Fourier expansion technique can be
employed for our numerical solution. This function is nonzero only in a fringe
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region at the end of the domain (see figure 1) where it forces the outgoing per-
turbation amplitude to zero (see Appendix C and Nordström et al. 1999, for
further details). It is pertinent to comment on the presence of the additional
forcing term λ(x) in (1). As discussed in (Åkervik et al. 2008) the growth
rate of individual eigenvalues in the spectrum of the linearized Navier-Stokes
equations depend on the outflow boundary conditions. However, the pertur-
bation dynamics remain unaltered for different boundary conditions, including
the fringe method.

The solutions to (1) satisfy no-slip condition at the plate and vanish at the
upper boundary Ly = 30δ∗0 which is chosen to be well outside the boundary
layer. The boundary conditions hence are

u(0, y) = u(Lx, y), (2a)

u(x, 0) = u(x, Ly) = 0. (2b)

2.2. Standard state-space formulation & the H2 problem

The Navier–Stokes equations may be written in the standard state-space form
(Zhou et al. 2002) useful for applying tools from systems theory and for H2/H∞

control design.

In the state-space framework, any divergence-free, smooth disturbance field
u(x) that satisfies the boundary conditions (2) is an element of the (Hilbert)
state-space

X = {u(x) ∈ L2(Ω) | ∇·u(x) = 0, u(0, y) = u(Lx, y), u(x, 0) = u(x, Ly) = 0},
(3)

A state is a velocity field u(x, t) at time t, or equivalently a point on a trajectory
in X. Let us introduce a linear bounded solution operator T (t) : X → X for
the state variable u as

u(x, t+ s) = T (t)u(x, s). (4)

Given a perturbation field at time s, T (t) provides the velocity field at a later
time t + s by solving equations (1) with u0 = u(x, s) and (2). The operator
satisfies the properties T (t + s) = T (t)T (s), T (0) = I and can be considered
as a semigroup (see e.g. Pazy 1983; Trefethen & Embree 2005) of the form
exp(At)1 with the infinitesimal generator,

Au = lim
δt→0

T (δt)u − u

δt
. (5)

The linearized Navier-Stokes equations (1) with boundary conditions (2) can
be cast as an initial-value problem in state-space form

u̇ = Au (6a)

u = u0 at t = 0. (6b)

1This is only true if A is a bounded operator. In general, for a closed operator A with a dense
domain, the relation between T and A is T (t)u = limn→∞(I − t/nA)−nu, see e.g. Pazy
(1983).
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Note that the action of A on u corresponds to evaluating the right-hand side
of the Navier-Stokes equations and enforcing the boundary conditions. The
pressure term can be obtained from the velocity field by solving a Poisson equa-
tion (Kreiss et al. 1993). Alternatively, the state-space form can be obtained
by defining a projection operator that projects the equations onto X (Bewley
et al. 2000; Chorin & Marsden 1990).

In this work, the action of the operator A is approximated numerically:
T (t)u(x, s) is obtained by solving the partial differential equation (1) using a
timestepper (Barkley et al. 2002) (i.e. a Navier–Stokes solver) with u(x, s) as
initial condition. In its simplest form, a timestepper sets up a grid in space
and time and computes approximate solutions on this grid by marching in
time. This approach is computationally feasible also for very large systems
since matrices are not stored. The timestepper used and the corresponding
numerical method are described in Appendix C.

We introduce the forcing f(x, t), which is also referred to as the input. The
forcing f is decomposed into external disturbances B1w and a control B2u, i.e.

f = B1w + B2u, (7)

where the input signals w(t), u(t) are functions of time and B1,B2 are bounded
linear mappings from R → X. The first mapping, B1, represents the spatial
distribution of the sources of external disturbances acting on the flow (see fig-
ure 1). In our model, the input forcing B1 is located at the upstream end of
the domain to model the upstream receptivity phase, when disturbances are
introduced into the boundary layer by e.g. roughness and free-stream pertur-
bations. The actuator used for control is defined by the mapping B2, which
represents a localized volume force, mimicking blowing and suction at the wall.
Finally, u(t) represents the control signal we wish to apply and is based on the
sensor measurements.

Information about the disturbance behavior is given by two outputs

z = C1u + lu, (8)

v = C2u + αg, (9)

where the output signals z, v are functions of time and C1, C2 are bounded linear
functionals from X → R. The sensor defined by C1 is located far downstream
and it is used to evaluate the level of the disturbance amplitude. Therefore
it reveals whether the “objective” of our control has been met. In particular,
the objective is to find a control signal u(t) such that the perturbation energy
in the flow is minimized downstream at the location defined by C1. To design
an efficient controller, however, the energy input expended in the actuation
should be limited; thus, the control effort is penalized with a scalar l. For large
values of l the control effort is considered to be expensive, whereas small values
indicate cheap control. This results in an objective functional of the form

‖z‖ = ‖C1u‖ + l‖u‖ (10)
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and explains why the control signal is added to the sensor signal when defining
the output signal z. The norms in (10) are associated to the inner products
defined in the next section. In the definition of z we have assumed 〈lu, C1u〉 =
0 so that there is no cross weighting between the flow energy and control
input (Zhou et al. 1999).

The second output signal v(t) is the measurement signal extracted from the
sensor C2. This signal is the only information delivered to the controller in order
to provide a control signal such that the above objective is met. The additional
term g(t) accounts for noise contaminating the measurements. This term can
be considered as a third forcing, but rather than forcing the Navier–Stokes
equations it forces the measurements. Large values of the scalar α indicate
high level of noise corruption in the output signal, whereas for low values of α
the measurement v reflects information about the flow field with high fidelity.

The choice of the relative position of the sensor C2 and actuator B2 used in
the control design process and reported in figure 1 is based on the knowledge
of the behavior of boundary layer instabilities. For convectively unstable flows,
disturbances eventually leave the control domain, therefore there exists only
a window of opportunity in time to reduce the growth of these disturbances
while they are convected downstream. As a consequence, the sensor placement
in the streamwise direction is a trade-off. For a good estimation performance it
should be placed downstream so that the disturbance energy has amplified but
for a good controller performance, it should be placed upstream to provide the
actuator an estimate of the flow dynamics as soon as possible. Similarly, there
is a trade-off when choosing the location of the actuator, since its effects on the
disturbance behavior is limited to nearby region. It is rather inefficient to place
it either far downstream, where the disturbances have already experienced a
substantial growth, or far upstream, where the disturbances will again have the
opportunity to grow.

A completely different choice of sensor and actuator placement is appro-
priate in the case of globally unstable flows (see Bagheri et al. 2009), when the
whole flow beats at a specific frequency. Since the disturbances never leave the
laboratory frame, one can place the measurement sensor where the disturbance
energy is largest and the actuator where the sensitivity of the disturbances to
forcing is the largest. In many open shear flows these locations are, respec-
tively, far downstream where the global eigenmodes of linearized operator are
located and far upstream where the adjoint global eigenmodes reveal high flow
sensitivity. See for example Åkervik et al. (2007) in the case of feedback control
applied the flow separation over a long shallow cavity.

The Navier–Stokes equations (1) with input vector f = (w, g, u)T as an
element in the input space U = R3 and output vector y = (z, v)T as an element
in the output space Y = R2 may now be written in the standard state-space
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form

u̇ = Au + Bf (11a)

y = Cu + Df (11b)

u = u0 at t = 0 (11c)

where A was defined in (5). Furthermore, we have C = (C1, C2)
T , B =

(B1, 0,B2) and

D =

(
0 0 l
0 α 0

)

. (12)

The system (11) is asymptotically stable, i.e. in the global framework all
the eigenmodes of the linearized Navier–Stokes system for a spatial boundary
layer represent perturbations decaying in time.

Finally, we define the spatial distribution of the sensors and actuators
introduced above. In this work, the input and output operators are modeled
with the Gaussian function h(x,x0), defined as

h(x;x0) =

(
σxγy

−σyγx

)

exp(−γ2
x − γ2

y) (13)

where

γx =
x− x0

σx
, γy =

y − y0
σy

. (14)

The scalar quantities σx = 4, σy = 1/4, x0 and y0 (the latter two are given
in the caption of figure 1) determine, respectively, the size and location of
the inputs and outputs. They are all of the same size, but located at different
streamwise locations, as shown schematically in figure 1. With these definitions
we have,

B = (h(x;xw), 0,h(x;xu)) (15)

and

Cu =

∫

Ω

(
h(x;xz)

Tu

h(x;xv)
Tu

)

dxdy. (16)

The particular shape of sensor and actuators implies that the inputs amount
to localized volume forcing, whereas the flow measurements are obtained by
averaging the velocity field over small domains using the Gaussian function as
weights.

2.3. Controllability and observability operators

When performing model reduction for control design, one wishes to retain the
relationship between the inputs and the outputs in the low-order system. Fol-
lowing linear systems theory, the properties of the input-output system (11) can
be described by the two operators introduced in this section. In the framework
presented below we assume that sufficient regularity exists so that all operators
are bounded in the chosen metrics. See figure 2 and table 1 for an overview of
the operators.
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H = LoLc
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Figure 2. The operators used to examine the system input-
output behavior. The controllability operator Lc relates past
inputs to the present state, while the observability mapping Lo

relates the present state to the future outputs. Their combined
action is expressed by the Hankel operator H.

The operators needed to describe the input-output behavior can be related
to the formal solution of the system of equations (11), which is

y(t) = CT (t)u0 + C
∫ t

0

T (t− τ)Bf(τ)dτ + Df(t). (17)

In the expression above, we identify the first term on the right-hand side with
the homogeneous solution and the second term with the particular solution
stemming from the forcing f. Note that in our case the forcing term B is an
element in X, i.e. divergence-free and satisfies the boundary conditions. For a
more general forcing f , only the divergence-free part of the forcing f̂ will affect
the output signal. The difference f̂ − f can be written as the gradient of a
scalar and thus will only modify the pressure (Bewley et al. 2000). The third
part of expression (17) relates the input to the output through the matrix D
without any operators involved. Without loss of generality, we will neglect this
term for now and consider it again in section 5 for control design.

In systems theory, the quantitative investigation of the input-output prop-
erties of a linear system is commonly performed through the mappings sketched
in figure 2. We begin by introducing the controllability operatorLc : U((−∞, 0])
→ X,

u0 = Lcf(t) =

∫ 0

−∞

T (−τ)Bf(τ)dτ. (18)

This operator describes the mapping of any input f(t) with t ∈ (−∞, 0] onto
the state vector u at the reference time t = 0. The input space U((−∞, 0])
contains input trajectories in the past time t ∈ (−∞, 0]. The associated inner-
product is given A.1. The action of Lc can be numerically computed by a
timestepper. It amounts to solving the linearized Navier–Stokes equations for
the velocity field u with forcing term f(t) and zero initial conditions.

The observability operator Lo : X → Y([0,∞)) is defined as

y(t) = Lo(t)u0 = CT (t)u0. (19)
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Operator Mapping Definition Adjoint operator

Evolution X → X T (t)u(s) = u(t+ s) T ∗(t)u(s) = u(s− t)

Controllability U((−∞, 0]) → X Lcf(t) =
∫ 0

−∞ T (−t)Bf(t)dt L∗
cu0 = B∗T ∗(−t)u0

Observability X → Y([0,∞)) Lo(t)u0 = CT (t)u0 L∗
o(t)f =

∫∞

0
T ∗(t)C∗fdt

Hankel U((−∞, 0]) → Y([0,∞)) y = Lo(t)Lcf f = L∗
c(t)L∗

oy

Table 1. The linear operators used in this work. See
Appendix A for further details and derivations of the adjoint
operators.

This operator describes the mapping of any initial velocity field u0 to the
output signal y(t) with t ≥ 0. The output space Y([0,∞)) contains output
trajectories in the future time t ∈ [0,∞). The action of Lo(t) can also be
numerically computed and it amounts to extracting the output signal while
solving the linearized Navier–Stokes equations with the initial condition u0 at
the reference time t = 0 and zero forcing.

A direct mapping between input and output can be obtained as the com-
bination of the operators just introduced (see figure 2),

y(t) = LoLcf(t) =

∫ 0

−∞

CT (t− τ)Bf(τ)dτ. (20)

This expression can be interpreted as a mapping from past inputs to future
outputs. It can be shown that equation (20) is the formal solution for a system
which is forced by f(t) in the time interval t ∈ (−∞, 0], resulting in the flow
field u0 at t = 0. The output is extracted for t ≥ 0, corresponding to the signal
y(t) produced by the initial condition u0. Expression (20) is also the starting
point for the input-output analysis leading to systematically finding reduced
order approximations. The mapping from inputs to outputs given by (20) in
terms of Lc and Lo is called Hankel operator H : U((−∞, 0]) → Y([0,∞)), i.e.,

y(t) = Lo(t)Lcf(t) = (Hf)(t). (21)

We have two different representations of the input-output behavior of the flow
system; (i) the state-space representation (11) and (ii) the Hankel operator H
defined in (21). Note that in the latter case it is assumed that inputs and
outputs are not active at the same time.

2.4. Adjoint equations and operators

Before issues related to controllability, observability and model reduction can
be considered the adjoint linear operators corresponding to (T ,Lc,Lo) must
be introduced. The adjoint variables provide information about how varia-
tions in the velocity field affect the system output. We show that the adjoint
operators can be associated with the adjoint linearized Navier–Stokes equa-
tions in state-space form, where the role of the inputs and outputs is reversed.
The operators (T ∗,L∗

c ,L∗
o, C∗,B∗) and adjoint Navier–Stokes equations are de-

rived in Appendix A. The inner products associated with the Hilbert spaces
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X,U,Y,U((−∞, 0]) and Y([0,∞)) are given in A.1. The adjoint of the linearized
Navier–Stokes equations (1) associated with inner product (61a) is

− ṗ = (U · ∇)p− (∇U)Tp+ ∇σ + Re−1∇2 + λ(x)p, (22a)

0 = ∇ · p, (22b)

p = pT at t = T, (22c)

This system of equations describes the evolution of adjoint flow field p(x, t) =
(u∗, v∗)T backwards in time. The term σ denotes the adjoint pressure field.
The boundary conditions for p are given in A.1.

The evolution operator associated with (22) is

p(x, s− t) = T ∗(t)p(x, s), (23)

so that given an adjoint field at time s the adjoint evolution operator provides
a solution at an earlier time s− t. Again, the above operator is approximated
numerically using a timestepper solving equations (22). In A.1 it is shown that
T ∗ is in fact the adjoint of T under the inner product (61a). Furthermore, the
infinitesimal generator A∗ of T ∗ is the adjoint of A given in equation (5) (Pazy
1983).

The adjoint linearized Navier–Stokes equations and its corresponding evo-
lution operator form the basis of the adjoint input-output system dual to (11).
This can be obtained in three steps; (i) derive the adjoint input and output
operators B∗ and C∗ (ii) use B∗, C∗ and T ∗ to derive the adjoint controllability
and observability operator L∗

c and L∗
o (iii) identify the adjoint state-space with

the system which is associated with L∗
c and L∗

o.

The adjoint of the input and output operators B and C associated with the
inner products (61b) and (61c) are,

C∗ = (C∗
1 , C∗

2) = (h(x;xz), h(x;xv)), (24)

and

B∗p =





B∗
1p

0
B∗

2p



 =

∫

Ω





h(x;xw)Tp

0
h(x;xu)

Tp



 dxdy, (25)

respectively.

The adjoint controllability and observability operatorsL∗
c : X → U((−∞, 0])

and L∗
o : Y([0,∞)) → X associated with the inner products (61b) and (61c) (de-

rived in A.2) are given by

L∗
c(−t)p(x, 0) = B∗T ∗(−t)p(x, 0) (26a)

L∗
ot(t) =

∫ ∞

0

T ∗(τ)C∗t(τ) dτ, (26b)

where t ∈ Y and p ∈ X. The first mapping, L∗
c , is from the adjoint state at

time t = 0 onto a signal in U at time −t. The mapping L∗
o is from an output

signal in Y in t ∈ [0,∞) to a state in X at t = 0. In analogy to the case of
the forward problem defined by (11), it can be seen that these two mappings
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are the observability and controllability operator of the following state-space
system,

− ṗ = A∗p+ C∗t, (27a)

e = B∗p. (27b)

This system has two inputs contained in the vector t = (z∗, v∗) with t ∈ Y

and three outputs contained in the vector e = (w∗, u∗, g∗) ∈ U. Comparing the
above adjoint equations with (11) we observe that the outputs and inputs have
exchanged place. In the dual system (27), the adjoint flow field is forced by the
outputs; the adjoint problem will then be used to identify flow fields yielding
the largest output response (Dullerud & Paganini 1999).

3. Input–output analysis

In this section, the main input-output characteristics of our problem are an-
alyzed in order to identify the modes to retain in a low-order model. We
introduce the concepts of Gramians and balancing using the operators defined
in the previous section. For a more detailed presentation of systems theory we
refer to Kailath (1980) and Curtain & Zwart (1995). The analysis amounts
to computing the eigenmodes of three operators; LcL∗

c , L∗
oLo and LcL∗

cL∗
oLo.

The three sets of modes correspond to flow structures that are the most easily
influenced by the input (controllable modes), to the states that produce the
largest output energy (observable modes) and to the most relevant states for
the input-output behavior (balanced modes). For the sake of clarity, we will
show numerical results obtained using only the first input B1 and the first out-
put C1 i.e. single-input and single-output system (SISO). We will return to the
multi-input multi-output (MIMO) state-space system with input vector f and
output vector y in section 4. The three sets of eigenmodes mentioned above
can be computed numerically for systems with many degrees of freedom by
using the following two approximations:

(i) The timestepper: As mentioned above, solutions of Navier–Stokes sys-
tem (11) in input-output form are obtained numerically using a forward timestep-
per, which approximates the action of evolution operator T . An adjoint timestep-
per is used for computing solutions of the associated adjoint system (27) and
the action of the adjoint evolution operator T ∗. The numerical code employed
is described in Appendix C. In the simulations presented, we have used 768 col-
location points in the streamwise direction x and 101 points in the wall-normal
direction y, with a computational box of dimensions Lx = 1000 and Ly = 30
(see figure 1). The discretized system has thus m ≈ 105 degrees of freedom.

(ii) The snapshot method: The controllable and observable modes intro-
duced below are computed using the snapshot method introduced by Sirovich
(1987). Recently Rowley (2005) extended this method to obtain balanced
modes. The snapshot technique is described in Appendix B. For the results
presented, the flow structures are computed by collecting 1600 snapshots of the
forward simulation using each input as initial condition and 1600 snapshots of
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the adjoint simulation using each output as initial condition. The snapshots
were taken with equal spacing in the time-interval [0, 4000].

3.1. Controllable modes

We begin our input-output analysis by searching for flow states that are most
easily triggered by a given input. This issue is related to the concept of control-
lability, which, in general, quantifies the possibility of steering the flow between
two arbitrary states. A state u is controllable if it belongs to the range of Lc,
that is u = Lcf(t) exists for some f(t)2. A commonly adopted interpretation
of controllability is illustrated by the following optimal control problem: What
is the minimum input energy ‖f‖2

U((−∞,0]) in the time span t ∈ (−∞, 0] re-

quired to bring the state (if possible) from zero to the given initial condition
u(x, 0) = u0?

Assuming u0(x) has an unit norm and that it is controllable, it can be
shown3 that the optimal input is given by

f = L∗
cP−1u0, (28)

where P is the controllability Gramian defined as

P = LcL∗
c =

∫ 0

−∞

T (−t)BB∗T ∗(−t)dt =

∫ ∞

0

T (t)BB∗T ∗(t)dt. (29)

In the first equality the expressions (18) and (26a) have been used. Using
equation (28) the minimum input energy is given by

‖f‖2
U((−∞,0]) =

∫

Ω

uT
0 P−1u0dxdy. (30)

The controllability Gramian P provides a means to rank different states
according to how easily they can be influenced by an input. In particular, the
most easily influenced, or most controllable, flow structures are the eigenfunc-
tions of P associated to the largest eigenvalues of,

Pφc
i = λc

iφ
c
i . (31)

The superscript c stands for controllable modes. Note that by P is a self-adjoint
and positive semidefinite operator whose eigenvalues are real and positive and
the eigenfunctions mutually orthogonal. If λc

i ≪ 1, the corresponding eigen-
function φc

i requires very large energy to be excited by the input since (λc
i )

−1

is proportional to ‖f‖U((−∞,0]). The mode is then referred to as (nearly) un-
controllable.

2The system (11) is called exactly controllable if all states u ∈ X can be reached for some
input. This is rarely the case for elliptic/parabolic PDE’s and a less restrictive condition is
approximate controllability, where any state u ∈ X can be approximated arbitrary closely by
controllable elements (Curtain & Zwart 1995).
3For the finite-dimensional case see (Lewis & Syrmos 1995; Dullerud & Paganini 1999). In
the general case P−1 is well-defined on any finite-dimensional subspace of X.
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Figure 3. Instantaneous snapshots of the streamwise distur-
bance component at t = 120, 600, 1200 and 1800 triggered by
an impulse in B1.

For linear systems the controllability Gramian corresponds to the covari-
ance of the state response to an impulse in time. Therefore, the controllable
modes can be regarded as proper orthogonal decomposition (POD) modes
(Bagheri et al. 2009; Ilak & Rowley 2008). Traditionally, the interpretation
of these modes is that they represent decorrelated energy-ranked flow states.
For example, the first POD mode φc

1 is the most energetic structure in the flow
containing λc

1/
∑∞

i=1 λ
c
i × 100 percent of the total flow energy. These modes

can be conveniently obtained by collecting r snapshots of the flow at discrete
times t1, . . . , tr and solving a r × r eigenvalue problem (Sirovich 1987).

The controllable modes can thus be computed from the response of the
flow to an impulse, δ(0),

u(x, tj) = T (tj)B1. (32)

The impulse response can be used to build the Gramian and to compute the
most controllable modes as shown in Appendix B. Figure 3 shows the stream-
wise velocity component of the instantaneous velocity field after an impulse
from B1 at four different times. The generation and convection of a wavepacket
with a dominant spatial wavenumber and a propagation speed of about 0.4U∞

can be observed. The wavepacket grows in amplitude and size in the x-direction
until it reaches the beginning of the fringe region at x = 800. As it enters this
region, the disturbance is eventually damped by the fringe forcing reproducing
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Figure 4. The streamwise component of four most control-
lable modes φc

i .

the effect of an outflow. The input-output system (11) is thus asymptotically
stable.

The u-component of the four most controllable modes φc
i with respect to

B1 are shown in figure 4, while the corresponding eigenvalues λc
i are displayed

in figure 5(a) with square symbols. The first 20 controllable modes contain 99%
of the flow energy, meaning that a significant part of the controllable subspace
is spanned by 20 modes. Note that the flow structures that are the most easily
influenced by the input B1 are located downstream in the domain, where the
energy of the response to forcing is the largest. In other words, low energy is
needed at location B1 to force large structures downstream owing to the am-
plification provided by the intrinsic flow dynamics. Moreover, the eigenvalues
shown in figure 5 come in pairs. The corresponding velocity fields (see the first
and the second mode in figure 4) have the same wavepacket structure 90 degrees
out of phase. These modes represent traveling structures (see also Rempfer &
Fasel 1994).

3.2. Observable modes

For a given sensor it is important to determine whether the relevant flow insta-
bilities can be detected, and if so, to which accuracy. The flow fields which can
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Figure 5. (a) The normalized eigenvalues λc
i (squares) and

λo
i (circles) associated with controllable modes and observable

modes respectively. (b) The Hankel singular values σi corre-
sponding to the balanced modes.

be most easily detected are called the most observable modes4. As in the case
of the controllability Gramian, the observability problem can also be cast as
an optimization problem. We wish to find the initial conditions producing the
largest output energy. The output energy generated by the initial condition
u0, assumed of unit norm, is given by

‖y‖2
Y([0,∞)) = 〈Lou0,Lou0〉Y([0,∞)) = 〈u0,L∗

oLou0〉X =

∫

Ω

uT
0 L∗

oLo
︸ ︷︷ ︸

Q

u0dxdy

(33)
where Q is called the observability Gramian. Using equations (19) and (26b)
we obtain the following expression for Q

Q = L∗
oLo =

∫ ∞

0

T ∗(t)C∗CT (t)dt. (34)

The observability Gramian provides a means to rank states according to their
contribution to the output. The most observable state φo

1 is given by the
eigenfunction of the operator Q corresponding to the largest eigenvalue of,

Qφo
i = λo

iφ
o
i . (35)

The superscript o stands for observable modes. Note that Q is a self-adjoint
and positive semidefinite operator so that its eigenvalues are real and positive
and its eigenfunctions mutually orthogonal. The most observable mode, φo

1,
contributes λo

1/
∑∞

j=0 λ
o
j × 100 percent to the total sensor energy, the second

most observable mode, φo
2, contributes λo

2/
∑∞

j=0 λ
o
j ×100 percent and so on. In

4The system (11) is approximately observable if Lou = 0 occur only if u = 0, i.e. if the
knowledge of the output determines the initial state uniquely (Curtain & Zwart 1995).
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Figure 6. Instantaneous snapshots of the streamwise distur-
bance component at t = −120,−600,−1200 and −1800 of the
adjoint impulse in C1.

particular, if λo
i ≪ 1, the corresponding mode φo

i does not make a contribution
to sensor output, and is called a (nearly) unobservable mode. Note that the
observable modes can regarded as POD modes of the adjoint system.

From the definition of Q in (34) it follows that the observable modes
pertaining a given output can be determined from the impulse response of
one adjoint simulation (see Appendix B). The results of this simulation,
T ∗(t)C∗, can then be used to build the second order correlation of the flow
field, T ∗(t)C∗CT (t), and thus the Gramian. The eigenvalue problem (35) is
solved by using the snapshots method as explained above for the case of the
controllable modes. Here we present results for the first output C1 only. Fig-
ure 6 shows the instantaneous adjoint field at four different times

p(x,−tj) = T ∗(tj)C∗
1 , (36)

after an impulse from the first output, i.e. C∗
1δ(0). The triggered wavepacket

travels backward in time in the upstream direction with upstream tilted struc-
tures. The adjoint solution can be regarded as the sensitivity of the output
C1 with respect to linear perturbations to the underlying base flow. In other
words, the flow structures excited by C∗

1 and shown in figure 6, are also the
structures to which the sensor C1 is most sensitive. In this context, the nega-
tive time can be interpreted as the delay between the time these structures are
present and the instant they can be measured.
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The u-component of the four most observable modes φo
i with respect to C1

are shown in figure 7, while the associated eigenvalues are reported in figure 5(a)
(circles). From the latter figure, we observe that the leading 20 modes are
responsible for nearly the entire output energy. The flow structures in figure 7
are initial conditions that contribute with the most energy to the sensor output.
These modes are real-valued functions and therefore two of them are needed
to describe traveling flow structures, which explains the appearance of pairs of
eigenvalues in figure 5(a). The are two further noteworthy remarks:

(i) The spatial support of the observable modes is far upstream, where
the sensitivity of the flow is the largest. Hence, the most observable struc-
tures are spatially disconnected from the most controllable modes. This spa-
tial separation is also observed between the global eigenmodes of the linearized
Navier–Stokes equations and eigenmodes of the adjoint Navier–Stokes, where
it is associated to streamwise non-normality of the system (Chomaz 2005).

(ii) The most observable structures are tilted in the upstream direction,
“leaning” against the shear layer and are similar to the linear optimal dist-
urbances computed by Åkervik et al. (2008). The optimal disturbance is the
initial condition maximizing the perturbation energy over the entire domain
Ω at a fixed time t = T . On the other hand, observable modes maximize
the time integral of the perturbation energy in the region defined by the out-
put C1. Choosing the sensor location in correspondence to the largest flow
response leads therefore to the similarity between linear optimals and observ-
able modes. As noticed by Butler & Farrell (1992), the upstream tilting of the
optimal initial conditions can be attributed to the wall-normal non-normality
of the governing operator; perturbations extract energy from the mean shear
by transporting momentum down the the mean velocity gradient (the so-called
Orr mechanism).

3.3. Balanced modes

So far we have identified modes that either characterize the response to forcing
or the sensitivity of an output. In this section we present the balanced modes
(Moore 1981), which take into account both the response behavior and the
output sensitivity. Similar to the previous section, we wish to excite the largest
output energy. However, rather than identifying dangerous initial conditions
using the mapping Lo as in equation (33), we look directly for input signals
which produce the largest output energy via the input-output mapping LoLc

given in (21).

The output energy generated by the past input f, assumed of unit norm,
is given at time t by

‖y‖2
Y([0,∞)) = 〈Hf,Hf〉Y([0,∞)) = 〈f ,H∗Hf〉U((−∞,0]) =

∫ 0

−∞

fTH∗Hfdt. (37)
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Figure 7. The streamwise velocity component of the four
most observable modes φo

i .

If we let the sequence of input vectors f i with unit norm represent the (or-
thonormal) eigenfunctions of H∗H, i.e.

H∗Hfi = σ2
i fi (38)

then the output energy is given by the square of the so called Hankel singular
values (HSV) σi. The most dangerous input vector f1 with ‖f1‖U((−∞,0]) = 1

thus results in an output signal which has been amplified by σ2
1 . Note that

σ1 ≥ σ2 ≥ . . . , so the eigenmodes of the input-output map are ranked according
to how much the input signal is amplified as it is filtered by the linear system
and by the output.

Using the controllability operator Lc we obtain the flow structure associ-
ated with the forcing fi,

φoc
i =

1√
σi

Lcf i. (39)

Notice that σ−1/2 is a convenient normalization factor. The modes are denoted
by the superscript oc, which indicates that these modes are both observable and
controllable. The sequence of functions φoc

i are called the balanced modes and
as we show next, they diagonalize the observability Gramian. Computing the
output energy for f i and using (39), we obtain
∫ 0

−∞

fT
i H∗Hf idt =

√
σi〈f i,L∗

cQφoc
i 〉U((−∞,0]) = σi〈φoc

i ,Qφoc
i 〉X = σ2

i , (40)



176 S. Bagheri, L. Brandt & D.S. Henningson

y

0

5

10
y

0

5

10

y

0

5

10

x

y

0 100 200 300 400 500 600 700 800
0

5

10

φoc
1

φoc
2

φ
oc
3

φoc
4

Figure 8. The streamwise velocity component of four first
balanced modes φoc

i .

where the definitions H = LoLc, H∗ = L∗
cL∗

o and Q = L∗
oLo are used. A

diagonal observability Gramian implies that these modes can be regarded as
orthogonal if this Gramian is used as inner product weight matrix. With respect
to inner product defined in (61a) however, these modes are not orthogonal.

A sequence of functions ψoc
i , referred to as the adjoint balanced modes,

which is bi-orthogonal to φoc
i according to

〈ψoc
i ,φ

oc
j 〉X = δi,j , (41)

is needed to project our system in the basis given by the balanced modes. The
derivation is analogous to φoc

i but now we consider instead

HH∗si = siσ
2
i . (42)

The adjoint balanced modes are then given by

ψoc
i =

1√
σi

L∗
osi. (43)

It is possible to show by the same procedure used in (40) that these modes
diagonalize the controllability Gramian,

〈ψoc
j ,Pψoc

i 〉X = σiδi,j . (44)

Furthermore, the diagonal elements are also equal to the Hankel singular values.
The term balancing now becomes clear; using φoc

i and ψoc
i the controllability

and observability Gramians become diagonal and equal to the HSV. In other
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Figure 9. The streamwise velocity component of the adjoint
balanced modes ψoc

i .

words, the observability and controllability properties are balanced. This is
useful for performing model reduction as it allows us to discard modes which
are both difficult to measure and difficult to excite by the inputs.

To compute these modes, it is convenient to show that φoc
i are the eigen-

modes of PQ; multiplying (38) with Lc yields

LcH∗Hfi = PQφoc
i = σ2

iφ
oc
i . (45)

The computation of the balanced modes and of their associated adjoints can
again be accomplished using a timestepper and the snapshot method described
in Appendix B. In this case one combines the sequence of snapshots collected
from the solution of the forward problem (11) with a sequence of snapshots
collected from the adjoint system (27). In this way we can approximate the
eigenvalue problem (45) to obtain the balanced modes (Rowley 2005). The u-
component of four first balanced modes φoc

i with respect to B1 and C1 are shown
in figure 8 and the corresponding adjoint modes ψoc

i in figure 9. The Hankel
Singular values σi are shown in figure 5(b). As in the case of the observability
and controllability eigenvalues λc

i and λo
i , the singular values come in pairs,

indicating that the leading balanced modes are traveling structures. The same
observation was made by (Ilak & Rowley 2008) for channel flow.

From figures 8 and 9 we observe that the leading balanced modes appear
also as wavepackets but they are somewhat more spatially extended than the
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controllable POD modes (figure 4). Similarly, the adjoint balanced modes
have a larger spatial support than the observable modes (figure 7). As noticed
by Ilak & Rowley (2008) and Ahuja et al. (2007), we can account for both
controllability and observability through the non-orthogonality of the balanced
modes. In the two previous sections we observed that for an input B1 located
upstream and an output C1 located downstream, the associated controllable
and observable modes are spatially located in different parts of the domain.
The controllable subspace and the observable subspace are thus separated in
the streamwise direction. This is a consequence of the convective nature of the
instabilities arising in the Blasius flow where disturbances grow in amplitude
as they are convected in the downstream direction. Essentially, this separation
implies that the distribution of both the input and the output cannot be cap-
tured by an orthogonal projection onto the leading modes of only one subspace.
Conversely, in a bi-orthogonal projection the adjoint balanced modes account
for the output sensitivity and the direct balanced modes for the most energetic
structures.

4. Model reduction

Since the disturbances are represented by an input and the objective consists of
minimizing an output signal, capturing the input-output behavior of the system
— described by the mapping LoLc — is sufficient for the design of optimal and
robust control schemes. The flow structures that are neither controllable nor
observable are redundant for the input-output behavior. Moreover, the states
that are nearly uncontrollable and nearly unobservable can be discarded since
they have a very weak influence on the input-output behavior. A systematic
approach of approximating the system given by (1) with a finite-dimensional
model, which preserves the main input-output behavior is called balanced trun-
cation (Moore 1981). As we show below, balanced truncation amounts to a
projection of state-space system (11) on the leading balanced modes.

We now return to the multi-input multi-output (MIMO) state-space system
with input vector f and output vector y. The measurement noise acts on the
output signal and affects the perturbation dynamics only in the closed-loop
system and is hence not included in the analysis.

4.1. Galerkin projection

Any flow field can be approximated as a linear combination of the leading r
balanced modes,

ur(x, t) =

r∑

j=1

qj(t)φ
oc
j (x), (46)

where qj = 〈u,ψoc
j 〉X are the expansion coefficients. Inserting the above expan-

sion into (11) and taking the inner product with the adjoint balanced modes
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Figure 10. (a) The Hankel singular values (black symbols)
are compared to the diagonal entries of the controllability and
observability Gramians associated with the balanced reduced-
order system. (b) The H∞ model reduction error. The upper
and lower theoretical bounds are depicted with gray lines and
the actual model reduction error is shown with black symbols.

ψoc
i , the following r-dimensional state-space form is obtained,

q̇ = Aq +B1w +B2u (47a)

v = C1q + lu (47b)

z = C2q + αg . (47c)

This system is referred to as the reduced-order model (ROM). The column
vector q contains qj and the entries of the matrix A, column vector B1 and row
vector C1 are

Ai,j = 〈ψoc
i ,Aφoc

j 〉X (48a)

B1,j = 〈ψoc
j ,B1〉X (48b)

C1,j = C1φ
oc
j (48c)

for i, j = 1, . . . , r. The components of the row vectors C2 and B2 are obtained
in the same manner as for B1 and C1. The evolution operator associated
with (47) is

T (t) = eAt =

∞∑

j=0

(At)j

j!
. (49)

Notice that the balanced modes are computed accounting for all the inputs
(except the measurement noise) and outputs and the Galerkin projection (47)
is performed only once. The projection of A on the balanced modes can be
approximated by the finite-difference method using the timestepper and expres-
sion (5). For the results presented, δt was chosen to be 10−4 after a convergence
study.
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To validate the properties of the snapshot-based balanced truncation, we
construct the reduced-model (47) and compute its controllability and observ-
ability Gramians. The projected system is internally balanced if and only if its
Gramians are diagonal and equal to the HSV. We found that the first 70 × 70
elements of both Gramians are diagonal. In figure 10(a) we compare the lead-
ing 100 diagonal elements with the HSV. The first 70 modes are observed to be
bi-orthogonal to each other down to numerical accuracy. However, for higher
modes as the numerical round-off errors increase, the bi-orthogonality condition
is gradually lost and off-diagonal elements are observed in both Gramians. By
increasing the numerical resolution and the number of snapshots it is possible
to increase the number of balanced modes. However, — as noticed by (Moore
1981) — the ratio σ1/σi serves as a condition number for φoc

1 , and therefore
the balanced modes corresponding to very small HSV can be ill-conditioned
independently of the numerical approximations.

4.1.1. Performance of reduced-order model

In this section the input-output behavior of reduced-order model (47) is com-
pared to the full Navier–Stokes system (11). We begin by comparing the
impulse response from all inputs to all outputs. In figure (11) three signals
B1 → C1, B1 → C2 and B2 → C1 are shown with black lines. The response of
C2 to forcing in B2 is zero, since disturbances traveling upstream are quickly
damped. These impulse responses were obtained by using the timestepper
with ∼ 105 degrees of freedom. The impulse responses of the reduced-order
model (47) with r = 50 given by y(t) = CeAtB are shown with red dashed
lines. We observe that reduced-model registers the same signal as the full
model from all inputs to all outputs. The wavepacket triggered by the impulse
of B1 reaches the first sensor C2 after 600 time units and the second sensor C1

after 1500 time units. The wavepacket triggered from the actuator reaches the
second sensor after 600 time units.

The frequency response of the full system and of the reduced order model
are compared next. The frequency response is related to the Laplace transform
of the impulse response (B → C) (see e.g. Skogestad & Postlethwaite 2005),
which in our case results in the 2 × 3 transfer function matrix (TFM),

G(s) = C(s−A)−1B. (50)

with s ∈ C. The element Gi,j contains the response from Bj → Ci. The TFM
of size 2 × 3 of the reduced-model is similarly defined as

Gr(s) = C(sI −A)−1B (51)

with I as identity matrix of size r.

Due to the linear nature of the equations, a sinusoidal input signal eiωt

with constant frequency ω will generate an output with the same frequency
but with a phase shift Arg{G(iω)} and a different amplitude |G(iω)|. The
frequency response gain is usually measured by the largest singular value of
the TFM (Skogestad & Postlethwaite 2005). For the full model we do not have
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Figure 11. The impulse response from B1 → C2 (a), B2 → C1

(b) and B1 → C1 (c). The black solid line represents direct
numerical simulations with 105 degrees of freedom and the red
dashed line the balanced reduced-model with 50 degrees of
freedom.

an explicit expression of the TFM. Therefore, we make use of our timestepper
and apply a sinusoidal signal with a constant frequency ω in each input and
extract the time periodic signal from the outputs once the initial transients have
died out. Note that computing the frequency response with the timestepper in
this way does not take into account the interaction of input signals, since only
one each input is active at a time.

In figure 12 the envelope of the TFM amplitudes — the largest amplifica-
tion of all the frequency responses from B1 → C1, B1 → C2 and B2 → C1 at each
ω — for the full model of order 105 is shown with red filled circles. In the same
figure the TFM amplitudes of reduced-order models of order r = 2, 50 and 100
are shown. We observe that the reduced-order model of order 2 captures the
most important aspect of the input-output behavior, which is the response of
the most dangerous frequency, i.e. the peak response of the full model. The
model with 50 modes is able to estimate the gains of all the amplified frequen-
cies, but fails to capture the damped low and high frequencies. Adding 50
additional modes results in a model that preserves the input-output behavior
correctly for all frequencies. Note that there are no isolated eigenvalues in the
spectrum of the spatially developing Blasius flow (Ehrenstein & Gallaire 2005;
Åkervik et al. 2008) and therefore the frequency response is rather smooth with
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Figure 12. The envelope of the MIMO transfer function ma-
trix G(iω) from all inputs to all outputs computed using the
timestepper is shown with red symbols. The largest response
is for ω = 0.06 with a peak value of 144.6. For ω ∈ [0, 0.03]
the frequency response from the actuator to objective function
(B2 → C1) dominates. The frequencies with largest gain are
obtained from disturbances to objective function (B1 → C1) in
the range ω ∈ [0.03, 0.07] and finally for higher frequencies the
response from disturbances to measurement sensor (B1 → C2)
are amplified the most. The frequencies in the grey domain are
amplified. Also shown are the frequency response (the enve-
lope) of the reduced model TFM Gr(iω) with rank 2 (green),
50 (blue) and 100 (black).

no peaks. Low-pass filters of this form cannot be represented with only a few
degrees of freedom.

Finally, the model reduction error is computed and compared to the the-
oretical bounds given by the Hankel singular values. An attractive feature of
balanced truncation is the existence of error bounds (note that this error bound
is obtained a priori to Galerkin projection),

σr+1 < ‖G−Gr‖∞ ≤ 2

n∑

j=r+1

σj . (52)

The infinity norm of the transfer function equals the peak value of the frequency
response gain based on the largest singular value, i.e.

‖G(s)‖∞ = max
ω

σ1(G(iω)). (53)

Estimating the model reduction error (52) amounts to the calculation of the
difference of the peak values of frequency response of the reduced-order and
the Navier–Stokes system. For the latter system, we use the peak value of the
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Figure 13. The closed-loop system. The plant represent the
input-output system given by equation (11) subject to external
disturbances w. The controller of order 50 forces the Navier–
Stokes equations with the input signal u based on the noisy
measurements v so that the effect of w on the output signal z

is minimized.

amplitude envelope as shown in figure 12 instead of the largest singular value.
The error norm for the balanced truncation model is shown in figure 10(b) with
black symbols. The error norm is close to the lower bound given by the HSV
for the first 50 modes. The peak value for the Navier–Stokes system is 144.60
which is gradually approached by the reduced-order model until it saturates
at a peak value of 144.50 due to numerical round-off errors. Note that the
error is somewhat lower than the theoretical bounds for the reduced-systems
of order 2 and 4. This is because the frequency response of the full system is
obtained numerically using our timestepper and that the ‖G‖∞ is based on the
maximum of the envelope of the transfer function matrix instead of its largest
singular value.

A thorough comparison between reduced order models obtained with POD
modes and balanced modes can be found in Ilak & Rowley (2008) for the case
of channel flow and in Bagheri et al. (2009) for the linear Ginzburg-Landau
equation. The latter work also included global eigenmodes of the linearized
operator in the comparison.

5. Feedback control

We will now develop a reduced-order feedback controller, which will have the
same dimension as the reduced-order model (e.g. r = 50). The closed-loop
behavior and the objective function z will be investigated and compared to the
uncontrolled flat-plate boundary layer.

5.1. H2 — framework

The main idea of linear feedback control is shown in figure 13. As stated in
the introduction our objective is to find a control signal u(t) such that in the
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presence of disturbances w(t), g(t) the perturbation energy represented by the
state variable u(x, t) is minimized downstream at the location defined by the
sensor C1. This is the H2 control problem.

In the previous section we showed that our reduced model (47) is able to
capture the input-output behavior of the Navier–Stokes system (11). During
the control design process we can assume that the reduced-model is the plant
that we wish to control. Once we have determined the control law for this
approximating model, we will apply it to the full Navier–Stokes system. We
refer to (Anderson & Moore 1990; Zhou et al. 2002; Bagheri et al. 2009) for
further details on the H2 control algorithm, as we will only outline the main
steps.

Following the notation introduced for the reduced-model (47), the objective
function (10) becomes

‖z‖2
Y([0,∞)) =

∫ ∞

0

qTCT
1 C1q + l2uT udτ. (54)

The determination of the control signal is based only on the measurements
from the sensor C2. However, for linear systems — due to the separation princi-
ple (Zhou et al. 2002) — the feedback control law can be determined assuming
that the complete velocity field is known. The forcing needed to reproduce the
flow only from wall measurements can be computed independently. Hence, the
control design of the H2-control is performed in the following three steps:

(i) Compute the control feedback gain K by solving a Riccati equation (see
Appendix D), so that the control signal is of feedback type, i.e.

u(t) = Kq(t). (55)

This leads to a new system (compared to 47),

q̇ = (A+B2K)q +B1w, (56a)

z = C1q. (56b)

It is expected that the above perturbated operator A+B2K has dynamics that
results in a smaller amplitude of the output signal z than for the unperturbated
operator A in (47).

(ii) Compute the estimation feedback gain L by also solving a Riccati
equation (see Appendix D), so that the observer

˙̂q = (A+ LC2)q̂ +B2u − Lv (57)

is asymptotically stable, i.e. ‖q − q̂‖ → 0 as t → ∞. This implies that the
estimated state q̂ based on the measurements v approaches the true state q
exponentially fast.

(iii) The compensator (controller in figure 13) is finally obtained as

˙̂q = (A+B2K + LC2)q̂ − Lv, (58a)

u = Kq̂. (58b)
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Given the measurements signal v from the physical flow, the reduced-order
controller provides an optimal control signal u proportional to the estimated
flow q̂.

To apply feedback control in the numerical simulations, an augmented
state-space system with state (u, q̂)T is considered: its dynamics is given by (11)
and (58), inputs (w, g) and with the single output z:

(
u̇
˙̂q

)

=

(
A B2K

−LC2 A+B2K + LC2

)(
u

q̂

)

+

(
B1 0
0 −αL

)(
w

g

)

, (59a)

z = C1u. (59b)

This system is referred to as the closed-loop system. Note that the feedback
gain K and estimation gain L have the dimension of the reduced model, re-
sulting in a fast online controller.

The spatio-temporal evolution of the perturbations governed by the closed-
loop system is obtained by solving the system (59) numerically using the
timestepper described in Appendix C and the small reduced-system in (58)
simultaneously. The latter system is solved using a standard Crank–Nicholson
scheme.

5.2. Performance of closed-loop system

We will now investigate the performance of the closed-loop system (59). In
particular, the output z of the closed-loop — with optimal control signal u —
and of the linearized Navier–Stokes equations without control are considered
in the case of stochastic and harmonic forcing in w.

Three controllers are investigated: (i) cheap control/low noise contamina-
tion with l = 0.1 and α = 0.1, (ii) expensive control/high noise contamination
with l = 10 and α = 10 and (iii) an intermediate case with l = 2 and α = 0.1.

Note that the purpose of the measurement noise g is to account for uncer-
tainties in the sensor measurements during the control design. When evaluating
the closed-loop performance — solving the controlled Navier–Stokes equations
— the system is only forced with w and not with g.

The performance of the control in case (i) is examined first. In figure 14
the input and output signals are shown. The gray region indicates the time
when the control is active. As disturbance signal w(t) we choose white noise;
the corresponding response of the sensor y(t) in figure 14(b) confirms the am-
plification and filtering of the signal as it traverses the unstable domain. The
disturbances reach the second sensor (figure 14d) after about 1500 time units
where they have been amplified by one order of magnitude. The control is ac-
tivated at time t = 2500, the actuator immediately begins to force the system
with a control signal (figure 14c) based on the output y, and after a delay of
another 1500 time units, the stabilizing effect of the control signal on the out-
put z is clear. When the control is deactivated (at t = 7500) the disturbances
start to grow again.
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Figure 14. Input and output signals of the closed-loop sys-
tem. The the random forcing w (a), measurements signal v (b),
control signal u (c) and the objective function z (d) is shown.
The cheap controller is active between t ∈ [2500, 7500] marked
with the gray area.

The wall-normal maximum of the rms-values of the streamwise velocity
component in cases with and without control are shown in figure 15. The
rms-value grows exponentially downstream in the uncontrolled case until the
fringe region at x = 800. The rms of the controlled perturbation grows only
until it reaches the actuator position where it immediately begins to decay.
At the location of the objective function C1 (x = 750), the amplitude of the
perturbations is one order of magnitude smaller than in the uncontrolled case
for the cheapest controller.

The rms values in the case of the expensive (case ii) and intermediate con-
trol (case iii) are shown with dashed and dashed-dotted lines respectively. The
expensive control is very conservative as the measurement signals are highly
corrupted and the control effort limited; it results only in a small damping
of the disturbances. The intermediate controller (case iii) is more cautious in
reducing the perturbation energy just downstream of the actuator when com-
pared to the cheap controller. It is interesting to note, however, that at the
location where the objective function is measured, the disturbance amplitude
has decreased nearly as much as with the cheap controller, although the total
perturbation energy is much larger over the entire domain.
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Figure 15. The rms-values of the uncontrolled system (red
line), cheap controller (solid black), intermediate controller
(dashed-dotted line) and expensive controller (dashed line).
The gray bar represent the size (defined as 99% of the spatial
support) and location of the two inputs, whereas the red bars
correspond to the two outputs.

In figure 16 the frequency response from w → z of the uncontrolled Navier–
Stokes equations (11) (shown in red) is compared to that pertaining the three
controllers under consideration. The solid black line corresponds to cheap con-
trol, dashed-dotted line to intermediate control and dashed line to expensive
control. The two former controllers suppress the most dangerous frequencies
close to ω = 0.6 significantly. Note that compared to the uncontrolled model,
the highly damped frequencies ω > 0.11 have larger gain in amplitudes. This
behavior is often observed in closed-loop physical systems and is related to the
“water-bed” effect, i.e. when certain frequencies are suppressed, the response
at other frequencies is amplified.

6. Conclusions

Model-based feedback control of the instabilities arising in a spatially inhomo-
geneous boundary layer flow is studied. To build a reduced-order model of the
problem, where the application of standard tools from control theory become
computationally feasible also for fluid flow systems, the main features of the
flow behavior are investigated in an input-output framework. The observable,
controllable and balanced modes of the system have been identified. The lo-
cation and structure of these modes reflect the location of sensors/actuators
and the perturbation dynamics, i.e the observable modes are located upstream,
where the sensitivity to initial conditions is the largest. The controllable modes,
conversely, are located downstream, where the response to the forcing is largest.
The analysis presented here can be closely related to stability analysis using
global modes and optimal disturbances, except that inputs and outputs are
taken into account. The quantity one wishes to optimize for is now defined by
a sensor output, while perturbations are introduced by the inputs considered
in the model. Furthermore, in view of the control application, the formulation
of the control objective function as an output is particularly attractive in this
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Figure 16. Comparison of the frequency response from dist-
urbances to objective function (B1 → C1) of open-loop (red)
and three closed-loop systems. The cheap, intermediate
and expensive controllers are represented by the solid black,
dashed-dotted and dashed lines respectively. The infinity norm
of the open loop is ‖G‖∞ is 140.7, whereas for the closed-loop
systems ‖Gc‖∞ it is 6.4 (cheap), 9.4 (intermediate) and 101.9
(expensive).

input-output setting, since this behavior is well-captured by the reduced-order
model.

Model reduction is achieved by projecting the governing equations on the
leading balanced modes of the system. We show that the input-output behavior
of the flat-plate boundary layer can be captured accurately with a reduced-order
model based on these modes. Finally, the model was used to apply feedback
control based on measurements from one upstream sensor and an actuator
further downstream. The perturbations growth could be reduced efficiently
using the H2 optimal feedback controller.

It is also important to note that the approach followed here requires only
the use of a timestepper, a numerical code solving the Navier–Stokes equations,
and avoids the use of the large matrices defining the operators governing the
input-output behavior. In addition, the present formulation accounts naturally
for localized sensors and actuators and therefore, it can be directly applied
to different flow configurations. We are currently extending the analysis to
three-dimensional disturbances and also incorporating more realistic actuators
(blowing/suction) and sensors (wall measurements). These computations are
now feasible and will take us a step closer to using the controller in actual
experiments.

The authors would like to thank Professor Martin Berggren, Professor
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Appendix A. Derivation of adjoint operators

A.1. The adjoint operators A∗, B∗ and C∗

For a bounded linear operator between two Hilbert spaces, L : X1 → X2, the
adjoint operator L∗ satisfies

〈Lq,p〉X2
= 〈q,L∗p〉X1

for all q ∈ X1,p ∈ X2. (60)

The derivations make use of the following definitions of inner products,

〈u,p〉X =
∫

Ω u(x)Tp(x) dxdy, ∀ u,p ∈ X,

〈f , g〉U = f
T
g, ∀ f, g ∈ U,

〈z, y〉Y = zT y, ∀ z, y ∈ Y,

〈f , g〉U((−∞,0]) =
∫ 0

−∞
fT gdt, ∀ f, g ∈ U((−∞, 0]),

〈z, y〉Y([0,∞)) =
∫∞

0 zT ydt, ∀ z, y ∈ Y([0,∞)).

(61)

Note that the kinetic energy of a perturbation u at time t is measured by
‖u‖2

X
= 〈u,u〉X. We begin by deriving the adjoint operator of B : U → X,

using the identity

〈Bf,u〉X = 〈f,B∗u〉U. (62)

The left-hand side is equivalent to
∫

Ω

(Bf)Tudxdy = f
T

∫

Ω

BTudxdy = 〈f,
∫

Ω

BTudxdy〉U ; (63)

using (62) we identify B∗ : X → U

B∗u =

∫

Ω

BTudxdy. (64)

The adjoint of the output operator C : X → Y can be derived in an analo-
gous manner by using the identity

〈Cu, y〉Y = 〈u, C∗y〉X. (65)

The left-hand side can be written

(Cu)T y =

∫

Ω

uT ĈT y = 〈u, ĈT y〉X (66)

where Ĉ is the integrand in (16). We can now identify the adjoint output
operator C∗ : Y → X as

C∗y = ĈT y. (67)

The evolution operator T : X → X was defined in (4). The adjoint of T
satisfies

〈T u,p〉X = 〈u, T ∗p〉X. (68)
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We begin with taking the inner product of p and σ with the Navier–Stokes
equations (1a) and (1b), respectively. By integrating over the time domain and
applying integration by parts we obtain

0 =

∫ t

0

∫

Ω

pT

(
∂u

∂t
− (−(U · ∇) − (∇UT )T + Re−1∇2 + λ(x))u −∇p] + σ(∇ · u)

)

dxdydt

=

∫ t

0

∫

Ω
(

−uT (
∂p

∂t
+ ((U · ∇) − (∇U)T + Re−1∇2 + λ(x))p + ∇σ) − p(∇ · p)

)

dxdydt

+

∫ t

0

[B.C.]Ωdt

︸ ︷︷ ︸

2

+

∫

Ω

u(t)Tp(t)dxdy −
∫

Ω

u(0)Tp(0)dxdy

︸ ︷︷ ︸

3

(69)

By requiring the first two terms to be zero we obtain the adjoint Navier–
Stokes equations with boundary conditions. They will be considered after the
boundary terms in time denoted by 3 in (69). We thus require that

∫

Ω

u(t)Tp(t)dxdy =

∫

Ω

u(0)Tp(0)dxdy. (70)

The left hand side can be rewritten as
∫

Ω

(T (t)u(0))Tp(t)dxdy = 〈T (t)u(0),p(t)〉X

= 〈u(0), T ∗(t)p(t)〉X =

∫

Ω

u(0)TT ∗(t)p(t) ,

where we can identify the action of the adjoint evolution operator T ∗ : X → X

as

T ∗(t)p(t) = p(0). (71)

Now we proceed with deriving the adjoint equations associated with T ∗.
The spatial boundary terms given by the second term in (69) are
∫ t

0

[B.C.]Ωdt =

∫ t

0

[

σu+ u∗p+ UuTp− Re−1pT ∂u

∂x
+ Re−1uT ∂p

∂x

]Lx

0

+

[

σv + v∗p+ V uTp− Re−1pT ∂u

∂y
+ Re−1uT ∂p

∂y

]Ly

0

dt = 0.

If boundary conditions (2) on u are used and if we demand the that p = (u∗, v∗),
σ∗, and p satisfies

(σ, p)(0, y) = (σ, p)(Lx, y), (72a)

p(0, y) = p(Lx, y), (72b)

p(x, 0) = p(x, Ly) = 0. (72c)
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we observe that the boundary terms vanish.

Finally, the first term in (69) define the adjoint Navier–Stokes equations
if we demand that p satisfies equation (22). The equations (22) together with
boundary conditions (72b) and (72c) determine the behavior of adjoint flow
field p.

A.2. The adjoint operators L∗
c and L∗

o

The adjoint of the controllability operator Lc : U((−∞, 0]) → X is derived
using the identity

〈Lcf ,u0〉X = 〈f,L∗
cu0〉U((−∞,0]). (73)

We expand the left hand side,

〈Lcf,u0〉X =

∫

Ω

∫ 0

−∞

(T (−t)Bf(t))T u0dtdxdy

=

∫ 0

−∞

fT (t)(B∗T ∗(−t))u0dt

= 〈f(t),B∗T ∗(−t)u0〉U((−∞,0]).

In the first equality the definitions of B∗ and T ∗ from expressions (64) and (68)
were used. We can now identify L∗

c : X → U((−∞, 0])

L∗
c(−t)u0 = B∗T ∗(−t)u0. (74)

In a similar fashion the adjoint of the observability operator Lo : X →
Y([0,∞)) is defined by

〈Lou, y〉Y([0,∞)) = 〈u,L∗
oy〉X. (75)

Expanding the left-hand side results in

〈Lou, y〉Y([0,∞)) =

∫ ∞

0

(CT (t)u(t))T ydt

=

∫ ∞

0

∫

Ω

(ĈT (t)u(t))T ydxdydt

=

∫ ∞

0

∫

Ω

uT (T ∗(t)C∗y(t))T dxdydt

= 〈u,
∫ ∞

0

T ∗C∗ydt〉X ,

where Ĉ is the integrand in (16). We can identify the adjoint observability
operator L∗

o : Y([0,∞)) → X as

L∗
oy(t) =

∫ ∞

0

T ∗(t)C∗y(t) dt. (76)

Appendix B. The snapshot method

We will show how to approximate the eigenvalue problems (35),(31) and (45)
in order to compute the observable, controllable and balanced modes.
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B.1. Approximate Gramians

We begin with considering the eigenvalue problem,

Pφc
i = λc

iφ
c
i , (77)

where

Pφc
i =

∫ ∞

0

T (t)BB∗T ∗(t)φc
i dt. (78)

The first step is to rewrite the action of the controllability Gramian P on φc
i

in terms of impulse responses of the state. Recall that the flow field triggered
by an impulse δ(0) applied to the input B1 is given by T B1. Let us define the
vector ū containing the impulse responses of all inputs (except the measurement
noise) as columns, i.e.

ū = T B = (T (t)B1(x), T B2(x)) = (u1(x, t),u2(x, t)). (79)

Moreover, from the expression of B∗ and T ∗ given by (64) and (68) respectively,
we can rewrite the action of B∗T ∗ on φc

i as

B∗T ∗φc
i =

∫

Ω

(T B)Tφc
idxdy =

∫

Ω

ūTφc
idxdy. (80)

The controllability Gramian becomes

Pφc
i =

(∫ ∞

0

T (t)BB∗T ∗(t)dt

)

φc
i =

∫ ∞

0

ū

(∫

Ω

ūTφc
idxdy

)

dt. (81)

The above expression is approximated by discretization in space and time.
Suppose that x = (x1, . . . ,xn/2) is a grid in Ω with n/2 points. We construct
a n× 2 matrix by evaluating ū at the grid-points, i.e.

û =






u1(x1, t) u2(x1, t)
...,

...
u1(xn/2, t) u2(xn/2, t)




 . (82)

The size of this matrix is n×2 because there are two velocity components, e.g.

u1(xj , t) = (u1(xj , t), v1(xj , t))
T . Similarly we define φ̂i as the following n× 1

column vector,

φ̂i = (φc
i (x1), . . . ,φ

c
i (xn/2))

T . (83)

The integral in Ω in expression (81) can now be approximated by
∫

Ω

ūTφc
idxdy ≈ ûTWφ̂i, (84)

where the n × n positive-definite matrix, W , contains the spatial integrations
weights δxj

. The quadrature weights δxj
depend on the chosen quadrature

rule. For instance in our case, δxj
consist of the Chebyshev integral weight

functions (Hanifi et al. 1996) in the wall-normal direction and a trapezoidal
rule in the streamwise direction.
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The expression given by (81) becomes

Pφc
i ≈

(∫ ∞

0

ûûT dt

)

Wφ̂i (85)

where we recognize the term in the parenthesis as the state-covariance matrix.
If the flow fields are given as snapshots at discrete times t1, . . . , tm, we can
further approximate (85) with

(∫ ∞

0

ûûT dt

)

Wφ̂i ≈ XXTWφ̂i. (86)

The n × 2m matrix X contains û(tj) in column j multiplied with the square
root of the quadrature coefficients δtj

in time, i.e.

X = (û(t1)
√

δt1 , . . . , û(tm)
√

δtm
) (87)

where each column of X is referred to as a snapshot.

The eigenvalue problem given by (77) can now be approximated with the
following n× n eigenvalue problem

XXTWφ̂i = λc
i φ̂i, i = 1, . . . , n. (88)

It is prohibitively expensive to diagonalize the matrix XXTW when n ≥ 105.

In the method of snapshots (Sirovich 1987), the modes φ̂i can be approximated
by diagonalizing the 2m × 2m matrix XTWX instead. This is efficient when
the product of the number of snapshots and the number of inputs is much
smaller than the number of spatial grid-points.

In the method of snapshots the modes, φ̂i are expanded in snapshots, i.e.
the columns of matrix X . This can be formulated in matrix form as

φ
c
i = Xai i = 1, . . . , 2m, (89)

with the column vector ai containing the expansion coefficients.

The above expansion is inserted to the large eigenvalue problem (88) which
results in the 2m× 2m eigenvalue problem

XTWXai = λc
iai i = 1, . . . , 2m. (90)

The eigenvalues λc
i are the same as the original eigenvalue problem and the

controllable modes are recovered from equation (89). The orthonormal set of
controllable modes are given by

φ̂i =
1√
λi

Xai, φ̂T
i φ̂j = δij . (91)

There are some important computational issues which should be com-
mented at this point: (i) The Gramian (29) is defined as an infinite integral,
which means that in order for the approximate Gramian XXTW to be a suf-
ficiently good approximation, we should take snapshots for a long time. There
are no restrictions on how to distribute the snapshots in time and it is prudent
to store many snapshots when the flow energy is large. (ii) Due to numer-
ical round–off errors, often not all modes are orthogonal. In our case with
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2m = 3200, the first 150 modes were orthogonal down to numerical accuracy
(i.e (φc

i )
Tφc

i ≈ 10−15), whereas for higher modes the orthogonality condition
is gradually lost due to rounding errors. The ratio µi = λ1/λi can be used
as a condition number of the corresponding mode φc

i . Very large values of µc

indicate poor orthogonality due to numerical inaccuracy.

The observable modes are computed in a similar manner, but now the
snapshots are taken from impulse responses of the adjoint equations for each
output, i.e. p̄ = (p1,p2) = (T ∗ĈT

1 , T ∗ĈT
2 ) with Ĉ as the integrand in (16). The

approximate observability Gramian is

Qφo
i =

∫ ∞

0

T ∗C∗CT φo
i dt =

∫ ∞

0

p̄

(∫

Ω

p̄Tφo
i dxdy

)

dt ≈ Y Y TWφ̂i, (92)

where Y is the n× 2m matrix

Y =






p1(x1, t1)
√
δt1 . . . p1(x1, t1)

√
δt1 . . . p2(x1, tm)

√
δtm

...
...

...

p1(xn/2, t1)
√
δt1 . . . p1(xn/2, t1)

√
δt1 . . . p2(xn/2, tm)

√
δtm




 .

(93)
The observable modes are computed in an analogous manner as the controllable
modes with Y replacing X in equations (89)–(91).

B.2. Snapshot-based balanced truncation

To obtain the balanced modes, we must diagonalize the matrix PQ, which can
approximated using the matrices X and Y , i.e.

PQφoc
i ≈ XXTWY Y TWφ̂oc

i = σ2
i φ̂

oc
i . (94)

We expand the balanced modes as linear combinations of the columns of X ,
with ai = (a1, . . . , am)T as the expansion coefficients. Inserting this expansion
in (94), we get

0 = XXTWY Y TWXai −Xaiσ
2
i = X(XTWY Y TWXai − aiσ

2
i ), (95)

To solve the above problem we can equivalently diagonalize XTWY Y TWX or
form the singular value decomposition (SVD) of Y TWX . The latter decompo-
sition is preferred since it is numerically more stable, i.e.

Y TWXbi = σiai, i = 1, . . . , 2m. (96)

The normalized balanced modes and the associated adjoint balanced modes are
recovered from

φ̂oc
i =

1√
σi
Xbi, ψ̂oc

i =
1√
σi
Y ai, (97)

where (ψ̂oc
i )T φ̂oc

j = δji.

The method can be summarized in three steps; (i) compute the impulse
response of each input, collect snapshots of the response and construct X (87)
(ii) compute the adjoint impulse response of each output, collect snapshots of
the response and construct Y (93) (iii) form the matrix Y TWX , compute its
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SVD and recover the balanced modes from (97). See Rowley (2005) for further
details on the method.

Appendix C. Timestepper

The timestepper used in this work for both the forward and adjoint equations
is a spectral code described in detail in Chevalier et al. (2007b).

If f(x, y, t) is a velocity component then the discrete approximation is the
Chebyshev-Fourier series

f(t) =

ny∑

l=0

Tl(y)

nx/2
∑

m=−nx/2

eiαmxûlm + c.c. (98)

where Tl is the lth Chebyshev polynomial, αm = 2mπ/Lx and nx = 768 and
ny = 101 the number of collocation points in each direction. The coefficients
ûlm are complex functions. The associated collocation grid is defined by yl =
(Ly/2)(1−cos(πl/ny)) and xm = Lx(1/2+m/nx) with Lx = 1000 and Ly = 30.
The discretized system of equations is projected onto a divergence-free space
by transforming to v−η formulation and integrated in time using a third-order
semi-implicit scheme.

To retain periodic boundary conditions, which is necessary for the Fourier
discretization, a fringe region is added at the end of the physical domain where
a forcing is applied so that the flow smoothly changes from the outflow velocity
of the physical domain to the desired inflow velocity. For the linearized equation
the desired inflow condition is zero, so the fringe forcing is of the form F =
λ(x)u, where

λ(x) = −λmax

[

S

(
x− xstart

∆rise

)

− S

(
x− xend

∆fall

)]

. (99)

Here λmax is the maximum strength of the damping, xstart = 800 to xend = 1000
the spatial extent of the region where the damping function is non-zero and
∆rise = 120 and ∆fall = 60 the rise and fall distance of the damping function.
The smooth “step” function S(x) rises from zero for negative x to one for
x ≥ 1. We have used the following form for S, which has the advantage of
having continuous derivatives of all orders,

S(x) =







0 , x ≤ 0 ,

1/
(
1 + e(1/(x−1)+1/x)

)
, 0 < x < 1 ,

1 , x ≥ 1 .
(100)

Appendix D. Riccati equations

We briefly outline the full-information control and estimation problems and
their solutions. The reader is directed to Anderson & Moore (1990); Lewis &
Syrmos (1995); Bagheri et al. (2009) for derivations of the solutions.

The first step in the design of an H2-compensator involves the solution of
an optimal control state-feedback problem. The full-information problem is to
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find a control u(t) as a linear function of the flow state q(t) that minimizes the
deterministic cost functional

J =
1

2

∫ ∞

0

qTCT
1 C1q + l2uT u dt, (101)

while satisfying the initial value problem

q̇ = Aq +B2u, q(t = 0) = q0. (102)

The optimal control signal is given by

u(t) = − 1

l2
BT

2 X
︸ ︷︷ ︸

K

q(t), (103)

where X is a solution of the Riccati equation

0 = ATX +XA− 1

l2
XB2B

T
2 X + CT

1 C1 (104)

The solution to this equation provides the optimal steady feedback gain via the
relation (103).

The second step in the design of an H2-compensator involves the mini-
mization of the estimation error qe = q − q̂ given by the estimator

q̇e = Aqe + B1w + L(v − v̂), q̂(t = 0) = 0 (105a)

v̂ = C1q̂ (105b)

v = C1q + g , (105c)

where w and g are temporal white noise signals. The solution is the feedback
gain L that minimizes the objective functional

J =

∫ ∞

0

qT
e (t)qe(t)dt. (106)

The functional (106) can be minimized if L is chosen as

L = − 1

α2
PCT

2 , (107)

where P is a solution of the Riccati equation,

0 = AP + PAT − 1

α2
PCT

2 C2P +B1B
T
1 . (108)
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This paper presents matrix-free methods for the stability analysis and con-
trol design of high-dimensional systems arising from the discretized linearized
Navier–Stokes equations. The methods are applied to the two-dimensional
spatially developing Blasius boundary layer. A critical step in the process of
systematically investigating stability properties and designing feedback con-
trollers is solving very large eigenvalue problems by storing only velocity fields
at different times instead of large matrices. For stability analysis, where the
entire dynamics of perturbations in space and time is of interest, iterative
and adjoint-based optimization techniques are employed to compute the global
eigenmodes and the optimal initial conditions. The latter are the initial condi-
tions yielding the largest possible energy growth over a finite time interval. The
leading global eigenmodes take the shape of Tollmien-Schlichting wavepackets
located far downstream in streamwise direction, whereas the leading optimal
disturbances are tilted structures located far upstream in the boundary layer.
For control design on the other hand, the input-output behavior of the sys-
tem is of interest and the snapshot method is employed to compute balanced
modes that correctly capture this behavior. The inputs represent external dist-
urbances and wall actuation and the outputs represent sensors that extract wall
shear stress. A low-dimensional model that captures the input-output behavior
is constructed by projection onto balanced modes. The reduced-order model
is then used to design a feedback control strategy such that the growth of
disturbances is damped as they propagate downstream.

1. Introduction

Control of wall-bounded transitional and turbulent flows has been the subject
of several research efforts owing to the high potential benefits. In these fluid-
mechanics systems, due to the large flow sensitivity, dramatic effects on global
flow parameters may be achieved by minute local perturbations using devices
sensing and acting on only small parts of the flow with a small amount of energy.
Such control devices can be used to obtain reduction of the skin-friction drag,
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for example, implying relevant savings of the operational cost of commercial
aircrafts and cargo ships.

In this paper we perform stability analysis and control design for the Bla-
sius flow. The work is motivated by the need to provide efficient numerical tools
to analyze complex flows and design efficient control strategies. Although we
present results for the Blasius flow the methodology is applicable to any com-
plex flow described by the linearized Navier–Stokes equations. The techniques
in this paper share a common methodology: very large eigenvalue problems
are solved based only on snapshots of the velocity field at different points in
time. No large matrices are stored. Therefore the main tool is a code that
integrates the forward and adjoint linearized Navier–Stokes equations in time.
This so-called time-stepper technique has become increasingly popular in both
stability analysis (Barkley et al. 2002; Blackburn et al. 2008; Bagheri et al.
2009c) and for control design (Bagheri et al. 2009a).

It is now well understood that wall-bounded flows are very sensitive to spe-
cific perturbations (Schmid & Henningson 2001). In particular, boundary layer
flows support convective instabilities and behave as noise amplifiers (Huerre &
Monkewitz 1990). Convectively unstable shear flows are stable from a global
point of view (Huerre & Monkewitz 1990; Chomaz 2005); wavepackets gener-
ated locally, grow in amplitude as they travel downstream and finally decay
or leave the observation window. This behavior can be captured by a non-
modal analysis, see e.g. Schmid (2007). It is therefore meaningful to analyze
the spatial structure of the initial conditions and forcing yielding largest pos-
sible energy growth over a finite time interval. This optimization problem can
be solved efficiently for complex flows by solving the direct and adjoint Navier–
Stokes equation for the linear evolution of perturbation about a steady state,
as shown here (see also Barkley et al. 2002, 2008).

Two aspects in flow control have been identified as crucial in order to apply
feedback control in more complex flows and to move towards an implementation
in wind-tunnel tests. They are i) model reduction to significantly decrease the
cost of both constructing the controller and running it online, thus allowing
the fast computation of the control signal directly from the sensor output; ii)
the need to naturally consider localized sensors and actuators. Both these
aspects are addressed in Bagheri et al. (2009a). In this paper, the results of
Bagheri et al. (2009a) are extended by introducing wall actuation and wall
shear stress measurements instead of idealized volume forcing actuation and
velocity measurements inside the flow. The incorporation of actuators and
sensors at the physical boundaries in our design, takes us one step closer to use
the controller in actual experiments.

Recently, several groups have suggested and pursued the combination of
computational fluid dynamics and control theory, thus going past early at-
tempts of flow control based on physical intuition or on a trial-and-error basis
(see the review in Kim & Bewley 2007). The reader is also referred to Bagheri
et al. (2009b) for a thorough review of the many tools used in flow control.
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In early work from our group (Högberg & Henningson 2002; Högberg et al.
2003a,b), a linear model-based feedback control approach, that minimizes an
objective function which measures the perturbation energy, is formulated where
the Orr-Sommerfeld and Squire equations model the flow dynamics. The latter
equations describe the linear evolution of perturbations evolving in a parallel
base flow. The control problem is combined with a state estimator: The so
called Kalman and extended Kalman filter have been implemented in order to
reconstruct the flow in an optimal manner by only considering continuous wall
measurements. These studies have also shown the importance of physically
relevant stochastic models for the estimation problem (Hœpffner et al. 2005;
Chevalier et al. 2006), in which stochastic noise needs to describe accurately
the unmodeled dynamics, such as uncertainties and nonlinearities. Based on
these models the estimator is shown to work for both infinitesimal as well as
finite amplitude perturbations in direct numerical simulations of transitional
flows (Chevalier et al. 2007a; Monokrousos et al. 2008). These studies however
assumed a parallel base flow and distributed sensing and actuation at the wall.

Model reduction becomes essential in order to apply modern control theo-
retical tools to fluid flow systems. For linear control, the aim is to build a model
of low dimension that captures the input-output behavior of the Navier–Stokes
system and use this model for optimal feedback control design. Balanced trun-
cation (Moore 1981) is a method for model reduction that takes into account
both the flow structures most easily influenced by the input and the flow struc-
tures to which the outputs are most sensitive. The method provides a set of
bi-orthogonal modes, called the balanced modes, that serve as a projection ba-
sis for model reduction. The method employed to compute the balanced modes
is the snapshot-based balanced truncation introduced by Rowley (2005). This
method has been recently applied to the channel flow (Ilak & Rowley 2008), the
flow around a pitching airfoil (Ahuja et al. 2007) and the Blasius flow (Bagheri
et al. 2009a).

The paper is organized as follows: The modal and nonmodal stability anal-
ysis is presented in section 2. We start with describing the flow setup and formu-
lating two eigenvalue problems. We continue with showing how the eigenvalue
problems can be solved iteratively and finally present results for the Blasius
flow. Section 3 deals with the control design. We introduce inputs, outputs
and write the system in the state-space formulation. A brief summary of the
LQG framework is provided before model reduction based on balanced modes
is introduced. The snapshot method used for model reduction is explained
and results on the performance of the reduced-order and controller are shown.
Section 4 provides concluding remarks.
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Figure 1. The configuration used for the control of perturba-
tions in a two-dimensional flat-plate geometry. The computa-
tional domain Ω = (0, Lx)× (0, Ly), shown by the gray region,
extends from x = 0 to x = 1000 with the fringe region starting
at x = 800. The first input B1, located at (xw, yw) = (35, 1),
models the initial receptivity phase, where disturbances are in-
duced by free-stream turbulence, acoustic waves or wall rough-
ness. The actuator, B2, provides a mechanism to manipulate
the flow, in this case by a wall blowing and suction centered at
xu = 400. Two sensorsC1 and C2, measuring the skin friction
near the wall, are located at xy = 300 and xz = 750 respec-
tively. The upstream measurements are used to estimate the
incoming perturbations, while the downstream sensor quanti-
fies the effect of the control.

2. Stability analysis

2.1. Flow configuration and the initial value problem

We consider the two-dimensional incompressible flow over a flat plate with
constant free-stream velocity U∞ as shown in figure 1. Starting from the lead-
ing edge a viscous boundary layer evolves downstream. The evolution of the
streamwise velocity u, the wall-normal velocity v and the pressure p in time t
and space (x1, x2) is governed by the incompressible non-linear Navier–Stokes
equation (White 1991). Our analysis deals with the evolution of infinitesimal
perturbations on this laminar boundary layer solution and is limited to the
computational domain shown by the gray area in figure 1: The inflow bound-
ary is set to the downstream position corresponding to a Reynolds number
Reδ∗

0
= U∞δ

∗
0/ν = 1000, where δ∗0 is the local displacement thickness of the

boundary layer and ν is the kinematic viscosity. Throughout the paper all
variables are non-dimensionalized by U∞ and δ∗0 . The length and height of
the domain are Lx = 1000 and Ly = 30 in the streamwise direction x1 and
wall-normal direction x2, respectively.

The steady state, about which a linearization is performed, is obtained
by marching the nonlinear governing equations in time. The discretized and
linearized Navier–Stokes equations with boundary conditions can be cast as an
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initial-value problem

u̇(t) = Au(t)

u(0) = u0

with u = (u, v)T . However, for two or three-dimensional base flows the system
matrix A will have very large dimension, i.e. the number of grid points times
the number of velocity components n = 2NxNy. Our analysis will therefore
be based on the solution of the linearized Navier–Stokes equations that can
be represented by the matrix exponential (also referred to as the evolution
operator)

u(t) = T (t)u(0) = eAtu0.

The matrix exponential, T (t) is the key to both stability analysis and control
design, all of which will be discussed in the subsequent sections. However, this
discrete operator also poses the greatest computational challenge due its dimen-
sion. For example, the storage of the one dimensional Orr-Sommerfeld matrix
for the evolution of disturbances in parallel flows requires approximately 1MB
of memory, the system matrix for the present spatially inhomogeneous flow
with the numerical scheme introduced above requires approximately 200GB,
while the memory usage for a full three-dimensional system would be of the
order of 200TB.

However, the action of T (t) on any flow field simply amounts to integrat-
ing the Navier–Stokes equations in time. In what follows the reader should
equate T (t)u(s) with a DNS simulation starting with an initial condition u(s)
and providing u(t + s) at a later time. In this so called “time-stepper ap-
proach”, system matrices are never stored and storage demands in memory
are of the same order as a small number of flow fields. Numerically, the equa-
tions are solved with the pseudo-spectral Direct Numerical Simulation (DNS)
code described in Chevalier et al. (2007b), where the spatial operators are ap-
proximated by Fourier expansion in the streamwise direction with Nx = 768
equally distributed points and Chebyshev expansion in the wall-normal direc-
tion on Ny = 101 Gauss-Lobatto collocation points. A fringe region enforces
periodicity in the streamwise direction (Nordström et al. 1999).

2.2. Modal stability

The first step in the understanding of the fluid problem at hand is examin-
ing the hydrodynamic stability of the flow, i.e. the behavior of infinitesimal
disturbances to a base flow. In particular, modal stability deals with the re-
sponse behavior of the baseflow to disturbances as time tends to infinity and
is determined by the eigenvalues of A:

A = UΛU−1 (1)

where the columns of the matrix U contain the global modes, the columns of
U−1 the adjoint global modes, (i.e. U−1U = I) and the diagonal matrix Λ

contains the eigenvalues λj of A. As mentioned previously, in many cases, only
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instantenouos velocity fields at different times are available, not matrices. To
use the time-stepper technique explained later in section 2.4, it is convenient
to rewrite the eigenvalue problem (1) in terms of the evolution operator:

T (t) = UΣU−1 (2)

with Σ = exp(Λt). Note that the evolution operator for a fixed t has the
same eigenfunctions as A. The temporal growth rate and the frequency of the
eigenmodes are given by

Re(λj) = ln(|σj |)/t, Im(λj) = Arg(σj)/t,

respectively, with Σ = diag(σ1, . . . , σn). If Real(λj) > 0 (or |σ1| > 1), the flow
is linearly globally unstable.

2.3. Nonmodal stability

The amount of information obtained from equation (2) is limited to the asymp-
totic flow response and does not reveal the short-time behavior of disturbances
inherent to many flow systems. Relevant transient growth (Schmid & Hen-
ningson 2001) of perturbations is indeed observed for many fluid dynamical
systems due to the nonnormality of the operator A (an operator which does
not commute with its adjoint) and nonmodal analysis is concerned with find-
ing instabilities that are amplified in a finite time interval. Furthermore, a
competition between nonmodal and modal growth is observed in many sys-
tems, for example for three-dimensional perturbations in the Blaisus boundary
layer (Levin & Henningson 2003). For such flows, different transition scenarios
can be observed depending on the external ambient noise. Therefore, to exam-
ine the largest possible disturbance growth due to all possible unit-norm initial
conditions u0, we will consider the energy associated to the disturbance at any
time t:

‖u(t)‖2 = (T (t)u0,T (t)u0) = (u0,T
∗(t)T (t)u0). (3)

In the preceding expression, the perturbation kinetic energy is the relevant
norm and the adjoint evolution operator T ∗(t) is introduced. Applying this
operator corresponds to the integration of an adjoint state from time t to time
0. One can show (Bagheri et al. 2009a) that an initial-value problem for the
adjoint linearized Navier–Stokes equations governed by A∗ but with negative
time derivative can be associated to the adjoint evolution operator T ∗. For a
derivation of the adjoint operators in general, we refer to Giles & Pierce (2000),
and for this particular setup, to Bagheri et al. (2009a).

Initial conditions experiencing the largest nonmodal growth at time t cor-
respond to the leading eigenvalues of the operator T ∗(t)T (t), i.e.

T ∗(t)T (t) = UΣU∗. (4)

In this paper the eigenmodes of all matrices are denoted by U , and it is clear
from the context which matrix they are associated. The first unit-norm eigen-
vector u1 is the optimal initial condition, resulting in the largest energy growth
at time t. If its corresponding eigenvalue is larger than one, σ1 > 1, the system
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Figure 2. Spectrum of of the 2D Blasius flow computed us-
ing the timestepping technique with ∆t = 30 (squares) and
∆t = 40 (circles). The high-frequency eigenvalues of the latter
computation are mapped/aliased into the low-frequency do-
main.

can support nonmodal growth. The corresponding flow state at time t can be
found by the evaluation of T (t)u1. To obtain a full map of the potential for
transient growth the computations are repeated for different times t.

2.4. Iterative time-stepping technique

The eigenvalue problems defined in equations (2) and (4) provide information
about the modal and nonmodal flow behavior of the system, respectively. The
dimension of the matrices in equations (2) and (4) is too large to be solved
by direct methods, such as the standard QR method (Trefethen & Bau 1997).
Therefore, one has to resort to iterative methods, such as the Arnoldi (Lehoucq
et al. 1998), which is based on the projection of the large matrix onto a lower-
dimensional subspace m ≪ n. This results in a significantly smaller system
that can be solved with direct methods. In addition, as mentioned previously,
in many cases only instantenouos velocity fields at different times are available.
A particular subspace is the Krylov K spanned by snapshots taken from flow
fields separated by a constant time interval ∆t,

K = span{u0,F (∆t)u0,F (2∆t)u0, . . . ,F ((m− 1)∆t)u0}
with F (t) = T (t) (modal stability) or F (t) = T ∗(t)T (t) (nonmodal stability)
and u0 is the initial guess that should contain nonzero components of the
eigenmodes (it is usually chosen as random noise).

For modal stability analysis, every basis vector of the Krylov subspace is
created by a numerical simulation of ∆t. The actual time step of these simu-
lations depends on the CFL-condition and is much smaller than the sampling
period ∆t. The global spectrum using both the matrix method (i.e. storing ma-
trix A) and the time-stepper method is compared in figure 3(a) and discussed
further in the next section. See Bagheri et al. (2009c) for the application of
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this technique on a fully three-dimensional flow, where the size of the problem
(A would be approximately a 107 × 107 matrix) prohibits matrix methods.
Note that the eigenmodes of T are the same as those of the system matrix
A only if ∆t is chosen properly, i.e. so that it reflects the characteristic time
scale of the physical structures in the flow. More specifically, the choice ∆t is a
balance between the time scale given by the Nyquist criterion and a sufficient
temporal separation of the Krylov vectors to ensure convergence of the iterative
method. Frequencies larger than the Nyquist frequency, (i.e. ω > ωc = π/∆t)
are spuriously moved into to range ω < ωc. To avoid aliasing ∆t must therefore
be small enough to include two sampling points in one period of the highest
frequency mode. In figure 2 the aliasing phenomenon is illustrated. The time
stepper with ∆t = 30 (squares) has Nyquist frequency ωc = 0.1 and there-
fore captures all frequencies in the range [0, 0.1] correctly. The time-stepper
with ∆t = 40 (circles) has ωc = 0.07 and all frequencies higher than 0.07 are
therefore mapped into [0, 0.07].

For nonmodal stability, every basis vector of the Krylov subspace is con-
structed by first a numerical simulation of ∆t yielding the flow field at t = ∆t
which is then used as an initial condition for numerical simulation of the adjoint
system backwards in time for ∆t.

The Krylov subspace K is orthonormalized with an m-step Arnoldi factor-
ization yielding the unitary basis V on the which F can be projected on

F (∆t) ≈ V RV ∗.

This leads to a small m×m eigenvalue problem of the upper Hessenberg matrix
R,

RS = ΣS

which can be computed by standard methods such as the QR algorithm. A
number of the so-called Ritz values Σ = diag(σ1, . . . , σm) typically converges
rapidly to the eigenvalues of the large system F . The eigenmodes corresponding
to the m converged eigenvalues with the largest magnitude are recovered by
U = V S.

Note that one at beforehand does not know how large the Krylov subspace
(i.e. m) has to be in order to converge to the desired number of eigenvalues.
An implicitly restarted Arnoldi algorithm (Sorensen 1992) implemented in the
software package ARPACK (Lehoucq et al. 1998) can be used to restart the
Arnoldi procedure with a new improved initial guess, u0, repeatedly until con-
vergence. In this way the Krylov subspace can be very small although the
number of flow field snapshots separated by ∆t required for convergence can
be very large. As an example, the number of snapshots required for conver-
gence of the 22 eigenmodes in Bagheri et al. (2009c) was 1800, however, thanks
to IRAM, the Krylov subspace was only of the order m ≈ 60.
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Figure 3. (a) Eigenvalues of A as computed by the shift and
invert Arnoldi method (shown as black circles) and eigenval-
ues computed by time-stepping using the evolution operator
T (t) (shown as red squares). The slightly damped eigenval-
ues, corresponding to Tollmien-Schlichting (TS) modes, and
the free-stream propagating modes are found by both meth-
ods. (b) Streamwise velocity component of the least stable
TS eigenvectors, marked k1 in (a). (c) Streamwise velocity
component of a high frequency but more damped TS mode,
marked k2 in (a).

2.5. Results

Results on modal and nonmodal stability of two-dimensional perturbations
of the Blasius boundary layer are presented in this section. As mentioned
previously, the flow under investigation here is locally unstable but globally
stable. Locally unstable perturbations, the Tollmien-Schlichting waves, grow
while travelling downstream eventually leaving our control domain. From a
global point of view, the flow is then stable, because disturbances have to be
continuously fed upstream to avoid that the flow returns to its undisturbed
state at each streamwise position. However, a significant transient growth
of the disturbance energy in the domain is associated to the propagation of
the wavepacket (Ehrenstein & Gallaire 2005; Åkervik et al. 2008). This is also
referred to as streamwise nonnormality (Cossu & Chomaz 1997; Chomaz 2005).

2.5.1. Modal stability

For two-dimensional perturbations of the Blasius boundary layer flow, the mem-
ory requirements are still small enough to enable the storage of the system
matrix A in memory; the leading eigenmodes from the matrix eigenvalue prob-
lem (1) can thus be obtained by means of the shift and invert Arnoldi proce-
dure. Figure 3(a) shows the eigenvalues obtained by the shift and invert matrix
method as black circles. In the spectrum, one can identify several branches
which all can be related to corresponding modes in the spectrum of a paral-
lel Blasius boundary layer, as found by solving the Orr-Sommerfeld equations,
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though modified by non-parallelism and boundary conditions (Åkervik et al.
2008). The upper branch can be identified as pure Tollmien-Schlichting (TS)
waves. These modes are characterized by slightly damped eigenvalues, with the
corresponding eigenvectors obtaining their maximum values inside the bound-
ary layer while decaying exponentially in the free stream. More stable modes
can be associated to the continuous spectrum: that is modes oscillating in the
freestream and decaying inside the boundary layer.

Figures 3(b, c) show two examples of TS eigenvectors associated with eigen-
values marked k1 and k2 in figure 3(a). As a consequence of the convective
nature of the instabilities arising in the Blasius flow, where disturbances grow
in amplitude as they are convected in the downstream direction, the global
eigenmodes are located far downstream, where the flow energy is the largest.
The wall-normal structure of these modes is very similar to those obtained
by local temporal analysis in the framework of the Orr–Sommerfeld equation.
The amplitude of the waves is exponentially increasing downstream: this, to-
gether with the temporal decay rate given by the eigenvalue, accounts for the
spatial behavior of the mode. The matrix-free method based on the time step-
per introduced in section 2.4 successfully locates the least damped eigenvalues
by solving the eigenvalue problem (2). The eigenvalues are shown as squares
in figure 3(a), and are in perfect agreement with the results obtained by the
matrix method.

Note that all the eigenvalues are damped, indicating that we will never
observe the evolution of single eigenmodes in the flow, but rather we should
focus our attention on the nonmodal behavior: in other words the transient
growth scenario. It is possible to project the system (3) on a set of eigen-
modes obtained from equation (2), thereby approximating the flow dynamics
by a low-dimensional model living in the space spanned by a finite number of
eigendirections (Schmid & Henningson 2001). For globally unstable flows, only
one or few eigenmodes may be sufficient to capture the physical mechanism
of the instability (see e.g. the shallow rounded cavity flow in Åkervik et al.
2007, where an oscillating cycle could be captured by the sum of two unstable
eigenmodes). However for a boundary-layer flow such as that studied here, it is
shown in Åkervik et al. (2008) that O(103) eigenmodes are needed to capture
the full instability mechanism. With the present discretization and bound-
ary conditions, moreover, the sum of the 1500 eigenmodes obtained from the
Arnoldi method is not able to correctly describe the Orr mechanism (Orr 1907;
Schmid & Henningson 2001; Åkervik et al. 2008) as obtained by the optimiza-
tion via the time stepper defined in equation (4). This is most likely due to the
presence of eigenmodes related to the fringe region among the least damped
eigenmodes. This points to the limitations of using eigenvalues as a general tool
to study stability of complex systems characterized by strong nonnormality.
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Figure 4. (a) Eigenvalues of T ∗T computed using the for-
ward and adjoint time stepper with t = 1800. (b) Streamwise
velocity component of the optimal disturbance corresponding
the largest eigenvalue in (a). (c) Streamwise velocity compo-
nent of a suboptimal, corresponding to the third largest eigen-
value in (a).

2.5.2. Nonmodal stability

Figure 4 shows the spectrum and two eigenfunctions of the eigenvalue prob-
lem (4) computed using the time stepper with t = 1800. Since T ∗T is a self-
adjoint positive-definite operator, its eigenvalues are real and positive. More-
over, the eigenvalues shown in figure 4(a) come in pairs with similar magni-
tudes. The corresponding velocity fields have the same wavepacket structure
90 degrees out of phase, representing traveling structures. The most unstable
modes (i.e. the optimal disturbance and a suboptimal mode) are shown in fig-
ures 4(b) and (c). They both have a spatial support far upstream, where the
sensitivity of the flow is the largest. The modes are tilted in the upstream di-
rection, leaning against the shear layer. As noticed by Butler & Farrell (1992),
the upstream tilting of the optimal initial conditions can be attributed to the
wall-normal nonnormality of the governing operator; perturbations extract en-
ergy from the mean shear by transporting momentum down the mean velocity
gradient (the so-called Orr mechanism). Also note the separation of the spatial
support of the optimal disturbance modes shown in figure 4(b, c) (far upstream)
and global eigenmodes shown in figure 3(b, c) (far downstream). This separa-
tion is associated to streamwise nonnormality of the system (Chomaz 2005).
Finally, note that there is nearly one order of magnitude between the energy
of first pair and second pair of eigenvalues shown in figure 4(a). As a conse-
quence, one can expect a selection of disturbances in a randomly forced flow
that resembles the flow response obtained when using the optimal disturbance
as initial condition.
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Figure 5. (a) Energy growth when optimizing for different
times. The maximum is achieved for time tm = 1800 for which
the maximum energy is E = 2.35 · 104. (b) Solid black line re-
peats the energy evolution leading to the maximum growth
at tm = 1800, whereas red line shows the energy evolution
obtained when projecting the system onto a small number of
eigenvectors related to the TS branch in figure 3(a). The lat-
ter clearly does not account for the initial gain due to the
Orr mechanism, but by rescaling and shifting in time the two
curves collapse, showing that the long time evolution is gov-
erned by propagating TS waves.

The energy evolution when solving for the largest eigenvalues of equation
(4) at times t = {100, 200, . . . , 2000} is reported in figure 5(a). When opti-
mizing for short times the optimal initial condition consists of upstream-tilted
structures that exploit the Orr mechanism only (Åkervik et al. 2008) to extract
energy from the flow. Increasing the optimization time, the upstream-tilted
structures move upstream, towards the start of our computational domain,
weighting the possibility of growth due to the local Orr mechanism with the
energy gain associated to the amplification and propagation of TS waves. The
maximum energy growth in this box is obtained for final time t = 1800. The
corresponding optimal initial condition is shown in the top frame in figure 6.
In figure 5(b) we compare the energy evolution due to this optimal initial con-
dition with the energy evolution obtained when projecting equation (4) onto
the space spanned by a small number of modes; all modes included in the TS
branch in figure 3. The evolution in the reduced system clearly does not cap-
ture the initial energy gain due to the Orr mechanism; however, by rescaling
the energy curve and shifting it in time to account for the initial gain due to
the Orr mechanism, the subsequent evolution (amplification and propagation
of the TS waves) is almost perfectly matching that of the full system.

The detailed evolution of the streamwise velocity due to the optimal ini-
tial condition at time t = 1800 is shown in figure 6. At the initial time the
structures are leaning backwards against the shear. During the initial phase of
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Figure 6. Time evolution for streamwise velocity with the
combined Orr and TS mechanism, when initiated with the op-
timal initial condition from t = 1800. Note that the maximum
amplitude is growing from frame to frame following the energy
evolution given in figure 5(b).

the development, the disturbance is raised up, gaining energy through the Orr
mechanism and forming a wavepacket consisting of TS-waves. The wavepacket
then propagates downstream, grows in size and finally leaves the computational
domain; the energy evolution for this flow is reported in figure 5(b).

3. Control design

3.1. Introducing inputs and outputs

The next step after the analysis of the internal dynamics of our linear system
is to manipulate it or to control it. In particular, our objective is to minimize
the perturbation energy resulting from the growth of instabilities during the
transition process in order to suppress or delay turbulence. To this end, we
introduce the inputs B1,B2 and the outputs C1,C2,

u̇(t) = Au(t) +B1w(t) +B2φ(t), (5)

z(t) = C1u(t) + lφ(t), (6)

y(t) = C2u(t) + αg(t). (7)

The linearized Navier–Stokes equations represented by A are now forced with
external disturbances represented by the term B1w(t). These external dist-
urbances may enter the boundary layer upstream through some receptivity
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mechanism such as freestream turbulence or acoustic waves interacting with
roughness as shown schematically in figure 1.

In practice, the entire spatiotemporal evolution of disturbances is not avail-
able and it is therefore necessary to monitor the disturbance behavior through
measurements. To accomplish this task, two sensors, C1 and C2 are intro-
duced that measure the shear stress near the wall. The partial information of
the incoming perturbations provided from the first sensor measurements (C2

in figure 1) is used to reconstruct the actual flow dynamics by using a Kalman
filter. Based on this flow estimation we can alter the behavior of disturban-
ces by injecting fluid through blowing/suction holes in the wall. This type of
actuation corresponds to imposing an inhomogeneous boundary condition uw

at the wall (see equation 19 in Appendix B). In order to pose the system in
the standard state-space formulation commonly used in systems and control
theory, the boundary term is lifted (Curtain & Zwart 1995) into a volume forc-
ing B2φ(t). In Appendix B the lifting technique is demonstrated. The sensor
output signal y(t) is forced with noise g(t) to model the uncertainty that may
exists in the measurements under realistic conditions. The noise g(t) can be
considered as a third forcing, but rather than forcing the Navier–Stokes equa-
tions it forces the measurements. Large values of the scalar α indicate high
level of noise corruption in the output signal, whereas for low values of α the
measurement y(t) reflects information about the flow field with high fidelity.

Measurements provided by the second sensor C1 located far downstream
(see figure 1) is used to determine whether our controller have been successful
in reducing the shear stress near the wall. It thus plays the role of an objective
function1, i.e.

‖z‖2 =

∫ ∞

0

(
u∗C∗

1C1u + l2φ2
)

dt. (8)

For large values of the scalar l the control effort is considered to be expensive,
whereas small values indicate cheap control.

The system with all inputs and outputs can be written in a compact state-
space form,

G :=

(
A B

C D

)

. (9)

Here,

B = (B1, 0,B2) ∈ R
n×3

contains the three input operators,

C = (C1,C2)
T ∈ R

2×n

two output operators. The corresponding input time signals are

f (t) = (w(t), g(t), φ(t))T ∈ R
3×1

1We assume that the cross weighting between the state and control signal is zero (Zhou et al.

1999).
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and output time signals are

y(t) = (y(t), z(t))T ∈ R
2×1.

In addition, the feed-through term D ∈ R
2×3 is included to model the effects

of measurements noise g(t) and to penalize the actuation effort,

D =

(
0 0 l
0 α 0

)

.

Hereafter, the number of inputs and outputs will be denoted by p and r respec-
tively. The inputs and outputs used in the present study are given in Appendix
A. The solution to the input-output system (9) can formally be written as,

y(t) = Gf(t) = C

∫ t

0

T (t− τ)Bf(τ) dτ +Df(t). (10)

3.2. The LQG/H2 problem

The LQG/H2 framework provides a controller that minimizes the cost func-
tional (8). This approach is appropriate if the system matrix A accurately
describes the flow dynamics, whereas a precise knowledge of external distur-
bances and the degree of noise contamination of the measurements are not
available. We refer to (Anderson & Moore 1990; Zhou et al. 2002; Bagheri
et al. 2009b) for further details on the H2 control algorithm, as we will only
outline the main steps here. The method can be extended (the so called H∞

method) in order to guarantee certain robustness properties. The control prob-
lem from an input-output viewpoint, or the H2 problem, can be formulated as
follows:

Find an optimal control signal φ(t) based on the measurements y(t) such
that in the presence of external disturbances w(t) and measurement noise g(t)
the output z(t) is minimized.

The determination of the control signal φ(t) is based only on the mea-
surements y(t) from the sensor C2. However, for linear systems, due to the
separation principle (Zhou et al. 2002), the feedback control law can be de-
termined by assuming that the complete velocity field is known. The forcing
needed to reproduce the flow only from wall measurements can be computed
independently. Hence, the design of the H2-controller is performed by solving
two quadratic matrix equations called Riccati equations (Zhou et al. 1999) that
are independent of each other. Solving the first Riccati equation we obtain the
feedback type of control signal φ(t) = Ku(t). The second Riccati equation
provides the estimation feedback gain L so that the estimator

˙̂u(t) = (A+LC2)û(t) −Ly(t)

can provide an estimate of the state û from the wall stress measurements con-
tained in y(t). Finally, the controller is obtained by the combination of these
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two as (written in compact form)

Gc :=

(
A+B2K +LC2 −L

K 0

)

. (11)

This controller runs online next to the experiments. Based on wall shear stress
measurements y(t) extracted by the first sensor, it provides an optimal control
signal φ(t), i.e. φ(t) = Gcy(t).

Any adequately accurate spatial discretization of the Navier–Stokes equa-
tions linearized about two- or three-dimensional base flows results in a system
with at least n ≥ 105 degrees of freedom. Because of the high-dimensional
state-space, we cannot, in general, solve the Riccati equations. Moreover, it
would be very expensive to run the controller online, since it has the same di-
mension as the full system. For this reason there is a desire to have a low-order
controller (11) for the high-order Navier–Stokes system (also called the plant
hereafter). The available methods can broadly be divided into two categories;

i) controller reduction Anderson & Liu (1989), in which a high-order con-
troller Gc is first found and then a procedure used to simplify it;

ii) model reduction, in which a low-order approximation of the plant G is
first constructed and then a controller is designed.

In this paper, we will focus on the latter approach, because solving Riccati
equations is not straightforward for n ≥ 105.

3.3. The model reduction problem and balanced truncation

The main feature of the flow behavior which is relevant to preserve in the
reduced-order model is the input-output (I/O) behavior of the system, that
is the relation between disturbances, wall actuation and the sensor outputs.
Rather than investigating the entire dynamics of flow fields at different times,
the I/O behavior considers the time signals, f (t) and y(t). Fortunately, the
I/O behavior has significantly simpler dynamics compared to stability analysis,
in which the entire flow dynamics is under investigation.

The model reduction problem for the preservation of input-output dynam-
ics can be posed as following: Find the state-space system of order m≪ n,

Gm :=

(
Y ∗AX Y ∗B

CX D

)

=

(
Am Bm

Cm D

)

(12)

so that for any input f (t), the difference between the output of the original
y(t) = Gf(t) and of the reduced system ŷ(t) = Gmf(t) is small, i.e.

sup
f

‖y − ŷ‖
‖f‖ = ‖G−Gm‖∞. (13)

One way to compute the reduced-order model (12) with a nearly minimal
model reduction error (13) is called balanced truncation (Moore 1981). To
obtain the balanced reduced-order model (12) Gm we project Navier–Stokes
equations including inputs and outputs (G) onto the so-called balanced modes
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Figure 7. The operators used to examine the system input-
output behavior. The controllability operator Lc relates past
inputs to the present state, while the observability mapping Lo

relates the present state to the future outputs. Their combined
action is expressed by the Hankel operator H.

X ∈ Rn×m. The modes are bi-orthogonal to adjoint balanced modes Y ∈
Rn×m (i.e. Y ∗X = I).

The method to compute these modes can be introduced in many different
ways. Traditionally, the balanced modes are defined as the eigenvectors of the
product of the controllability and observability Gramian, defined as

P =

∫ ∞

0

T (τ)BB∗T ∗(τ) dτ, Q =

∫ ∞

0

T ∗(τ)C∗CT (τ) dτ. (14)

The Gramians can be obtained by solving the Lyapunov equations,

AP + PA∗ +BB∗ = 0, A∗Q+QA+C∗C = 0.

In this section we will outline the method in manner that is reminiscent of
the optimization problems that arise in the stability analysis. The presenta-
tion follows closely Bagheri et al. (2009a), where also definitions of appropriate
Hilbert spaces and adjoint operators are provided. Whereas, in stability analy-
sis we were concerned with the properties of the evolution operator T (t), here
our focus will lie on the so-called Hankel operator (Glover 1999) that maps
input signals to output signals. In particular, it is defined as the mapping from
past inputs f(t) : t ∈ (−∞, 0] to future outputs y(t) : t ∈ [0,∞),

y(t) = (Hf)(t) = C

∫ 0

−∞

T (t− τ)Bf (τ) dτ.

In order to determine Hf , we decompose it into two parts, H = LoLc (shown
schematically in figure 7).

First we need to know the state at a reference time (say u0) that results
from driving the system with the input f(t);

u0 =

∫ 0

−∞

T (−τ)Bf (τ) dτ = Lcf(t).

The range of Lc, i.e. the restriction of the state-space to all possible initial
states that we are able to reach with f(t), is called the controllable subspace.
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Second, we define the observability operator Lo as,

y(t) = CT (t)u0 = Lou0, t ≥ 0,

which generates future outputs from the reference state. If Lou0 = 0 for an
initial condition u0, then u0 is unobservable, because it cannot be detected
by the sensors. Moreover, it is easy to verify that the Gramians are given by
P = LcL

∗
c and Q = L∗

oLo (see Bagheri et al. 2009a, for derivation of the
adjoint operators L∗

c and L∗
o).

Note that all inputs that give rise to the same u0 produce the same future
output. Therefore any two linearly independent reference states u0 result in
linearly independent future outputs. Thus the rank of the Hankel operator
(i.e. the number of linearly independent outputs) is finite and equals to the
minimal number of states required to realize the input-output behavior of the
system. One might think that it is more natural to consider the input-output
mapping G given by equation (10), but this operator is generally not of finite
rank, which makes further analysis difficult (Glover 1999).

The amplification of the output signal at time t is given by

‖y(t)‖2 = (Hf(t),Hf(t)) = (f(t),H∗Hf(t)).

In particular, the unit-norm input signals that result in the largest output
response are the eigenmodes of H∗H, or the right singular vectors of H , i.e.

H = UΣV ∗, (15)

with the square root of the eigenvalues, σ1 > σ2 > . . . are called the Hankel
singular values (HSV). If σ1 > 1, then the unit-norm input signal (the first
column of V ), active in the past t ∈ (−∞, 0] will generate an amplified output
signal in the future t ∈ [0,∞).

Using the mappings Lc and Lo we can now obtain the bi-orthogonal bal-
anced modes,

X = LcV Σ−1/2, Y = L∗
oUΣ−1/2. (16)

Note that balanced modes contained in X = {u1, . . . ,um} are flow fields ob-
tained by mapping the most dangerous inputs signals V , i.e. left singular vec-
tors of H onto the state-space using Lc (see Bagheri et al. 2009a, for further
details).

The balanced reduced-order model (ROM) is guaranteed to be asymptot-
ically stable (Pernebo & Silverman 1982) if σi 6= σi+1. Moreover, upper and
lower bounds (Glover 1999) of the model reduction error for reduced-order
model of order m are given by the HSV as

σm+1 ≤ ‖G−Gm‖∞ ≤ 2

n∑

j=m+1

σj . (17)
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Figure 8. (a) Singular values of Hankel operator. The
streamwise velocity component of first direct mode is shown
in (b) and its associated adjoint mode in (c).

3.4. Snapshot-based balanced truncation

Standard balanced truncation is computed by solving two Lyapunov equations,
which is not numerically feasible if n > 105, as the computational complexity
is O(n3) and storage requirement is O(n2). Usually the number of inputs and
outputs are much smaller than the state dimension (i.e. m, p≪ n). Therefore,
the input and output operators Lo,Lc have low numerical rank. In this sec-
tion a brief summary of the snapshot method (Sirovich 1987) for solving the
singular value decomposition (SVD) problem (15) is presented. The method
for the computation of the balanced modes based on snapshots was introduced
by Rowley (2005), in which it is also described in more detail.

The integrals in (14) can be approximated by quadratures,

P = LcL
∗
c ≈

k∑

j=1

T (tj)BB
∗T ∗(tj)δj = L̃cL̃

∗

c

and similarly for the observability Gramian we have

Q = L∗
oLo ≈

k∑

j=1

T ∗(tj)C
∗CT (tj)δj = L̃oL̃

∗

o

where δj are the quadrature weights. The Gramians are thus approximated

with low-rank Cholesky factors; L̃o ∈ Rn×kr and L̃c ∈ Rn×kp respectively,
given by

L̃c =
(

T (t1)B
√

δ1, . . . ,T (tk)B
√

δk

)

L̃o =
(

T ∗(t1)C
∗
√

δ1, . . . ,T
∗(tk)C∗

√

δk

)

.

For our case, with p = 3 and r = 2, the columns

T (ti)B = (T (ti)B1, 0,T (ti)B2)
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contain snapshots of the state at time ti, resulting from impulse responses of
B1 and B2. In a similar manner,

T ∗(ti)C
∗ = (T ∗(ti)C

∗
1,T

∗(ti)C
∗
2)

T ,

contain snapshots of the adjoint state at time ti resulting from impulse re-
sponses of each output. Note that for every additional input (output), the

Cholesky factor L̃c (L̃o), increases with k columns.

Similar to the Krylov subspace presented earlier to compute global eigen-
modes and optimal disturbances, the Cholesky factors are constructed from
simulations of the forward and adjoint systems. The method is therefore
matrix-free and based on the employment of a time stepper. The SVD prob-
lem (15) can then be approximated as

L̃
∗

oL̃c = ŨΣ̃Ṽ
∗

with Σ̃ containing the approximate HSV. The SVD is of the size kr × kp
and is small when the number of snapshots m times the number inputs p
or outputs r is significantly smaller than the number of states n. If either
the number of inputs or the number of outputs is large the output projection
method of Rowley (2005) can be employed. The approximate bi-orthogonal
balanced modes and the reduced order model are then computed from the
expressions (16) and (12). Note that the reduced-order model, G̃m, computed
using the low-rank Cholesky factors is not guaranteed to be stable.

3.5. Results

3.5.1. Performance of reduced-order model

Figure 8 shows the spectrum (HSV) and two eigenfunctions (balanced modes)
computed by the snapshot method. The first balanced mode and its associated
adjoint mode are shown in figures 8(b, c). The singular values come in pairs (Ilak
& Rowley 2008; Ahuja et al. 2007; Bagheri et al. 2009a) and therefore the
second and fourth balanced mode look like the first and third mode respectively,
but shifted in the streamwise direction. We observe that the leading balanced
mode (figure 8b) appears as a wavepacket located at the downstream end of
the domain, whereas the adjoint balanced mode (figure 8c) is an upstream
tilted structure located at the upstream end of the domain. The adjoint modes
are similar to the linear optimal disturbances shown in figure 6(a) and the
balanced modes are similar to global eigenmodes shown in figure 3(b). The
adjoint balanced modes thus account for the output sensitivity and the direct
balanced modes for the most energetic structures.

The projection of the full Navier–Stokes equations on the balanced modes
results in the reduced-order model Gm given by equation (12). The model re-
duction error (17) is shown in figure 9(a) together with the theoretical bounds
given by the Hankel singular values. The infinity norm of the transfer function
equals the peak value of the frequency response. Estimating the model reduc-
tion error amounts to the calculation of the difference of the peak values of
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Figure 9. (a) The error at capturing the peak frequency
is shown with circle. The upper and lower theoretical bounds
are depicted with black lines. (b) The largest singular values
σ of the transfer function |G(iω)| from all input to all outputs
computed using the time-stepper is shown with squares. The
largest response is for ω = 0.051 with a peak value of 4 ×
104. The frequency response of the reduced model with rank
2 (dash-dotted), 40 (dashed) and 70 (solid).

the reduced-order and the Navier–Stokes system. We observe the error norm
remains approximately withing the bounds given by the Hankel singular values
for the first 50 modes. Higher modes become increasingly ill-conditioned and,
as a consequence, the numerical round-off errors increase, the bi-orthogonality
condition is gradually lost and the reduced system is no longer balanced. How-
ever, the singular values shown in figure 8(a) decrease rapidly, indicating that
the I/O behavior of the chosen setup can be captured by a low-dimensional
model.

To investigate this further, the amplitudes of the transfer functions with
s = iω, i.e. the frequency response, are displayed in figure 9(b) for reduced-
order models of order m = 2, 40 and 70 and for the full DNS model of order
105. All frequencies in the interval [0, 0.13] are amplified and the most dan-
gerous frequency, i.e. the peak response, is approximately ω = 0.051. From
figure 9(b) we observe that the reduced-order model of order 2 captures the
most important aspect of the input-output behavior, which is the response of
the most dangerous frequency. The model with 40 modes is able to estimate the
gains of all the amplified frequencies, but fails to capture the damped low and
high frequencies. Adding 30 additional modes results in a model that preserves
the input-output behavior correctly for nearly all frequencies.

Finally, the impulse responses from all inputs to all outputs of the reduced-
order model (12) are compared to the full Navier–Stokes system (9). In fig-
ure (10) three signalsB1 → C1, B1 → C2 and B2 → C1 are shown with black
lines. The response of C2 to forcing in B2 is zero, since disturbances traveling
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Figure 10. The impulse response from B1 → C2 (a), B2 →
C1 (b) andB1 → C1 (c). The black solid line represents direct
numerical simulations with 105 degrees of freedom and the red
dashed line the balanced reduced-model with 70 degrees of
freedom.

upstream are quickly damped. These impulse responses were obtained by using
the time-stepper with ∼ 105 degrees of freedom. The impulse responses of the
reduced-order model (12) with m = 70 given by y(t) = Cme

AmtBm are shown
with red lines. We observe that reduced-model registers the same signal as
the full model from all inputs to all outputs. The wavepacket triggered by the
impulse of B1 reaches the first sensor C2 after 500 time units and the second
sensor C1 after 1500 time units. The wavepacket triggered from the actuator
B2 reaches the second sensor after 600 time units.

3.5.2. Performance of controller

In this section a reduced-order feedback controller, with the same dimension as
the reduced-order model (m = 70) of the previous section, is developed. The
closed-loop behavior of the system and the objective function will be investi-
gated and compared to the uncontrolled case for the flat-plate boundary layer
flow. In particular, the output z of the closed-loop (i.e. the controller 11 Gc

connected to the full Navier–Stokes model 5 G) is compared to the linearized
Navier–Stokes equations without control when the system is forced with sto-
chastic excitation or initiated with an optimal disturbance.

Three controllers are investigated; (i) inexpensive control and low noise
contamination with control penalty l = 1 and noise parameter α = 102, (ii)
expensive control and high noise contamination with l = 102 and α = 107 and
(iii) an intermediate case with l = 10 and α = 105.

The performance of the inexpensive controller in case (i) for the control of
the optimal initial condition discussed in section 2 is examined first. This is
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Figure 11. Control of the wavepacket due to the worst case
initial condition. (a) Solid black line shows uncontrolled en-
ergy evolution (as in figure 5b) and dashed black line shows the
energy for the cheap controller. (b) Output signal as measured
by the sensor C2 driving the controller. (c) Control signal fed
into the wall actuator. (d) Signals from the sensor C1 measur-
ing the objective function. Solid black line shows uncontrolled
case whereas dashed black line shows the controlled case.

interesting, because the controller is not designed specifically for this configu-
ration and it only has a limited window in time to counteract the disturbances
that are propagating through the domain in the form of a localized wavepacket.
In figure 11(a) the full domain kinetic energy as a function of time is shown
as a solid black line for the uncontrolled evolution and as a dashed line for
the controlled case. The effect of the controller is evident. The measurement
signal detected by the sensor C2 is shown in figure 11(b) revealing that the
sensor picks up the front of the wavepacket arriving at t ≈ 350. A time lag
of ≈ 300 consistent with the speed of the propagating wavepacket (0.3U∞) is
observed until the controller starts acting on the information (see figure 11c).
The downstream measurement (i.e. the objective function to be minimized) is
shown in figure 11(d) as a black solid line for the uncontrolled case and as a
dashed black line for the controlled case. It can be seen that also this measure
shows a satisfactory performance of the controller.

The three different controllers are tested on a flow case which is forced
by the upstream disturbance input B1 with a random time signal. The wall-
normal maximum of the rms-values of the streamwise velocity component in
cases with and without control are shown in figure 12. The rms-value grows
exponentially downstream in the uncontrolled case until the fringe region at
x1 = 800. The rms of the controlled perturbation grows only until it reaches
the actuator position where it immediately begins to decay. At the location
of the objective function C1 (x1 = 750), the amplitude of the perturbations is
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Figure 12. The rms-values of the uncontrolled system (thick
solid line), cheap controller (solid black), intermediate con-
troller (dashed-dotted line) and expensive controller (dashed
line).

one order of magnitude smaller than in the uncontrolled case for the cheapest
controller.

The rms values in the case of the expensive (case ii) and intermediate con-
trol (case iii) are shown with dashed and dashed-dotted lines respectively. The
expensive control is very conservative as the measurement signals are highly
corrupted and the control effort limited; it results only in a small damping
of the disturbances. The intermediate controller (case iii) is more cautious in
reducing the perturbation energy just downstream of the actuator when com-
pared to the cheap controller. It is interesting to note, however, that at the
location where the objective function is measured, the disturbance amplitude
has decreased nearly as much as with the cheap controller, although the total
perturbation energy is larger over the entire domain.

4. Conclusions

Two prerequisites for successful control design are stability analysis and model
reduction. The former provides a sound understanding of the instabilities, sen-
sitivities and growth mechanisms in the flow, whereas the latter provides a
simple and small model that is able to capture the essential dynamics. This
preparatory work for control design amounts to solving various large eigen-
value problems as listed in table 1. The short-time and asymptotic behavior
of disturbances can be completely characterized by the solution of two large
eigenvalue problems involving the evolution operator of the linearized Navier–
Stokes equations T . The global spectrum of T , determines the asymptotic
growth/decay, dominant temporal frequencies and the dominant spatial loca-
tion of instabilities. The global spectrum of T ∗T , determines the short-time
growth/decay of disturbances and the spatial structure of the most dangerous
disturbances.
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Modes EVP Method

Global modes T = UΣU−1 Arnoldi
Optimal disturbances T ∗T = UΣU∗ Arnoldi
Balanced modes PQ = UΣU−1 Snapshot

Table 1. An overview of the eigenvalue problems (EVP) dis-
cussed in this paper.

This knowledge is indispensable for actuator and sensor placements. Sen-
sors are placed where the flow energy is large, whereas actuators are placed
where the flow sensitivity is large in order to minimize the input effort. Be-
cause, the relation between a few inputs and outputs has much simpler dynam-
ics than the instability a reduced-order model can be constructed by solving
a third eigenvalue problem involving the inputs, outputs and the evolution
operator. This results in the balanced modes. The computation of the three
sets, global eigenmodes, optimal disturbances and balanced modes is performed
only with a time stepper and without storing large matrices. When the entire
flow dynamics is of interest the high dimensions of the state require iterative
techniques. When the I/O behavior is of interest, on the other hand, compu-
tational tractability depends on the number of inputs and outputs. Therefore
the snapshot method can be employed in the case of few inputs and outputs.

The results of this paper also enhance our previous work Bagheri et al.
(2009a) by incorporating actuation and sensing at the wall. The next step
towards applying the controller in experiments, is to design a similar control
strategy for three-dimensional disturbances in the Blasius flow. Rows of lo-
calized actuators and sensors at the wall in the spanwise direction and more
realistic disturbance environments, such as free-stream turbulence will be mod-
eled.

The authors would like to thank Antonios Monokrousos for assisting in the
implementations and Onofrio Semeraro for his comments on the manuscript.
The financial support from the Swedish Research Council (VR) is greatfully
acknowledged

Appendix A. Inputs and outputs

The expression of inputs B1,uw and outputs C1 and C2 are given in this
section. For clarity, we denote the streamwise coordinate with x and the wall-
normal component with y. The input B1 is modelled by Gaussian type of
volume forcing
[

σw,xγw,y

−σw,yγw,x

]

exp(−γ2
w,x − γ2

w,y), γw,x =
x− xw

σw,x
, γw,y =

y − yw

σw,y
,

with (σw,x = 4, σw,y = 0.25) determining the width and height of the function
of the function centered around (xw = 35, yw = 1). The actuator is in this case
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a localized zero mass-flux actuation on the wall-normal velocity, uw = (0, vw)T

at the lower wall given by

vw(x) =

(

1 −
(
x− xu

σu,x

)2
)

exp

(

− (x− xu)2

2σ2
u,x

)

,

with the width σu,x = 2.5 and centered at xu = 400. Finally, both mea-
surements extract approximately the wall normal derivative of the streamwise
velocity component (wall shear stress) in limited regions at the wall

∫

Ω

(
γs,xγs,yDy 0

)
(
u
v

)

dΩ, (18)

where

γs,x = exp

(

− (x− xs)
2

σ2
s,x

)

, γs,y =
1

σs,y
exp

(

− y2

σ2
s,y

)

,

with xe = 300 for the output C2 and xe = 750 for C1. The width of the regions
are determined by σs,x = 5 for both sensors. The operator Dy denotes the y-
derivative. The y-dependent weighting relies on a width parameter σs,y = 0.05.
Note that in the limit σs,y → 0 the function approaches the delta function so
that (18) defines the exact wall wall shear stress at the wall. The reason for
using an approximation to the wall shear stress is the need for an adjoint sensor
C∗ (see Section 3.3), which is derived with the respect to the signal to state
inner product (Bagheri et al. 2009a)

(r,Cu)s = (C∗r,u)Ω.

These inner products are defined as

(r, s)s = sT r and, (p,q)Ω =

∫

Ω

pT q dΩ

for the scalars s and k, and the states q and p. The adjoint sensor obtained
from this definition is in other words

(r,Cu)s =

∫

Ω

rT
(
γs,xγs,yDy 0

)
u dΩ =

=

∫

Ω

rT
(
2yγs,xγs,y/σ

2
s,y 0

)
u dΩ = (C∗r,u)Ω̂,

where we have used integration by parts and the boundary conditions in y.
This leads to the recognition of the adjoint sensor in the definition of the
observability Gramian (14) as

C∗ =

(
2yγs,xγs,y/σ

2
s,y

0

)

.
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Appendix B. The lifting procedure

In the same manner as Högberg et al. (2003a), the solution u is split into a
homogeneous part uh and a particular part up, so that u = uh + up. The
particular solution fulfils the boundary conditions

u̇p = Aup, up(t) = (0, vw)Tϕ(t), at x2 = 0 (19)

and the homogeneous part satisfies homogeneous boundary conditions. In prin-
ciple, we can seek any solution up of the above system, but one suitable choice
is to use the steady state Aup = 0. This is obtained by marching the DNS in
time subject to steady (ϕ = 1) wall blowing vw until a stationary state u̇p = 0
is obtained. In the following we denote this solution Z. The inhomogeneous
boundary condition is satisfied by this solution, enabling us to write the par-
ticular solution for all times as up = Zϕ(t), implying that the total field is
given by u = uh +Zϕ(t). Again expressing the equation for u in terms of the
homogeneous and particular solution we get

u̇h = Auh +AZϕ−Zϕ̇ = Auh +B2ϕ̇.

Here we have used that AZ = 0. Further we have defined the input operator
B2 = −Z for the homogeneous system. The evolution of state and ϕ can be
written as an augmented system for û = (uh, ϕ)T as

˙̂u = Âû + B̂2φ (20)

with,

Â =

(
A 0
0 0

)

, B̂2 =

(
B2

1

)

, φ = ϕ̇.

Note that in the lifted system (20) the control signal is given by time derivative
of the boundary control signal, φ = ϕ̇. Similarly the input operator B1 is

extended to B̂1 = (B1, 0)T and the outputs are augmented to Ĉ1 = (C1,C1Z)

and Ĉ2 = (C2,C2Z).
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Feedback control of three-dimensional

Tollmien–Schlichting wavepackets using

reduced-order models

Onofrio Semeraro, Shervin Bagheri, Luca Brandt and Dan S.
Henningson

Internal report.

Using low-dimensional feedback control, the energy growth of three-dimensional
Tollmien-Schlichting wavepackets in a transitional boundary-layer flow is re-
duced by an order of magnitude. In the homogeneous spanwise direction of
the flat plate, an array of localized sensors, followed by an array of actuators
further downstream are distributed near the rigid wall. The objective is to
use the actuators-sensors system to minimize the perturbation energy in a spa-
tial domain in the boundary layer. This domain is spanned by a number of
proper orthogonal decomposition (POD) modes. Using approximate balanced
truncation method, it is shown that reduced-order models are able to capture
the dynamics between the inputs (disturbance and actuators) and the outputs
(sensors and POD modes). Control theoretical issues such as controllability,
observability, centralized versus de-centralized control design are addressed.
Moreover, the dependence of the control performance on the number of actua-
tors and sensors is investigated.

1. Introduction

In recent years, one branch in flow control has progressed toward more system-
atic configurations by incorporating systems and control theoretical tools, such
as controllability, observability, centralized versus de-centralized control, ro-
bustness and optimality. So far, most flow control studies using control theory
have been based on simple models (Lauga & Bewley 2003, 2004; Cohen et al.
2005; Bagheri et al. 2009c), direct numerical simulations (DNS) of canonical
flows (Joshi et al. 1997; Bewley & Liu 1998; Högberg & Henningson 2002;
Högberg et al. 2003) or of a more theoretical nature (Bewley et al. 2000). On
the other hand, the majority of experimental flow control studies have used
control laws based on intuition and physical insight. The efforts have mainly
been devoted to the development of devices, such as synthetic jets (Smith &
Glezer 1998), electro-magnetic actuators (Pang & Choi 2004), plasma actua-
tors (Grundmann & Tropea 2008) or various MEMS actuators (Ho & Tai 1998)
constructed using micro-machining techniques. Both the numerical/theoretical
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approach using control theory and the experimental approach based on open-
loop techniques (i.e. no sensing) or simple feedback control laws, have been
successful for skin-friction reduction (see e.g. Choi et al. 1994; Jacobson &
Reynolds 1998), flow mixing enhancement and separation control. Neverthe-
less, the two fields are gradually merging and the long-term aim of this research
project is to develop reliable controllers numerically that are possible to use
in laboratory experiments. Another way that numerical investigations can be
useful for wind-tunnel experiments, is by providing guidelines for the shape
and spatial distribution of actuators and sensors. In this sense, one can set-up
experiments after evaluating a large number of numerical simulations, in order
to understand how to design and place actuators and sensors. The numeri-
cal study presented here, takes us one step closer to incorporating theoretical
tools into the practical (experimental) flow control community. The present
study is based on a fully three-dimensional configuration that resembles actual
experimental setups, with a set of localized actuators and sensors distributed
near the wall. We show that an order-of-magnitude reduction of perturbation
energy can be obtained using actuation and sensing, locally, in a very limited
region in the boundary layer (in contrast to distributed control). Such a dras-
tic energy reduction is likely to result in a delay of the initial stages of the
laminar-turbulent transition process. We have focused on the flat-plate ge-
ometry which still poses a computational challenge, however, the flow control
techniques presented in this paper can in principle be applied to any geometry.
The approach is based on approximating the complex high-dimensional system
that arise from discretization of the Navier-Stokes equations with a low-order
system that preserves the dynamics between the actuators and sensors. Model
reduction based on balancing techniques (Moore 1981; Rowley 2005), is there-
fore an important step in the control design process. A similar analysis on more
complex flows, such as flows in ducts, corners, diffusers and on elliptic leading
edges are waiting to be undertaken.

This paper is organized as follows. In section 2, the control problem is
formulated with a description of the disturbance, actuators, sensors and objec-
tive functions. Section 3 provides a brief introduction to the balanced trunca-
tion method for model reduction, followed by a characterization of the leading
balanced modes and the validation of the reduced-order model of the Navier–
Stokes system. Section 4 contains the main results of the paper, where the
performance of 7 different configurations of sensors-actuators are evaluated.
The steps taken to design a reduced-order optimal controller are also outlined.
The paper finalizes with conclusions in section 5.

2. Configuration

2.1. Governing equations and flow parameters

Using numerical simulations, the dynamics and control of small-amplitude
perturbations in a viscous, incompressible flow over a flat plate are consid-
ered. The three-dimensional input-output configuration, shown in figure 1, is
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an extension of the two-dimensional case studied in Bagheri et al. (2009a,b).
The disturbance velocity field is governed by the Navier–Stokes equations lin-
earized around a spatially evolving zero-pressure-gradient boundary layer flow
U(x, t) = (U(x, y), V (x, y), 0)T :

∂u

∂t
= − (U · ∇)u− (u · ∇)U −∇π +Re−1∇2u + λf (x)u (1a)

0 = ∇ · u (1b)

u = u0 at t = 0. (1c)

The disturbance velocity field and the pressure field are u(x, t) = (u, v, w)T

and π(x, t), respectively. The flow evolves in the spatial domain Ω defined by,

Ω = {x ∈ R
3|x ∈ [0, Lx], y ∈ [0, Ly], z ∈ [−Lz/2, Lz/2]},

where the streamwise, the spanwise and the wall-normal directions are denoted
by x,z and y, respectively. The Reynolds number is defined as Re = U∞δ

∗
0/ν,

where δ∗0 is the displacement thickness at the inflow position, U∞ is the uniform
freestream velocity and ν is the kinematic viscosity.

The following boundary conditions are imposed in Ω,

u(0, y,−Lz/2) = u(x, y, Lz/2) (2a)

u(0, y, z) = u(Lx, y, z) (2b)

u(x, 0, z) = u(x, Ly, z) = 0. (2c)

A no-slip condition is imposed on the flat plate (y = 0). Far away from the wall
(y = Ly), in the freestream, the perturbation velocity is nearly zero, where a
homogeneous Dirichlet boundary condition is enforced. Periodicity of the solu-
tion is assumed in the spanwise direction, whereas in the streamwise direction,
an outflow boundary condition is imposed within the Fourier approximation
by the term λf (x)u in equation (1a). This forcing is identically zero inside
the physically relevant domain (x ∈ [0, 800]) and raises to order one inside
the fringe region, starting at x=800, where it forces the perturbations to zero
(Nordström et al. 1999).

The results presented in this paper are computed with a pseudo-spectral
code (Chevalier et al. 2007). The computational domain Ω has the dimensions
(Lx, Ly, Lz) = (1000, 30, 120π) and a resolution of 768×101×120 in respective
direction. The spatial discretization requires thus n ≈ 107 degrees of freedom.
All the simulations were performed at Re = 1000, corresponding to Rex ≈
3 × 105 at the computational inlet.

The discretized and linearized Navier–Stokes equations (1) with the bound-
ary conditions (2) can be written as an initial-value problem

u̇(t) = Au(t) u(0) = u0, (3)

where u ∈ U ⊂ Rn is the state variable in the state space U endowed with
the inner product 〈·, ·〉Ω. In the following, the subscript Ω is omitted. For the
flat-plate boundary layer, the flow is globally stable (Åkervik et al. 2008) – but
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convectively unstable – resulting in a stable matrix A, i.e. all the eigenvalues
of A have negative real part.

The action of A ∈ Rn×n on u corresponds to evaluating the right-hand
side of the linearized Navier–Stokes equations and enforcing the boundary con-
ditions. Associated with this operator is the evolution operator T, that can be
defined as

u(t) = T(t)u(0) = exp(At)u0. (4)

Given an initial flow field u0, T provides the velocity field at a later time t; the
action of the operator amounts to integrating the governing equations forward
in time. In a similar way, the adjoint evolution operator T∗ provides solution
of the adjoint linearized Navier–Stokes equations at different instances in time.
Applying this operator corresponds to integrating the adjoint state backward in
time. The adjoint equations are given in Appendix B; a detailed derivation of
the operators for the corresponding two-dimensional case is provided in Bagheri
et al. (2009b).

2.2. Input-output system

The input-output configuration is schematically depicted in figure 1. The aim
of the present study is to reduce the energy growth of perturbations in the
boundary layer using a small number of localized actuators/sensors distributed
near the wall. If the amplitude of the disturbances located upstream in the
boundary layer is small, the initial phase of the laminar-turbulent transition
process is a linear amplification (Schmid & Henningson 2001; Kim & Bew-
ley 2007). We can, therefore, apply linear feedback control schemes to delay
the transition process. More specifically, based on the measurement signals
extracted from the sensors, a control law provides the actuators with control
signals such that the perturbation energy in the downstream part of the domain
is minimized.

To design feedback control schemes, it is convenient to introduce inputs and
output and arrange them in a specific manner (Doyle et al. 1989). Formally,
the linear state-space system is defined as

u̇(t) = Au(t) + B1w(t) + B2u(t) (5a)

z(t) = C1u(t) + lu(t) (5b)

v(t) = C2u(t) + αg(t). (5c)

The first input B1 ∈ Rn, located far upstream, models the perturbation,
whereas the second input B2 ∈ Rn×m represents m actuators. The time depen-
dence of the inputs is given by the signals w ∈ R and u ∈ Rm respectively. The
measurement signals, contained in the vectors v ∈ R

p and z ∈ R
k, provide in-

formation about the perturbation and are extracted by the sensors C2 ∈ Rp×n

and C1 ∈ Rk×n, respectively. In the following, the m + 1 inputs and p + k
outputs are explained in detail.
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Figure 1. A scheme of the input-output configuration. The
computational domain Ω extends from x = 0 to x = 1000
and from z = −60π to z = 60π. The fringe region starts
at x = 800. The first input B1 is located at (30, 1, 0) and
represents an optimal initial condition that triggers a TS
wavepacket. The control action is provided by the second in-
put, B2, constituted by a row of actuators located at x = 400.
The output C2 at x = 300 contains an array of sensors used
for flow estimation. A centralized controller is designed, where
all the sensors are connected to all the actuators. Finally, the
effects of the controller are quantified by the output C1 located
far downstream. This region is spanned by 10 POD modes.

2.2.1. B1 – Optimal disturbance

The upstream disturbance B1 is a localized initial condition that provides the
maximum energy growth for a final time t = 1820 (this is roughly the time
when the largest possible amplification is obtained). As shown by Monokrousos
et al. (2009), the initial condition triggers a three-dimensional wavepacket of
Tollmien-Schlichting waves. The streamwise component of B1 is tilted in the
upstream direction, leaning against the shear layer. The evolving disturbance
extracts energy due to the so-called Orr-mechanism (see e.g. Butler & Farrell
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Figure 2. Impulse response to an optimal initial disturbance
in B1 at t = 400, 1008, 1600. The disturbances is represented
by the iso-surfaces of the streamwise component, where the
red and blue colours represent positive and negative velocities,
respectively.

1992; Åkervik et al. 2008) from the mean flow while the structure is rotated un-
til it is aligned with the shear. Figure 2 shows “snapshots” of the u-component
of the disturbance velocity at three instances in time. As the disturbance prop-
agates downstream, the wavepacket grows in size and spreads in the spanwise
direction. The evolution of the disturbance energy, defined as,

E = 〈u,u〉 (6)

is shown in figure 8 (solid line). We observe an exponential growth of the
energy and an amplification E(tmax)/E(0) = 2 × 103.

2.2.2. B2 and C2 – Actuators and sensors

Each of the m actuators in B2 is represented by a localized volume forcing
that is able to modify the flow in a region close to the wall. The actuators
are placed in a row in the spanwise direction (see figure 1), approximately half
way in the downstream direction. Also the p sensors represented by C2 are
composed by a row of localized elements, but located a short distance upstream
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Case actuators sensors control penalty energy reduction system norm
m p l E/Enc ‖G‖2

2

0 - - - 1.00 324.25
A 9 9 100 0.070 1.42
B 9 9 250 0.064 13.23
C 9 9 500 0.12 55.27
D 3 3 100 0.55 6.91
E 5 5 100 0.13 2.25
F 7 7 100 0.071 1.28
G 9 5 100 0.068 1.56

Table 1. Case A-G correspond to 7 closed-loop systems,
whereas case ’0’ is an uncontrolled configuration. The num-
ber of actuators B2 (m), the number of sensors C2 (p) and
the control penalty (l) varies for the different configurations.
The measurement noise is α = 0.01 for all set-ups. The peak
perturbation energy of the controlled cases as a fraction of
the uncontrolled peak disturbance energy together with the
2-norm of the input-output systems are also displayed.

of the actuators. All elements in B2 and C2 are analytically expressed by a
Gaussian function given in Appendix A. The performance of the feedback
control schemes is highly dependent on number of elements used, their shape
and size and the spanwise spacing between the elements. In table 1, 7 different
configurations (labeled A to G) that are considered in this paper, are listed. In
all cases, each element is placed equidistantly in the spanwise direction, with
∆z = 20. The relative position of the arrays in the streamwise direction is fixed
and it is based on the knowledge of the boundary-layer.

The measurement signal v(t) is the spatial integral of the velocity field u

weighted with a Gaussian function (see equation 24). To model measurement
noise corrupting the sensors signals, the output equation (5b) is forced with
unit-variance white noise g(t). A large value of the scalar α introduces high level
of noise corruption on the measurement v(t), whereas a small value indicates a
high fidelity of the information extracted by the sensors C2.

2.2.3. C1 – Objective function

The overall goal is to reduce the perturbation growth in order to delay the
initial phase of the laminar-turbulent transition process. However, it is not
always necessary to minimize the kinetic energy in the entire flow domain; for
example outside the boundary layer, in the freestream, there perturbation am-
plitude is very small. Moreover, a consequence of the convective nature of the
instabilities arising in the Blasius flow (where disturbances grow in amplitude
as they are convected in the downstream direction) is that the disturbance
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Figure 3. The streamwise velocity component of the first
(C1,1) and third (C1,3), POD mode is shown in left and right
frame respectively.

energy is significantly larger in the downstream end of the domain than the
upstream part. The control objective can therefore be localized to a spatial
region downstream as sketched in figure 1.

In particular, the aim is to determine a control signal u(t), from processing
of the noisy measurements v(t), so that the perturbation energy of the flow
is minimized in the downstream region defined by C1. Moreover, the energy
expended by the actuator has to be limited in order to design an efficient
controller. Hence, the criterion to be minimized is expressed by the objective
functional

‖z‖2
L2(0,T ) =

∫ T

0

‖C1u‖2
Ω + l2|u|2dt. (7)

The scalar parameter l allows to penalize the controller effort; small values of
l limit the energy demand of the actuation and indicate a cheap controller.

The subspace of the domain where the controller minimizes the energy is
spanned by a basis {C1,1, . . . ,C1,k}, which in the present case is a sequence of
proper orthogonal decomposition (POD) modes (see e.g. Holmes et al. 1996),
obtained from the impulse response of the initial disturbance. This approach is
similar to the so-called “output projection” technique used by Rowley (2005)
and Ilak & Rowley (2008). The POD basis is empirical, i.e. it accurately
represents the data used for generating it. An alternative choice for C1 is
used in Semeraro et al. (2010), where a set of Fourier modes localized in the
streamwise and wall-normal directions were employed to define the basis.

The POD modes are the most energetic structures triggered by the inputs
in the flow field; the corresponding eigenvalues {γ1 ≥ γ2 ≥ · · · ≥ γk} represent a
fraction of the total flow energy, computed as γi/

∑
γk. The POD modes come

in pairs (see e.g Rempfer & Fasel 1994), because two real-valued functions are
required to describe a traveling flow structure; each pair exhibits the same
structure, only shifted in the streamwise direction. The first k = 10 POD
modes capture 93% of the total flow energy and are used as a basis for C1. In
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figure 3, one POD mode of the first two pairs is shown: the structure is mostly
located downstream, indicating where the energy response to the forcing is
the largest. The different streamwise modulation of the modes is necessary to
reproduce the structure of a wave-packet.

3. Model Reduction

As mentioned in the introduction, model reduction provides a way to access
control theoretical tools despite the difficulties that arise from discretization
of the Navier–Stokes equations. In this section, the Navier–Stokes system is
approximated with a low-dimensional system, using an approximation of the
balanced truncation method (Moore 1981). Using this approach, the reduced-
order model is able to capture the relation between the input and output signals.

3.1. Projection-based model reduction

A reduced-order model of the input-output system (5) can be obtained via
a projection onto a low-dimensional subspace, spanned by r basis functions,
Φ = (φ1,φ2, . . . ,φr) ∈ Rn×r. The disturbance field u can be approximated by

ũ =

r∑

j=1

qjφj = Φq (8)

where q = (q1, q2, . . . , qr)
T ∈ Rr are the scalar expansion coefficients. The

coefficients can be computed from

qj = 〈u,ψj〉, or q = Ψ∗u

where Ψ = (ψ1,ψ2, . . . ,ψr) ∈ Rn×r are set of functions (called the adjoint
modes) that are bi-orthogonal to expansion basis Φ, i.e. Ψ∗Φ = I, where
I ∈ Rr×r is the identity matrix. The superscript ∗ represents the inner-product
〈·, ·〉Ω between the components of the vectors.

The approximation (8) can be inserted in the input-output system (5) and
taking the inner-product with the adjoint modes results in the reduced-order
model:

q̇(t) = Arq(t) + Br,1w(t) + Br,2u(t) (9a)

z(t) = Cr,1q(t) + lu(t) (9b)

v(t) = Cr,2q(t) + αg(t). (9c)

where Ar = Ψ∗AΦ, Br,1 = Ψ∗B1, Br,2 = Ψ∗B2, Cr,1 = C1Φ and Cr,2 =
C2Φ.

3.2. Balanced modes

A projection basis that is suitable for capturing the input-output behavior of
a linear system is a sequence of balanced modes. The modes are defined as
eigenvectors of the product of the observability Q and controllability Gramian
P,

(PQ)Φ = ΦΣ2, (10)
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where the eigenvalues are contained in the diagonal matrix Σ2 =diag{σ2
1, . . . , σ

2
r}.

The scalars σ1 ≥ σ2 ≥ . . . σr are called the Hankel singular values (HSV). The
set of functions in Φ is not mutually orthogonal, and we define the set of left
eigenvectors of PQ as the adjoint balanced modes and denoted them by Ψ.
The Gramians are defined as

P =

∫ ∞

0

T(τ)BB∗T∗(τ)dτ (11a)

Q =

∫ ∞

0

T∗(τ)C∗CT(τ)dτ. (11b)

Each linear input-output system can be associated with a controllability and
a observability Gramian. They are useful to characterize how the state vec-
tors are influenced by the inputs and how they can be reconstructed from the
measurements, respectively.

The Gramians are positive semidefinite and therefore have positive and real
eigenvalues. The eigenvalue decomposition of P provides a way to rank the flow
states according to how much they are influenced by the input. In particular,
it can be shown (Bagheri et al. 2009c) that the eigenvectors associated with
the leading eigenvalues of P are flow structures that are the most influenced by
the inputs. These modes are called the controllable modes and can for linear
systems be regarded as POD modes (Ilak & Rowley 2008). The observability
Gramian Q allows us to rank the states according to their contribution to
the output energy. The eigenvectors related to the dominant directions of Q

correspond to the most observable states of the system. Note that both the
controllability and observability Gramians can be interpreted as solution of
optimization problems.

Using the balanced modes and the related adjoint set, it can be shown that

〈φi,Qφj〉 = 〈ψi,Pψj〉 = σiδi,j , i, j = 1, . . . , r (12)

where δi,j is the Kronecker delta. Therefore, using ψi and φi, the controllability
and observability Gramians become diagonal and equal to the HSV; hence the
controllability and observability properties are balanced. The balanced mode
φj is a global structure in the flow that is “influenced” by the input B by an
amount given by its HSV σj , whereas the corresponding adjoint mode ψj is a
flow structure that – if used as an initial condition – will result in an output
energy given also by σj . These global modes have thus ranked the flow fields
according to their response behavior (controllability) and output sensitivity
(observability).

The reduced-order system (9) obtained by projection onto balanced modes
is arguably the most widely used method for model reduction of linear input-
output systems for two reasons: (i) the reduced-order system is guaranteed to
be asymptotically stable if σj 6= σj+1 for all j and (ii) there exist tight error
bounds

σr+1 ≤ ‖G− Gr‖∞ ≤ 2

n∑

j=r+1

σj , (13)
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Figure 4. Left column: Streamwise component of the leading
balanced mode φ1 (a) and the third balanced order mode φ3

(c). Right column: corresponding adjoint modes ψ1 (b) and
ψ3 (d). Positive velocity is represented in black, while negative
one is in gray.

where G and Gr are the input-output impulse response of (5) and (9), re-
spectively. It can be shown (Green & Limebeer 1995) that P and Q satisfy
Lyapunov equations. Unfortunately, solving Lyapunov equations is unfeasible
for high-dimensional systems as the computational complexity is O(n3) and
storage requirement is O(n2).

3.3. Characterization of the leading balanced modes

The computation of the balanced modes when n ≥ 105 can be performed using
the snapshot method introduced by Rowley (2005), where empirical Gramians
are computed from numerical simulations of the forward and adjoint systems.
The main steps are outlined in the Appendix C. In what follows, for the sake
of clarity, we discuss the balanced modes obtained by considering only the first
input B1 ∈ Rn and the output C1 ∈ Rk×n. Since, k = 10, to construct the ba-
sis, 10 adjoint simulations were necessary. The snapshots from the simulations
were collected with constant time spacing, ∆t = 16, in a time-interval [0, 3000]
for the forward simulation and in [0,−2600] for the adjoint simulations.

The computed Hankel singular values σj are shown in figure 5 (open cir-
cles). Similarly to the POD modes discussed previously, the HSV come in
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Figure 5. The Hankel singular values for the complete model
(crosses) and the HSV generated from the first input B1 and
the output C1 (open circles).

pairs, such that the corresponding modes exhibit the same structure, only
shifted along the streamwise direction. The iso-contours of the streamwise
components of the first and the third balanced modes (φ1,φ3) and their re-
lated adjoint modes (ψ1,ψ3) are shown in figure 4; the structure is shown in
both the xy-plane and the xz-plane. The leading balanced modes are char-
acterized by a nearly 2-dimensional TS-wavepacket structure, located mostly
in the downstream region. These modes are related to the most controllable
flow structures, and capture the response behavior of the system to the input
B1; low energy is needed at location B1 to excite large structures downstream.
Higher order modes preserve these main characteristics, although with different
spatial wavelengths.

The associated adjoint balanced modes are mostly located far upstream
and represent flow structures to which the output C1 is more sensitive. The
spatial separation between these structures and the most controllable structures
identified by the direct balanced modes is similar to the spatial separation
observed between the direct and adjoint modes of the linearized Navier–Stokes
equations, A. This is a sign of the streamwise non-normality of A. Moreover, in
figure 4(b−d), the streamwise component in the xy-plane is shown. The spatial
distribution results in a tilted structure leaning against the shear, similarly to
the optimal initial condition discussed previously.

3.4. Reduced-order model of the full input-output system

Figure 5 shows the HSV related to the balanced modes used to compute the
reduced-order model using all the inputs (m + 1) and all the outputs (p + k)
(crosses), pertaining to Case A in table 1. It is interesting to note that the asso-
ciated HSV decay slower than the HSV computed using only B1 and C1 (open
circles). The leading singular values of the two systems are equal, indicating
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Figure 6. Impulse response of the system from the input B1

to the output C2,0, (b), from B2,0 to C1,1, (c) and from B1

to C1,1, (d). The red line shows the DNS results, while the
dotted, gray line is related to the impulse response of a reduced
model of order 60.

that the entire input-output dynamics of the system is strongly influenced by
the energy triggered by the input B1 and the observability characteristics of
the function chosen as output C1.

To validate the snapshots-based balanced truncation method, the balancing
property of the reduced model is considered by evaluating equation (12). The
diagonal elements of the Gramians associated with the reduced-order model
and the HSV were found to be the same for the first 80 modes. Due to numer-
ical discretization errors, higher order modes gradually loose bi-orthogonality,
causing the presence of off-diagonal elements in the Gramians.

To validate the reduced-order model, we compare impulse responses ob-
tained of the Navier–Stokes system (5) to impulse responses obtained from the
low-order model (9). For configuration A, there are in total 10 input signals
and 19 output signals, resulting in 190 impulse responses. We compare the
following three signals:

B1 → C2,0, B2,0 → C1,1, B1 → C1,1. (14)

The second subscript of B2 and C2 indicates the element according to figure
1. The first signal (figure 6a) is triggered by the upstream disturbance B1 and
detected by the sensor located at z = 0 (C2,0). The second and third signals
(figure 6b, c) are registered by the first POD mode (C1,1), triggered by the
center (z = 0) actuator B2 and the disturbance (B1), respectively. In all the
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figures, the impulse responses of a reduced model of order r = 60 are shown
with a dotted gray line, while the solid red line provides the DNS results. We
observe that the low-order model (r = 60) is able to preserve the input-output
behaviour of the full Navier–Stokes system (n ≈ 107), albeit the significant
model order reduction. The agreement between all the impulse responses of
the two systems are as good as the three signals shown here.

4. Feedback control

In section 2.2 it was explained how the energy of a small-amplitude three-
dimensional disturbance grows three orders of magnitude as it convected in the
downstream direction. The aim of this section, is to use the validated and bal-
anced reduced-order model to reduce the growth of the disturbance. Although,
the steps taken to design a closed-loop are the same as for two-dimensional
case studied by Bagheri et al. (2009b), due to the additional direction in the
spanwise direction, the control problem is significantly more complex. In total,
the linear system (case A in table 1) consists of 10 inputs and 19 outputs and
its complexity n is of order 10 million. Since the reduced-order model shows
essentially the same input-output behavior (but with complexity of 60), during
the control design it replaces the Navier–Stokes system. Once the feedback
controller is constructed, it can be applied on-line, in parallel to the DNS-
simulations.

4.1. Main steps of LQG design

By using control theory, we can determine what action the actuators should
take to minimize the disturbance energy in a region defined by C1 and if the
action of an actuator should depend on all sensors measurements or only the
sensor located upstream of it. In particular, the controller can be designed us-
ing the linear quadratic Gaussian (LQG) approach. Assume that the external
disturbance signal w(t) and the measurement noise g(t) in (9) are unit-variance
white noise processes. Then based on the noisy measurements v(t) extracted
from the sensors C2, the controller provides a control signal u(t) for the actu-
ators B2, such that the mean of the output energy of z is minimized, i.e.

E
{

‖z‖2
L2(0,∞)

}

= E
{∫ ∞

0

qT CT
1,rC1,rq + l2|u|2dt

}

. (15)

The first step in constructing a controller is to estimate the full state u

given only the noisy measurements v(t). After the state has been successfully
estimated, we assume, in a second step, that the control u(t) and the estimated
reduced state q̂(t) ∈ Rr satisfy a linear relation involving some yet unknown
matrix K ∈ Rm×r, i.e.

u(t) = Kq̂(t). (16)

The goal of this second step is then to find such a matrix K, which is referred to
as the control gain. One attractive feature of LQG design is that the two steps
(estimation and full-information problem) can be performed independently of



Feedback control of TS-wavepackets using reduced-order models 247

each other. Moreover, if both problems are optimal and stable the resulting
closed-loop system, composed of the two problems is also optimal and stable.
The main disadvantage of LQG is that it does not account for uncertainties
of the underlying system (A,B,C) (see Doyle 1978). One can only check the
robustness by ad-hoc testing the controller for various parameters.

For derivation of the LQG solution, please refer to e.g. Anderson & Moore
(1990); Lewis & Syrmos (1995); Bagheri et al. (2009c) for a “classical” optimal
control framework or Doyle et al. (1989); Dullerud & Paganini (1999) for a
more “modern” robust control framework. Here, we just state the solution of
the two separate problems.

To estimate the full state u(t) given only the noisy measurements v(t), an
estimator can be formulated

˙̂q(t) = Arq̂(t) + B2,ru(t) + L(v(t) − v̂(t)) (17)

that governs the reduced estimated state q̂. In the above expression, we com-
pare the measurement from the velocity field v = C2u and the measurement
from the estimated state v̂ = C2,rq̂ and feed back the mismatch in these two
quantities using the estimator gain L ∈ Rr×p. It can be shown (Kalman 1960)
that the estimation gain that minimizes the estimation error ‖q− q̂‖, where q

is reduced state given by (9) and results in a stable estimator is given by

L = −YCT
2,r,

where Y ∈ Rr×r is a solution to an algebraic Riccati equation (see e.g. Laub
1991).

In the second step, assume the full state is given by q at all times and
that u(t) = Kq(t) (instead of 16). Inserting the feedback relation into (5) and
neglecting the redundant output v, we get

q̇(t) = (Ar + B2,rK)q(t) + B1,rw(t) (18a)

z(t) = C1,rq(t) + lu(t) (18b)

It remains to choose K ∈ Rm×r such that the system is stable and the control
signal u(t) minimizes output energy, ‖z‖2. The solution is provided by a optimal
control state-feedback problem, (see e.g. Anderson & Moore 1990), where the
optimal control signal is given by

K = −BT
2,rX,

and X ∈ Rr×r is a solution of an Riccati equation.

Finally, combining the estimator (17) and the full-information controller
(18), we obtain the reduced-order controller (also called compensator or ob-
server) of size r:

˙̂q(t) = (Ar + B2,rK + LC2,r)q̂(t) − Lv(t) (19)

u(t) = Kq̂(t) (20)
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At each instant in time, given only the measurements v(t), the compensator
provides the control signal u(t) at that time. The controller thus connects mea-
surements from sensors to the actuator, that in combination with the Navier–
Stokes system (5) results in a feedback closed-loop system, denoted by Gc

hereafter.

When the external disturbances are white noise processes, the 2-norm of
the closed-loop system is a convenient measure of the input-output behavior.
The 2-norm of the closed-loop system Gc can be defined (Green & Limebeer
1995) as

‖Gc‖2
2 =

∫ ∞

0

|z|2dt = ‖z‖2 (21)

So, the 2-norm of Gc equals the control objective (7) defined earlier and can
be calculated from the signals extracted by the output C1.

4.2. Centralized vs. decentralized approach

The spatial localization of the actuators and the sensors requires a proper mul-
tivariable approach for the controller design. A simple approach is a decentral-
ized control, where each actuator is connected only with the upstream sensor;
in such a controller, each loop can be regarded as a single-input single-output
(SISO) system and an equal number of actuators and sensors is required. If
the decentralized controller is stable in each SISO loop and the inputs and
the outputs are decoupled or only weakly coupled, then the closed loop is also
stable; the analysis of the relative gain array (RGA) matrix provides a quan-
titative, a priori measurement of the degree of coupling and cross coupling
of the input-output system (see e.g. Glad & Ljung 2001). In our case, both
the RGA analysis of the reduced system and numerical tests resulted in an
unstable closed-loop system, when using a decentralized approach. A physical
explanation is that the perturbation triggered in the boundary layer by the
localized initial condition B1 (shown in figure 2) gradually spreads in the span-
wise direction while propagating. This results in a dynamic coupling in the
spanwise direction. In this work, we design a centralized controller for all cases
(A-G), i.e. all the actuators are connected with all the sensors used for estima-
tion. Using the LQG approach, a centralized controller is guaranteed to result
in a stable closed-loop system. However, in a practical implementation of the
controller in wind-tunnel experiments, this approach is more prone to errors
compared to a decentralized approach due to the complicated interconnection.

4.3. Performance of closed-loop systems (case A–G)

In this section, the performances of the closed-loop system for the different
sensor-actuator configurations listed table 1 are investigated. In the reference
case A, a full set-up is considered, where the row of actuators and the row
of estimators are constituted by 9 localized Gaussian elements, equally spaced
in the spanwise direction. Using this setup, three cases are considered with
different control penalty l: case A can be considered an inexpensive controller,
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with l = 100 (since the controller effort is relatively cheap); case B is an
intermediate case, with l = 250, whereas case C is an expensive case, with
l = 500. In configurations D-G, a reduced number of actuators and/or sensors
is used, in order to investigate the dependence of the closed-loop performance
on m and p.

The following measures of disturbance amplification are compared between
the closed-loop system and the uncontrolled Navier–Stokes system: (i) impulse
response (time signals), (ii) the system 2-norms and (iii) the perturbation en-
ergy in the full spatial domain Ω.

Whereas time-signals provide a physical and direct measure of the control
performance, it is necessary to compute the system 2-norm to obtain a total
measure of the input-output behavior. In particular, low system norms indicate
smaller amplifying behavior of the linear system. In the context of flow stability,
system norms are closely linked to transient growth of perturbation energy (see
e.g. Bewley 2001; Bagheri et al. 2009c, for more on this relation). However,
for three-dimensional disturbances, the minimization of the 2-norm may not
necessarily correspond to an actual reduction of the disturbance energy (defined
in 6). In table 1, both the 2-norm and the ratio between the energy peak and the
initial disturbance energy is tabulated for each case. We observe a significant
reduction of both measures. In the following these results are investigated
further.

4.3.1. Input-output analysis

In figure 7, a few sensor measurements and actuator signals u(t) for an impulse
in w(t) pertaining to case A are shown. In figure 1 the location of actuators
and sensors are shown schematically.

Figure 7(a) shows measurement signals used for estimation of the distur-
bance associated with the sensors C2,0 and C2,2 for an impulse in B1. The
measurement detected by C2,0 (solid line) reveals the a wavepacket structure
of the evolving disturbance. The traveling disturbance reaches the sensor lo-
cation at t ≈ 500, in agreement with the estimated velocity of the wavepacket
in a boundary layer (≈ 0.47U∞). The element C2,2 (dashed line) shows an
analogous behaviour, although a delay due to the spanwise spreading of the
wavepacket is observed; moreover the signal is characterized by a smaller am-
plitude.

Figure 7(b) shows the control signals feeding the actuators B2,0 and B2,2;
they are, respectively depicted with a solid line and a dashed line. In both the
cases a time lag of 200 time units from the estimation signals is observed. The
shift observed between the two signals is related to the the three-dimensional
structure of the incoming perturbation. As mentioned previously, the actuator
signals are computed using all the 9 sensor measurements extracted.

In figure 7(c), the output signal extracted from C1,1 (first POD mode) is
compared between the controlled case (solid line) and the uncontrolled case
(dashed-dotted line). It is clear that the amplitude of the closed-loop output



250 O. Semeraro, S. Bagheri, L. Brandt & D.S. Henningson

0 500 1000 1500 2000 2500
−2

0

2

t

0 500 1000 1500 2000 2500
−0.1

0

0.1

t

0 500 1000 1500 2000 2500
−50

0

50

t

(a)

(b)

(c)

Figure 7. Input and output signals of the closed-loop system
excited by an impulsive forcing. (a) Output signals extracted
from C2,0, located in (x, z) = (300, 0) (solid line), and C2,2,
placed in (x, z) = (300,+40) (dashed line). (b) The controller
signals fed in B2,0 and B2,2 are, respectively indicated with
a solid line and a dashed line. (c) Measurements extracted
by the first sensor C1,1 for case A (solid) and uncontrolled
(dashed-dotted line).

signal is significantly reduced. Computing the system 2-norm, the performance
can be evaluated by taking into account all the k = 10 signals extracted by
C1. As shown in table 1, for case A ‖Gc‖2

2 = 1.42; this is a reduction of about
99% of the 2-norm of uncontrolled case (‖G‖2

2 = 324). As the controller effort
is reduced, we observe higher values of ‖Gc‖2

2 (case B, ‖Gc‖2
2 = 12.23 and case

C, ‖Gc‖2
2 = 55.27).

4.3.2. Perturbation energy and disturbance evolution

Figure 8 shows the kinetic energy (in the full domain Ω) as a function of time
for the uncontrolled case (solid line) and the controlled case A (dashed-dotted
line). The energy peak for the uncontrolled case is reached at t = 1820, with
an energy amplification E(tmax)/E(0) = 2 × 103, whereas the controlled case
shows one order of magnitude smaller peak value at t ≈ 1100. By demanding
the disturbance energy to be small at C1, the disturbance amplitude has to
decrease significantly before it reaches the objective function to accomplish this
task. Therefore, minimization of disturbance energy in the region defined by
C1, results in an actual reduction of the energy in the entire domain.
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Figure 8. Disturbance energy as function of time. The solid
line represents the energy growth of the disturbance B1. Also
shown are the closed-loop configurations for three different
control penalties: a cheap case (− ◦ −), an intermediate case
(− ⋄ −) and an expensive case (−△−).

The streamwise velocity component of the disturbance field at t = 1000,
1200 ,1750 for case A (left column) and the uncontrolled case (right column)
are shown in figure 9. The iso-contours display the flow field in the xz-plane
at y = 2. At t = 1000, the perturbation is convected pass the location x = 400
where the array of actuators are placed; the original structure is distorted into
a more complicated three-dimensional pattern, where traces of localized actua-
tors are recognizable. At t = 1250, the perturbation appears to be mostly con-
centrated in the center (z ≈ 0) of the domain, whereas the spanwise extension
of the structures is significantly reduced. The original nearly two-dimensional
structure breaks down into a fully three-dimensional structure. Finally, at
t = 1750, a significant damping of the amplitude results in contour levels
that are barely visible for case A, while the perturbation for the uncontrolled
case attains its maximum energy. It is interesting to note that similar results
were obtained by Sturzebecher & Nitsche (2003). These authors performed
an experiment based on an adaptative controller designed to attenuate the TS
instabilities; also in this case, the disruption of the original two-dimensional
structure resulted in a reduction of the disturbance level.

Figure 8 shows the performance of the full set-up controller for different
choices of the penalty l (cases A, B and C). It is interesting to point out that
for an intermediate value (l = 250, case B) the perturbation is characterized
by a peak energy value close to the corresponding configuration with a cheap
controller effort, although the norm ‖Gc‖2

2 is higher. Case C (expensive con-
troller) is the only configuration where the perturbation energy does not decay
monotonically downstream of the actuators.
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Figure 9. Impulse response to an optimal disturbance at t =
1000, 1250, 1750 without control (left column) and with control
(right column). The iso-contours of the streamwise component
are shown in the xz-plane at y = 2.

4.3.3. Influence of the number of sensors and actuators

The norm ‖Gc‖2
2 and the energy amplification for cases D-F are reported in

table 1. It can be concluded that controllers with a lower number of actuators
than case A (m = 9) are still able to reduce the norm ‖Gc‖2

2 significantly,
whereas the perturbation energy amplification shows a somewhat less efficient
growth reduction.

Figure 10(a) shows the energy behaviour for cases D-F in addition to the
reference case A and the uncontrolled case. A gradual improvement of the per-
formances is observed when the number of actuators is increased. In particular,
case D (m = 3, p = 3) shows an initial overshoot of the energy in the interval
t ∈ [1000, 1200], when the controller begins to act. Also, the spatial evolution
of the perturbation is similar to the uncontrolled case. However, increasing
the number of actuators, the row of actuators is able to cover a wider region
in the spanwise direction and a considerable reduction of the energy growth is
observed.

Figure 10(b) shows the influence of the number of sensors (case E and G).
The energy curve for case A (m = 9), obtained with nine estimators, is hardly
distinguishable from the curve obtained with the controller designed for case
G, based only on five estimators. On the other hand, as previously discussed,
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Figure 10. Kinetic energy as function of time. In (a) and (b),
the solid line shows the energy of B1. In (a) case D (−⋆−), E
(−+−), F (− ⋄−) and A (− ◦−) are characterized by 3, 5, 7
and 9 actuators respectively. In (b) the curves correspond to
case E (− + −), G (− × −) and A (− ◦ −) with 5, 5 and 9
sensors, respectively.

a lower number of actuators (case E) decreases significantly the performances
of the controller.

5. Conclusions

We have built a model of low dimension (r = 60) that captures the input-output
behavior of the flat-plate boundary layer, and used this model for optimal feed-
back control design. We have shown that by using systematic methods from
control theory in combination with localized sensing/actuation, it is possible
to reduce the growth of small-amplitude disturbances in the boundary layer.
In particular, using 9 sensors for estimation and 9 actuators, it was demon-
strated that the energy of three-dimensional Tollmien-Schlichting wavepacket
is damped by an order of magnitude. The control performance was investi-
gated when reducing the number of sensors and actuators in the configuration.
It was found that, a lower number of actuators (case E) decreases significantly
the performances of the controller, whereas a reduced number of sensors has
a smaller impact on the performance. The results suggest that for an effec-
tive implementation of feedback control of a three-dimensional wavepacket in
a boundary layer, the actuation step may be more crucial than the sensing and
estimation of the incoming disturbances.

Although the significance of the order-of-magnitude reduction of perturba-
tion energy for transition control remains to be tested, such a drastic energy
reduction is likely to result in a delay of the initial stages of the transition
process. If the actuators and sensors represent realistic models of physically
implementable devices, it is possible to use the low-dimensional controller de-
signed numerically in laboratory experiments. The fact that we have modeled
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the inputs and outputs as volume forcing does not mean that they are un-
realistic. It is the effect of an actuator that is important to model, and not
the actuator itself. Therefore, the action that the volume forcing has on the
flow, could possibly be reproduced for example using plasma actuators. An-
other issue that needs to be taken into account is control robustness. If the
numerically-designed controller is used in laboratory experiments, it is unavoid-
able that some parameters (such as Reynolds number and pressure gradients)
will mismatch. Fortunately, modern developments in robust control theory take
rigorously into account uncertainties that may be present in the design process.
The method for optimal control presented in this paper, can be incorporated
into a robust control framework.

The authors would like to thank Antonios Monokrousos for computing
the optimal initial condition and for fruitful discussions. Computer time pro-
vided by SNIC (Swedish National Infrastructure for Computing) is gratefully
acknowledged.

Appendix A. Analytical expressions of actuators and sensors

Each element of the arrays B2 and C2 is a localized Gaussian function

h (x,x0) =





σxŷ
−σyx̂

0



 exp
(
−x̂2 − ŷ2 − ẑ2

)
, (22)

where

x̂ =
x− x0

σx
ŷ =

y

σy
ẑ =

z − z0
σz

.

The scalar quantities σx = 5, σy = 1.5, σz = 6 define the size and the shape
of the Gaussian spatial distribution and are equal for all the elements, while
the position is fixed accordingly to the values (x0, z0). From this definition, we
obtain

B2 = [h (x,xu,1) ,h (x,xu,2) , . . . ,h (x,xu,m)] , (23)

and

C2u =

∫

Ω





h (x,xv,1)u
. . .

h (x,xv,p)u



dxdydz, (24)

where m and p indicate the number of actuators and sensors, respectively.
Each element of B2 and C2 is denoted with a second subscript. The actuators
mimic a manipulation on the flow close to the wall, whereas the measurements
are extracted by averaging the velocity field using the Gaussian function as
weights.
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Appendix B. Adjoint Navier–Stokes equations

A detailed derivation of the adjoint equations is given by Bagheri et al. (2009b)
where the corresponding adjoint inputs and outputs are also defined. Here, the
equations are given for completeness. The adjoint velocity field and the adjoint
pressure field are denoted by p(x, t) = (u∗, v∗, w∗) and σ(x, t), respectively.
Considering the boundary conditions (2) used for u and requiring that p =
(u∗, v∗, w∗), σ and p satisfy

(σ, π) (0, y,−Lz/2) = (σ, π) (Lx, y, Lz/2) (25a)

p (0, y,−Lz/2) = p (Lx, y, Lz/2) (25b)

p (x, 0, z) = p (x, Ly, z) = 0, (25c)

the adjoint of the linearized Navier–Stokes equations 5 associated with the
inner product 〈·, ·〉Ω is given by

−∂p
∂t

= (U · ∇)p − (∇U)
T

p + ∇σ +Re−1∇2p + λf (x)p (26a)

0 = ∇ · p (26b)

p = pT at t = T. (26c)

Together with the boundary conditions, the latter set of equation governs the
behaviour of the adjoint flow field p.

Appendix C. Snapshot-based balanced truncation

The exact balanced truncation amounts to solving two Lyapunov problem for
the computation of the controllability P and observability Q Gramians. Since
the computational cost is O(n3) and the storage requirement O(n2), the stan-
dard balanced truncation method (Laub et al. 1987) is computationally unfea-
sible when n ≥ 105. The snapshot-based method (Rowley 2005) approximates
true Gramians with quadratures

P ≈
k∑

j=1

T(tj)BB∗T∗(tj)δj = LcL
∗
c , (27)

where δj are the quadrature weights. The low-rank Cholesky factor Lc ∈
Rn×km is

Lc = [B, T(t1)B
√

δ1, . . . ,T(tk)B
√

δk], (28)

where B = [B1, B2 . . . ,Bm]; hence, each element of the Cholesky factor Lc

contains snapshots of the flow field computed by the impulse response to each
input Bi at a given time tj . In this section, m and p denote the total number of
inputs (actuators and disturbances) and total number of sensors, respectively.

Similarly, the Cholesky factor Lo can be obtained from the approximation
of the observability Gramian

Q ≈
k∑

j=1

T∗(tj)C
∗CT(tj)δj = L∗

oLo, (29)
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where Lo is given by

Lo = [C∗, T∗(t1)C
∗
√

δ1, . . . ,T
∗(tk)C∗

√

δk]. (30)

The snapshots are computed marching backward in time with the adjoint
Navier–Stokes equations (26). Each element contains the flow fields obtained
from the impulse response to each output C∗ = [C∗

1, C∗
2, . . . ,C

∗
p] at a given

time tj .

Using the low-rank Cholesky factors, the approximate direct and adjoint
balanced modes can be computed as follows. As a first step, the singular values
decomposition (SVD) of L∗

oLc is formed,

L∗
oLc = UΣV∗. (31)

The size of L∗
oLc is kp×km. The method is cheaper than the standard method

(using full Cholesky factors of size n × n) as long as the number of degree of
freedom n is smaller than the number of collect snapshot k times the number of
inputs (m) and output (p). The diagonal matrix Σ contains the approximated
HSV. The direct and adjoint balanced modes are then given by

Φr = LcVΣ−1/2 Ψr = L∗
oUΣ−1/2. (32)

The question is, how close Φr and Ψr using low-rank Cholesky factors are
to the “true” balanced modes Φ and Ψ using full-rank factors. In general,
numerical tests (Ilak & Rowley 2008; Ahuja 2009; Bagheri et al. 2009a,b) show
that Φr is a good approximation and that Σr are close to the true HSV. This
can be attributed, to the low numerical rank of the Gramians, when m, p≪ n.
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Monokrousos, A., Åkervik, E., Brandt, L. & Henningson, D. S. 2009 Global
optimal three-dimensional disturbances in the blasius boundary-layer flow using
time-steppers. To appear.

Moore, B. 1981 Principal component analysis in linear systems: Controllability,
observability, and model reduction. IEEE Trans. Automat. Control 26 (1), 17–
32.

Nordström, J., Nordin, N. & Henningson, D. S. 1999 The fringe region tech-
nique and the fourier method used in the direct numerical simulation of spatially
evolving viscous flows. SIAM J. Sci. Comput. 20 (4), 1365–1393.

Pang, J. & Choi, K.-S. 2004 Turbulent drag reduction by lorentz force oscillation.
Phys. Fluids 16 (5), L35–L38.

Rempfer, D. & Fasel, H. 1994 Evolution of three-dimensional coheren structures
in a flat-plate boundary layer. J. Fluid. Mech. 260, 351–375.

Rowley, C. W. 2005 Model reduction for fluids using balanced proper orthogonal
decomposition. Int. J. Bifurc. Chaos 15 (3), 997–1013.



Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows.
Springer Verlag, New York.

Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D. S. 2010 Linear control
of 3d disturbances on a flat-plate. In Seventh IUTAM Symposium on Laminar-
Turbulent Transition (eds. P. Schlatter & D. S. Henningson), , vol. 18. Springer.

Smith, B. L. & Glezer, A. 1998 The formation and evolution of synthetic jets.
Phys. Fluids 10 (9), 2281–2297.

Sturzebecher, D. & Nitsche, W. 2003 Active cancellation of tollmien–schlichting
waves instabilities on a wing using multi-channel sensor actuator systems. Int.
J. Heat Fluid Flow 24, 572–583.





Paper 5

5





Global stability of a jet in crossflow

Shervin Bagheri, Philipp Schlatter, Peter J. Schmid1 and Dan
S. Henningson

J. Fluid Mech. vol 624, pp 33–44

A linear stability analysis shows that the jet in crossflow is characterized by
self-sustained global oscillations for a jet-to-crossflow velocity ratio of 3. A
fully three-dimensional unstable steady-state solution and its associated global
eigenmodes are computed by direct numerical simulations and iterative eigen-
value routines. The steady flow, obtained by means of selective frequency
damping, consists mainly of a (steady) counter-rotating vortex pair (CVP) in
the far field and horseshoe-shaped vortices close to the wall. High-frequency
unstable global eigenmodes associated with shear layer instabilities on the CVP
and low-frequency modes associated with shedding vortices in the wake of the
jet are identified. Furthermore, different spanwise symmetries of the global
modes are discussed. This work constitutes the first simulation-based global
stability analysis of a fully three-dimensional base flow.

1. Introduction

The generic flow configuration of a jet in crossflow is ubiquitous in a great
variety of industrial applications, ranging from the control of boundary layer
separation to pollutant dispersal from chimneys, from film cooling of turbine
blades to the injection of fuel into combustion chambers and furnaces. The
flow structures, mixing properties and general dynamics of jets in crossflow
have therefore been the subject of numerous experimental and computational
studies. In general four main coherent structures (see e.g. Fric & Roshko 1994;
Kelso et al. 1996; Muppidi & Mahesh 2007, and references therein) characterize
the jet in crossflow: (i) the counter-rotating vortex pair, which originates in the
near field of the jet, essentially follows the jet trajectory, and dominates the
flow field far downstream; (ii) the shear layer vortices which are located at the
upstream side of the jet and take the form of ring-like or loop-like filaments;
(iii) horseshoe vortices forming in the flat-plate boundary layer upstream of the
jet exit, and corresponding wall vortices downstream of the exit close to the
wall; and (iv) “wake vortices/upright vortices” which are vertically-oriented
shedding vortices in the wake of the jet. The accurate description of these

1Laboratoire d’Hydrodynamique (LadHyX), CNRS-École Polytechnique,
F-91128 Palaiseau, France
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relevant features is a prerequisite for a sound understanding of the perturbation
dynamics of jets in crossflow and a first step in an attempt to manipulate it.

Recent advances in computational methods have enabled global stability
analyses of flows with nearly arbitrary complexity and have furnished the pos-
sibility to assess fully two- and three-dimensional base flows as to their stability
and response behavior to general three-dimensional perturbations. Specifically,
the combination of new efficient methods for computing steady-state solutions,
such as the selective frequency damping (Åkervik et al. 2006), and for treating
very large eigenvalue problems, such as the Arnoldi method implemented in the
software package ARPACK (Lehoucq et al. 1998), based on only minimal mod-
ifications of existing numerical simulation codes (see e.g. Barkley et al. 2002)
has provided the necessary tools for an encompassing study of the disturbance
behavior in complex flows.

Previous stability investigations of the jet in crossflow (Alves et al. 2007,
2008) have been based on various inviscid base flows adapted from the vortex–
sheet model of Coelho & Hunt (1989); they found that growth rates increase
as the jet inflow ratio R ≡ Vjet/U∞ decreases. Recently, Megerian et al. (2007)
found experimentally that for a low jet inflow ratio R < 3.5 external excitations
have a small impact on the flow response, in contrast to the significant effect
of forcing for larger values of R. This indicates a transition from a globally
unstable flow where intrinsic self-sustained global oscillations are present to a
convectively unstable flow that exhibits a noise-amplifying behavior (Huerre
2000). In this paper we analyze the global stability of a jet in crossflow for
R = 3 based on a steady exact solution to the Navier-Stokes equations. Ex-
cept for preliminary stability studies of a time-averaged mean flow (Schmid
2007), the present analysis constitutes, to the authors’ knowledge, the first
simulation-based global stability analysis of the viscous jet in crossflow, and,
more generally, of a fully three-dimensional base flow.

2. Flow configuration and numerical method

The stability of a jet in crossflow is analyzed via fully-resolved direct numer-
ical simulations based on the incompressible Navier–Stokes equations. The
computational domain consists of a rectangular box containing the crossflow
boundary layer subject to a zero pressure gradient starting at a finite Reynolds
number Reδ∗

0
downstream of the leading edge. All flow quantities are non-

dimensionalized using the (constant) free-stream velocity U∞, the viscosity ν
and the displacement thickness δ∗0 at the inlet of the crossflow into the compu-
tational box yielding the definition of the Reynolds number as Reδ∗

0
≡ U∞δ

∗
0/ν.

The two parameters of the jet are the diameter D and the inflow ratio R ≡
Vjet/U∞, where Vjet is the centerline jet velocity. The flow parameters of the
present study, Reδ∗

0
= 165, δ∗0/D = 1/3 and R = 3, are in the same parameter

range as for example Kelso et al. (1996).

The jet is introduced via non-homogeneous boundary conditions of the
wall-normal velocity component at the wall (y = 0) at a distance downstream of
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Figure 1. The wall-normal velocity v (a) and azimuthal vor-
ticity ωθ = −∂rv (b) of the imposed jet profile in the present
study given by equation (1) is shown with solid black lines and
the standard Poiseuille parabolic profile is shown with dashed
lines. Note that the streamwise u and spanwise w velocities
are assumed to be zero everywhere at y = 0.

the inlet. This is in slight contrast to realistic configurations where the jet em-
anates from a nozzle, and interactions between the crossflow and the flow near
the nozzle edge have been observed (Kelso et al. 1996). The direct numerical
simulations of the jet in section 3 demonstrate that even with the jet modeled
as an inhomogeneous boundary condition the main flow characteristics, such
as the counter-rotating vortex pair, shear layer vortices and horse-shoe vortices
are faithfully reproduced. Moreover, the instabilities explored in the present
study are most likely due to the interaction of the crossflow and the shear layer
further away from the wall (Megerian et al. 2007). The jet profile, mimicking
the (laminar) parabolic velocity profile of pipe Poiseuille flow, is imposed as

v(r) = R(1 − r2) exp
(
−(r/0.7)4

)
, (1)

with r denoting the distance from the jet center (xjet, zjet), normalized by half
the jet diameter D. Due to the “super”–Gaussian function, the profile has
continuous derivatives for all r without a large modification of the parabolic
shape near the jet centerline. The velocity and vorticity of the profile defined
by (1) are compared to the parabolic profile (R(1 − r2)) in figure 1.

The simulation code uses a Fourier-Chebyshev spectral method to solve the
three-dimensional time-dependent incompressible Navier–Stokes equations over
a flat plate, with details given in Chevalier et al. (2007). At the downstream
edge of the domain a fringe region is added that forces the flow back to the inlet
profile and thus allows the treatment of the streamwise direction by Fourier
methods; periodic boundary conditions are imposed in the spanwise direction,
whereas in the wall-normal direction no-slip (at y = 0) and Neumann (at
y = Ly) conditions are enforced. The computations in this study have been
performed with a resolution of 256× 201× 144 grid points in a computational
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(a)

(b)

Figure 2. (a-b): The red and blue isocontours correspond
to vortical structures visualized by the λ2-criterion (Jeong &
Hussain 1995) at a level λ2 = −0.09. The gray contours depicts
the streamwise velocity component u = 0.3 near the flat plate.
(a) Snapshot of the unsteady velocity field in a fully-developed
state at t = 151. (b) Converged steady base velocity field.

box (Lx, Ly, Lz) = (75, 20, 30) on a Linux cluster employing between 48 and
72 cores.
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3. Observations from direct numerical simulations

The present simulation of a jet in crossflow starts with a laminar Blasius profile
above a flat plate. At time t ≥ 0, the inhomogeneous boundary condition is im-
posed to introduce the jet into the computational domain; after approximately
50 time units, a statistically stationary state can be observed. A snapshot at
t = 151 of the flow development is shown in figure 2(a), where isocontours of
the λ2-criterion (Jeong & Hussain 1995) and the streamwise velocity u are dis-
played. Although both the boundary layer of the crossflow as well as the incom-
ing flow pertaining to the jet are laminar, their interaction results in a highly
unsteady flow field. At the upstream edge of the jet body, where the shear layer
is strongest, a flow instability develops which leads to the breakdown of the
laminar flow into a sequence of small-scale, half-ring shaped vortices. As these
structures convect downstream their orientation gradually aligns with the free
stream after which they dissipate due to viscous effects. Careful inspection of
the velocity fields of the unsteady direct simulations further reveals well-known
flow features as reported in e.g. Fric & Roshko (1994) and Kelso et al. (1996):
Horseshoe-shaped vortices, located inside the crossflow boundary layer, can be
detected which wrap around the nozzle and eventually transport fluid from the
outer boundary layer region closer to the wall, resulting in a high-speed region
around the plane z = 0 which widens in the downstream direction (see the
gray contours of the u-velocity component depicted in figure 2a). In addition,
the core of the jet is composed of two large-scale counter-rotating vortices on
which shear-layer instabilities develop. However, wake vortices connecting the
crossflow boundary layer and the jet body, reminiscent of a vortex street be-
hind bluff bodies, are not visible in the present simulation. As stated by Fric
& Roshko (1994) these vortices appear preferably at higher inflow ratios R and
Reynolds numbers Re. For lower R and Re like in our simulation, the spanwise
symmetry of the flow field is sustained at all times.

To extract and quantify the observed oscillatory behavior of the flow we
place two probes into the computational domain: one probe is located within
the jet shear layer slightly upstream of the jet body, approximately three jet
diameters from the wall; the other probe is positioned downstream of the jet
orifice close to the wall. After a transient period, the time signals of the stream-
wise velocity u from these probes clearly show two distinct frequencies λi: in
the jet shear layer a period T1 = 2π/λi ≈ 5.7 can be estimated (red line in
figure 3a), whereas in the wake of the jet a much longer period of T2 ≈ 60 is
present (red line in figure 3c). The associated Strouhal numbers, defined as
St = D/(TVjet), are St = 0.17 and St = 0.016, respectively. It is interest-
ing to note that the velocity signal recorded by the second probe is negative,
i.e., u ≈ −1.1, which indicates that downstream of the jet exit a region of re-
versed flow exists. The signal from that region shows oscillations at a rather
low frequency. This separation region appears to only oscillate in a spanwise-
symmetric manner since the symmetry of the flow field near the jet exit is not
broken, given our parameter settings. The frequency measured in the jet shear
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Figure 3. (a) and (b) show time signals corresponding to
the (streamwise) u-component of two probes in the flow field
(see text). The red line represents the unsteady flow, whereas
the blue line corresponds to the simulation stabilized by SFD
which is active for t > 100. The dashed lines indicate the
time-averaged values of the DNS simulation.

layer corresponds to the incipient vortical structures caused by the presence of
the incoming jet. However, even in the shear layer the lower frequency present
in the wake downstream of the nozzle is clearly felt, manifesting itself as a slow
modulation of the probe signals. This indicates that the entire jet is oscillating
with that long period T2.

4. Global stability analysis

Using the direct numerical simulation code described in section 2 a global
stability analysis can be performed in two steps: we first compute a steady
solution to the nonlinear Navier–Stokes equations using the selective frequency
damping (SFD) method, after which we determine the eigenmodes of Navier-
Stokes equations linearized about this base flow using the Arnoldi algorithm
from the parallel ARPACK library.

4.1. The three-dimensional base flow

When a flow under consideration is either globally unstable or strongly con-
vectively unstable, the computation of a steady-state solution of the Navier–
Stokes equations poses a challenging task. Newton iteration methods are often
applied, but a different approach that accomplishes the task with less pro-
gramming effort is favored here. This technique, known as selected frequency
damping (Åkervik et al. 2006), adds a forcing term

−χ(u− û),

to the right-hand side of the Navier–Stokes equations governing the evolution
of the flow u = (u, v, w). This results in the convergence toward a temporally
low-pass-filtered state û of the nonlinear equations using the differential form
of an exponential (causal) filter (Pruett et al. 2003)

∂tû = (u− û)/∆.

The filter coefficients have to be chosen to sufficiently damp the lowest unsta-
ble frequencies; information about these frequencies can straightforwardly be
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Figure 4. In (a) the two structures depicted with red λ2-
isocontours represent, respectively, a symmetric initial pertur-
bation upstream of the jet at t = 0 and the perturbation at
later time, t = 24. The gray and blue isocontours indicate
components of the steady base flow as described in the cap-
tion of figure 2. In (b) the time evolution of the perturbation
energy (solid line) is compared to the growth rate (dashed line)
of the most unstable symmetric global mode, marked with S3

in figures 5(a) and (c).

extracted from the simulations, see figures 3(a) and (b). The same figure also
shows the effect of the filtering, turned on at t = 100 for χ = 1 and ∆ = 2.
Moreover, we could observe that after 220 time units, ‖∂tu‖ decays at an ex-
ponential rate, and at t = 450 the norm is three orders of magnitude smaller
than the unsteady flow, yielding a sufficiently converged steady solution of the
nonlinear Navier–Stokes equations and thus our three-dimensional base flow
(denoted U hereafter).

The base flow is shown in figure 2(b) with blue (λ2) and gray (u veloc-
ity) contour levels. The (CVP) is evident as two distinct tubes of negative
λ2-isocontours, deflected along the jet trajectory and slowly decaying in the
streamwise direction. Physically, the appearance of the CVP can be explained
by the accumulation of the azimuthal vorticity related to the injected jet fluid,
which is redirected in the direction of the jet trajectory due to the interaction
with the crossflow (Fric & Roshko 1994). Additionally, the steady state fea-
tures the horseshoe-shaped vortex forming around the jet nozzle. Due to this
vortex, a small region of separated flow appears just upstream of the jet nozzle.
Moreover, a larger region with negative streamwise velocity is detected at the
downstream edge of the nozzle causing entrainment of fluid from the crossflow
into the jet.
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By construction (Åkervik et al. 2006), the converged solution obtained
by SFD satisfies the steady nonlinear Navier–Stokes equations. Alternatively,
a linear stability analysis can be performed of the time-averaged mean flow.
However, this flow is not an equilibrium of the Navier–Stokes equations and,
therefore, not a suitable choice for a base flow when the aim is to determine its
stability. The time-averaged mean flow may, however, for certain flow config-
urations, be appropriate as a base flow for predicting the dominant shedding
frequencies (Barkley 2006; Sipp & Lebedev 2007). The difference between
steady and time-averaged solutions is exemplified in figures 3(a) and (b), in
which the time signals of the probes pertaining to the time-averaged solution
(black dashed lines) are clearly different from those obtained using the steady
solution (solid blue lines).

A first numerical experiment probing the global stability or instability of
the steady flow consists of an initial Gaussian pulse released at t = 0 inside
the boundary layer just upstream of the jet exit (indicated with red λ2-contour
levels in figure 4a). The linear response of the base flow after 24 time units, also
shown in figure 4(a), is characterized by the formation of a wavepacket which
significantly grows in amplitude as it travels along the curved base flow. Quan-
titative information about the growth rate (figure 4b) and local wavenumber of
this wavepacket can easily be extracted from the simulation data, but a more
general stability analysis is performed next using a “time-stepper” approach
which extracts the global modes from direct numerical simulations.

4.2. Stability analysis using the Arnoldi method and a time-stepper approach

The stability of U is determined by the three-dimensional global modes,

φj(x, y, z) exp(λjt), j = 1, . . . ,m

of the linearized Navier-Stokes operator, denoted here by the matrix A. Both
the eigenmodes φj and the eigenvalues λj are in general complex valued. The
temporal growth rate is given by the imaginary part λj,i and the frequency by
the real part λj,r .

The size of our problem (A would be approximately a 107 × 107 matrix)
prohibits matrix methods and suggests the use of iterative techniques combined
with our numerical simulations. In general, the iterative technique is based on
the orthogonal projection of the large matrix onto a lower-dimensional sub-
space, which will result in a significantly smaller system that can be solved
using direct methods. A particularly useful subspace is the Krylov subspace
K spanned by snapshots taken from flow fields u separated by a constant time
interval ∆t,

K = span {u(x, 0),u(x,∆t),u(x, 2∆t), . . . ,u(x, (m− 1)∆t)} , (2a)

= span
{
u(x, 0),Bu(x, 0),B2u(x, 0), . . . ,Bm−1u(x, 0)

}
(2b)



Global stability of a jet in crossflow 271

0 0.5 1 1.5 2 2.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

−5

0

5

0 10 20 30 40 50 60 70
−5

0

5

(a) (b)

(c)

λi

λr

S1

S2

S3

W1

x

z

z

S1

S3

Figure 5. (a) The spectrum of the jet in crossflow, where λr

is the growth rate and λi the frequency. High-frequency eigen-
values marked with black circles have symmetric eigenmodes,
whereas the red squares have anti-symmetric ones. The shear
layer modes marked with S1 and S2 are shown in figures 6
and 7, respectively. The wake mode marked with W1 is shown
in figure 8 and the most unstable symmetric mode marked with
S3, triggered by the response of the base flow to a symmetric
initial condition, is shown in figure 4. (b)-(c) Contour levels
at a xz−plane with y = 17 of the u velocity (blue is negative,
red is positive) of S1 (b) and S3 (c).

where B = exp(A∆t) and u(x, 0) is an initial guess that should contain nonzero
components of the sought-after global modes. The matrix exponential B is sim-
ply an evolution operator; its action is a numerical simulation of the linearized
Navier-Stokes equations for time2 ∆t. Note that the eigenmodes of B are the
same as those of the system matrix A if ∆t is chosen properly, i.e. so that
it reflects the characteristic time scale of the physical structures in the flow.
More specifically, the choice ∆t is a balance between the time scale given by the
Nyquist criterion3 and a sufficient temporal separation of the Krylov vectors
to ensure convergence of the iterative method.

The Krylov subspace is orthonormalized (standard L2 vector norm) via
a m-step Arnoldi factorization, yielding an unitary basis V onto which the
matrix exponential is projected according to B ≈ VHVT leading to a small
m ×m eigenvalue problem of the form HS = ΣS. The eigenmodes with the

2The actual time-step δt ≈ 10−3 of these simulations depends on the CFL-condition and is
much smaller than the sampling period ∆t.
3To avoid aliasing ∆t must be small enough such that two sampling points in one period
of the highest frequency mode are obtained. See Bagheri et al. (2009) for further numerical
details.
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largest growth rates are recovered according to Φ = (φ1, . . . ,φm) = VS, and
the eigenvalues λj are given by λj = ln(σj)/∆t with Σ = diag(σ1, . . . , σm).

The computation of the significantly lower-dimensional matrix H from di-
rect numerical simulations is accomplished by the implicitly restarted Arnoldi
method (IRAM) implemented in the software package ARPACK. The number
of flow field snapshots separated by ∆t = 0.25 required for convergence of the
22 eigenmodes with the largest growth rates was 1800. However, thanks to
IRAM, the Krylov subspace is only of the order m ≈ 60 and the Arnoldi pro-
cedure is restarted with a new improved initial guess, u(x, 0), repeatedly until
convergence. The first initial guess was random noise. See e.g. Lehoucq et al.
(1998) for details on IRAM.

The residual was ‖Bφj − σjφj‖ < 10−6 for all eigenmodes, although the

residuals of most of the eigenmodes are orders of magnitude smaller than this4.

4.3. Global spectrum and global modes

In figure 5(a) the global spectrum containing the 11 most unstable eigenvalues is
shown. The global eigenmodes corresponding to eigenvalues marked with circles
are symmetric with respect to the z−axis, whereas the modes associated with
eigenvalues marked with squares are anti-symmetric. Note that the symmetry
refers to the u and v velocity components, w shows the opposite symmetry. It
should be mentioned that no symmetry condition was imposed in the direct
numerical simulations. The streamwise velocity of two modes (S1 and S3) with
opposite symmetries are shown figure 5(b) and (c). A symmetric disturbance
in the flow (as shown in figure 4a) will trigger the growth of a global mode with
the same symmetry only. This is exemplified in figure 4(b), where the solid line
shows the time-evolution of the energy E =

∫
uTudx of a symmetric initial

perturbation and the dashed line shows the energy of most unstable symmetric
global mode with the growth rate, λr = 0.044 marked with S3 in the spectrum
(figure 5a). This serves as a further validation that the spectrum provides the
correct growth rates.

In figure 6, red λ2-isocontours pertaining to the most unstable (antisym-
metric) mode, oscillating with a period of T = 5.9 time units, are shown to-
gether with the base flow (blue and gray isocontours) as described earlier in
figure 2(b). The mode takes the shape of a wavepacket located on the counter-
rotating vortex pair with a distinct spatial wavelength and can therefore be
associated with instabilities rising on the shear layer. The amplitude near the
wall of this mode is more than one order of magnitude smaller than on the
CVP. It is known that the jet width extends more toward the leeward side. It

4Within the time-stepping framework, the linear stability analysis is robust with respect
to the spatial resolution if it is, as in our case, based on fully resolved direct numerical
simulations. A convergence test was performed in the following way: The direct numerical
simulation with ≈ 50% fewer gridpoints of the linear response of the base flow to an initial
condition resulted in a growth rate that was only ≈ 2% different from the growth rate
predicted by the original resolution, albeit the significant reduction in resolution.
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(a)

(b)

Figure 6. The most unstable mode ((λr , λi) = (0.068, 1.06))
seen from two different angles, marked with S1 in figure 5 is
shown with red λ2-isocontours. The base flow is shown in blue
(λ2) and gray (u-velocity).

is interesting to note that the the global mode in figure 6 also contains vortical
structures in this region.

Next, a symmetric high-frequency mode is shown in figure 7. The mode is a
localized wavepacket wrapped around the counter-rotating vortex pair without
any vortical structures close to the wall. The other symmetric modes have a
similar structure but with larger wavelengths and lower frequencies. In partic-
ular the nonlinear shedding of the shear layer vortices with T = 5.7 is closely
matched by the linear frequency of the most unstable symmetric mode (S3)
T = 5.4. It is interesting to note that the most unstable shear-layer mode
has an opposite symmetry to the all the high-frequency shear-layer modes.
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(a)

(b)

Figure 7. The mode with the highest frequency ((λr , λi) =
(0.021, 2.49)) viewed from two different angles, marked with
S2 in figure 5, is shown with red λ2-isocontours and base flow
in blue (λ2) and gray (u-velocity).

Whereas the latter modes are wrapped around the CVP, the former is directly
located on the CVP, as can be seen by comparing figures 6(b) and 7(b).

The vortical structures near the wall become more pronounced with de-
creasing temporal frequencies. The spanwise velocity component near the wall
(green and black contours) of the anti-symmetric mode with the lowest fre-
quency λi is shown in figure 8. Of all the modes, this global mode has the
most pronounced spatial structure at the wall in the wake of the jet. It is thus
assumed that this mode, which oscillates at a period of T = 23 time units,
is related to the low frequency self-sustained oscillations observed in our DNS
simulation (see figure 3b). However, this unstable wake mode has a smaller
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Figure 8. Isocontours of the spanwise velocity compo-
nent pertaining to the low-frequency mode ((λr , λi) =
(0.027, 0.27)), markedW1 in the spectrum (figure 5) are shown
in green (negative w) and black (positive w). Note that here
only the structures near the wall are shown, which are approx-
imately one order of magnitude smaller in amplitude than the
structures on the CVP. The base flow is again in blue (λ2) and
gray (u-velocity).

growth rate than the shear layer mode, indicating the dominance of the shear
layer instabilities in the present base flow.

From the numerical simulation, we could detect that close to the wall, ap-
proximately 2 − 3 jet diameters from the nozzle along the jet trajectory, shear
layer vortices were shed periodically into the downstream direction. The largest
amplitude of the global eigenmodes, on the other hand, is concentrated further
downstream on the jet trajectory of the base flow. This spatial separation of
the linear global modes (downstream) and the shedding region (upstream) has
been observed for various globally unstable flows (Chomaz 2005) and can be
explained by the presence of a “wavemaker”. From a local viewpoint this indi-
cates that a pocket of absolute instability feeds regions of convective instability
located further downstream. From a global viewpoint, which is more suitable
due to the non-parallel nature of the base flow, this region is related to location
where the spatial overlap of the global mode with its associated adjoint mode
is significant. A localized feedback force of the perturbation velocity in this
region results in the largest drift of the eigenvalue (Giannetti & Luchini 2007).
Moreover, using the adjoint eigenmodes, a sensitivity analysis can be employed
to predict regions where variations of the unstable eigenvalues to base flow
modifications are large (Marquet et al. 2008). Further analysis is in progress
to identify these dynamically important regions.

In general, linear (and weakly nonlinear) stability theory is able to pre-
dict shedding frequencies in the unstable regime close to the critical velocity
ratio. A large deviation between the linear and nonlinear saturated frequencies
can to some extent be related to a large difference between the time-averaged
mean flow and the steady solution, i.e. the mean flow distortion (see recent
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work by Barkley 2006; Sipp & Lebedev 2007). By comparing the signals in
figures 3(a) and (b) pertaining to the mean (dashed) and steady flow (blue), it
can be observed that the mean flow distortion near the wall is at least six times
larger than on the shear layer. Similar to observations of the wake behind a
cylinder (Barkley 2006), the steady separation region (downstream of the jet
exit) is altered due to the saturated global modes yielding a significantly larger
separation bubble and mean flow distortion. The jet shear layer on the other
hand is only slightly modified by the saturated modes.

5. Conclusions

Observations of two self-sustained synchronized oscillations of a jet in crossflow
at R = 3 by direct numerical simulations places this flow configuration into
the category of globally unstable flows. This observation has been confirmed
by a global stability analysis based on a three-dimensional steady base state
obtained after suppressing global instabilities by selective frequency damping
(SFD). The most unstable global modes with high frequencies are compact and
represent localized wavepackets on the CVP. These modes are associated with
the loop-shaped vortical structures on the jet shear layer. The global modes
with lower frequencies, on the other hand, also have a significant amplitude in
the wake of the jet close to the wall and can be associated with less pronounced
vortical structures arising downstream of the jet in the boundary layer.

The existence of global eigenmodes justifies the global stability approach
as an appropriate tool to describe the inherent and dominant dynamics of the
jet in crossflow. With the same tool even less pronounced instabilities, e.g.
associated with the “hanging vortices” formed in the skewed mixing layers on
the lateral edges of the jet (Yuan et al. 1999) might be detected and extracted
from the direct numerical simulations as global modes with growth rates much
less than the dominant one presented in this paper. A more encompassing
global stability analysis of the jet in crossflow, including a parameter study, is
in progress; the presented results, however, form a first and important step in
quantifying the stability characteristics of a jet in crossflow and, in general, of
fully three-dimensional base flows.
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Self-sustained global oscillations

in a jet in crossflow

Philipp Schlatter, Shervin Bagheri and Dan S. Henningson

Theor. Comp. Fluid Mech. submitted

A jet in crossflow with an inflow ratio of 3, based on the maximum velocity of
the parabolic jet profile, is studied numerically. The jet is modeled as an inho-
mogeneous boundary condition at the crossflow wall. We find two fundamental
frequencies, pertaining to self-sustained oscillations in the flow, using full non-
linear direct numerical simulation (DNS) as well as a modal decomposition into
global linear eigenmodes and proper orthogonal decomposition (POD) modes;
a high frequency which is characteristic for the shear-layer vortices and the
upright vortices in the jet wake, and a low frequency which is dominant in the
region downstream of the jet orifice. Both frequencies can be related to a region
of reversed flow downstream of the jet orifice. This region is observed to oscil-
late predominantly in the wall-normal direction with the high frequency and
in the spanwise direction with the low frequency. Moreover, the steady-state
solution of the governing the Navier–Stokes equations clearly shows the horse-
shoe vortices and the corresponding wall vortices further downstream, and the
emergence of a distinct counter-rotating vortex pair high in the free stream.
It is thus found that neither the inclusion of the jet pipe nor unsteadiness is
necessary to generate the characteristic counter-rotating vortex pair.

1. Introduction

A large number of studies have been devoted to the flow case of a jet in cross-
flow, mainly due to its technical relevance in, for example film cooling, fuel
injection, but also dispersion of pollutants from e.g. smokestacks or in assess-
ing V/STOL airplanes. The flow structures, mixing properties and complex
dynamics have therefore been studied extensively by means of experiments
and – more recently – by computer simulations. In general four main coher-
ent structures (see e.g. Fric & Roshko 1994; Kelso et al. 1996; Smith & Mungal
1998; Yuan et al. 1999; Cortelezzi & Karagozian 2001; Muppidi & Mahesh 2006;
Megerian et al. 2007, and references therein) characterize the jet in crossflow;
(i) the counter-rotating vortex pair which is thought to originate in the near
field and remains the most dominant structure of the flow field far downstream;
(ii) the shear-layer vortices which initially take the form of ring-like or loop-like
shapes and cause the jet to disintegrate into smaller vortices, (iii) the horseshoe
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vortices formed upstream of the jet nozzle, and their extension downstream of
the nozzle, usually termed wall vortices, and (iv) the upright vortices popu-
lating the jet wake between the jet trajectory and the flat plate. Depending
on the exact parameter settings (boundary-layer thickness, jet radius and in-
flow profile, jet speed, turbulence levels in crossflow and pipe, etc.) the specific
characteristics and relative importance of the above main structures might vary
considerably (see e.g. Fric & Roshko 1994).

Traditionally, studies of the jet in crossflow have been concerned with the
location and scaling of the centerline trajectory, the mean and fluctuating ve-
locity properties and the mixing properties at various jet-to-crossflow ratios R.
Despite the large number of studies there are still a number of open questions
related to more fundamental issues; the dominant mechanism for the genera-
tion of e.g. the counter-rotating vortex pair (Kelso et al. 1996; Cortelezzi &
Karagozian 2001; Muppidi & Mahesh 2006), or the upright vortices and their
relation to the observed low-frequency wiggling of the whole jet configuration
that are of interest (Fric & Roshko 1994). Moreover, there is a lack of consen-
sus of the origin of the shear-layer vortices. Numerous studies argue that the
main instability mechanism is of Kelvin-Helmholtz (KH) type due to the shear-
ing between the jet and the main stream (see e.g. Kelso et al. 1996), whereas
other studies (Blanchard et al. 1999) indicate that the elliptic instability of the
steady longitudinal counter-rotating vortex pair must be taken into account
when describing the instability mechanisms of the jet. As we discuss in this
paper, both of these physical mechanisms could be present at the same time
and the resulting combined global instability dynamics should be considered.

Supporting evidence that the jet in crossflow is able to self-sustain global
oscillations was provided by Megerian et al. (2007) by analyzing single-point
spectral data. They found the spectrum peaks rather insensitive to periodic
forcing when R < 3. The same self-sustained oscillatory behavior have been
observed in other experiments (Blanchard et al. 1999), and also in the study
by Kelso et al. (1996) where the frequency of the shear layer instability could
not be affected via forcing close to the jet nozzle. However, to ascertain that a
flow exhibits self-sustained oscillatory behavior via a bifurcation, a global in-
stability in time from its inception through its small-amplitude linear stage to
saturation has to be traced in order to evaluate the coefficients of the Landau
equation. Such a study remains to be undertaken for the jet in crossflow. A
related, but certainly easier and more feasible task is a linear global stability
analysis of a steady solution at a single velocity ratio; in case of a global insta-
bility, the steady solution will give rise to a coherent array of vortex structures
which oscillate with the frequency of the global modes. However, the non-
linear saturation of the unstable modes and the ultimate nonlinear shedding
frequencies cannot be determined by the linear analysis. Note that for highly
unsteady flows, such an analysis can only be performed numerically, since the
flow never visits unstable equilibria; one observes only the nonlinear dynamics
on attractors, resulting from the global instability.
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Recently, Bagheri et al. (2009b) performed the first linear global stability
analysis of a steady solution of the jet in crossflow at R = 3 using a numerical
simulations in conjunction with iterative techniques. They found a number of
unstable linear global modes; high frequency modes were predominantly located
on the jet trajectory and low-frequency modes near the wall region downstream
of the jet nozzle. The global analysis suggests the jet in crossflow may self-
sustaining global oscillations. Indeed, time series of probes of DNS calculations
showed two fundamental frequencies; one high frequency oscillations associated
to unsteady jet shear-layer vortices and one with low frequency associated with
oscillating wall structures.

The present study aims at further characterizing the self-sustained oscilla-
tory behavior of the jet in crossflow at R = 3. In particular, the following goals
are set:

(i) A new nonlinear DNS data set with long time history has been com-
puted where asymmetric flow structures have been initially triggered (in
the previous DNS by Bagheri et al. 2009b, the spanwise symmetry was
sustained for all times). The symmetric and anti-symmetric data are
compared in order to identify if asymmetry is a necessary ingredient for
vortex shedding.

(ii) The various steady flow structures of the jet in crossflow, i.e. the two
distinct nearly longitudinal vortex tubes (counter-rotating vortex pair,
CVP), the shear layer and separated regions of the steady solution, are
discussed and compared the time-averaged mean flow.

(iii) The relation of the unstable global modes to Kelvin-Helmholtz instabil-
ity, elliptic type of instabilities and the unsteady separated region are
discussed qualitatively.

(iv) The fundamental frequencies of the flow are associated to the most en-
ergetic global structures in the flow obtained via proper orthogonal de-
composition (POD).

The study of a jet in crossflow is challenging for experimental as well as
numerical work. The flow is always fully three-dimensional and spatially de-
veloping. Moreover, proper inflow conditions need to be specified for both the
crossflow boundary layer and the jet exit, and the various shedding frequencies
in the flow call for long observation times. Numerically, the jet in crossflow has
been initially studied via large-eddy simulation (LES) by Yuan et al. (1999),
where the authors could find reasonable agreement with experiments performed
with similar parameters, and a first classification of the flow structures could
be performed. A series of well-resolved direct numerical simulations (DNS) of
a round jet in crossflow has been performed recently by Muppidi & Mahesh
(2005, 2007) using a turbulent inflow. In particular, new scaling laws for the
jet trajectories were proposed, and extensive budgets of turbulent quantities
could be provided. Using an alternative simulation approach based on vor-
tex elements, Cortelezzi & Karagozian (2001) studied the development of the
counter-rotating vortex pair and the near field of the jet in detail.
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In the present study, we employ a fully spectral numerical method, which
limits the geometrical flexibility of the simulation setup. In particular, we chose
to enforce the jet as a steady Dirichlet boundary condition on the crossflow wall,
as opposed to e.g. Yuan et al. (1999) or Muppidi & Mahesh (2005, 2007) (see
also the discussion in section 2 further below). However, the aim here is to
contribute to a more fundamental understanding of the jet dynamics rather
than providing additional data points for e.g. the trajectory development at
certain parameters. Nevertheless, the complexity of the flow demands for a
large number of degrees of freedom for any fully-resolved numerical simulation.
Therefore, in addition to traditional (linear and nonlinear) DNS, we apply
a timestepper technique, for the computation of the steady solution and the
global modes methods, i.e. at no point a full matrix of the evolution operator
is explicitly built as its size would be inpractical.

The paper is organized as follows. Section 2 introduces the numerical setup
together with the simulation method employed for the present study and the
specific parameter settings. A characterization of the steady and unsteady flow
features are given in section 3. The steady and oscillatory behavior of separated
regions in the flow are studied in section 4. In section 5 a global modal analysis
of the flow is presented, both in terms of (linear) global eigenmodes and (non-
linear) modes from proper orthogonal decomposition (POD). Conclusions and
an outlook are given in section 6.

2. Numerical methods and parameters

2.1. Simulation set-up

The simulation code (Chevalier et al. 2007) employed for the direct numerical
simulations presented here uses spectral methods to solve the three-dimensional,
time-dependent, incompressible Navier–Stokes equations over a flat plate. The
streamwise, wall-normal and spanwise directions are denoted by x, y and z,
respectively, and the corresponding velocity vector is u = (u, v, w)T ,

∂u

∂t
+ (u · ∇)u = −∇p+

1

Reδ∗

0

∇2u+ F (u) , (1a)

∇ · u = 0 , (1b)

with the pressure p. The volume forcing F (u) pertaining to the fringe re-
gion is described further below. The algorithm is based on Fourier discretiza-
tion in the streamwise and spanwise directions, and the wall-normal direction
is expanded in Chebyshev polynomials. For efficiency reasons, the nonlinear
convection terms are evaluated pseudo-spectrally in physical space using fast
Fourier transforms; the corresponding aliasing errors from the evaluation of the
nonlinear terms are removed by the 3/2-rule in the wall-parallel x/z plane. In
the wall-normal direction, it has been chosen to increase resolution rather than
to use polynomial dealiasing. The time is advanced using a standard four-step
low-storage third-order Runge–Kutta method for the nonlinear forcing terms,
and a second-order Crank–Nicolson method is employed for the linear terms.



Self-sustained global oscillations in a jet in crossflow 285

The code is fully parallelized for efficient use on both shared and distributed-
memory systems.

To correctly account for the downstream growth of the boundary layer of
the crossflow, a spatial technique is necessary. This requirement is combined
with the periodic boundary conditions in the streamwise direction by adding
a fringe region, similar to that described by Bertolotti et al. (1992), see also
Nordström et al. (1999). In this region, located at the downstream end of the
computational box, the flow is forced to a desired solution v through the forcing
(Chevalier et al. 2007),

F (u) = λf (x)(v − u) . (2)

The desired in- and outflow velocity vector v may depend on the three spatial
coordinates and time. It is smoothly changed from the laminar boundary-layer
profile at the beginning of the fringe region to the prescribed inflow velocity
vector. In the present case, this is chosen as the laminar Blasius boundary-
layer profile, but may also contain desired inflow disturbances. The fringe
function λf (x) is identically zero inside the physically relevant domain, and
raises smoothly to order one inside the fringe region. The length of the region
with λf > 0 is about 20% of the complete domain length. Note that due
to the spatially developing boundary layer there is weak positive transpiration
throughout the physical domain, and negative wall-normal velocity in the fringe
region to fulfil global mass conservation. In the spanwise direction, periodic
boundary conditions are used, in accordance with the Fourier discretization in
that direction.

The computational domain is a rectangular box containing the boundary
layer of the crossflow. Due to the spectral discretization method employed, it is
not directly possible to adapt the computational grid in such a way to include
a discretized model of the jet nozzle in the flat plate. The jet discharging into
the crossflow boundary layer is therefore modeled by imposing inhomogeneous
boundary conditions of the wall-normal v velocity component on the flat plate,
leaving the no-slip conditions on u and w intact. This simplified model does
not allow for any interaction of the crossflow with the nozzle. The results of
e.g. Yuan et al. (1999); Muppidi & Mahesh (2005) highlight the importance of
including the nozzle to allow for e.g. separation within the pipe. It was also
shown by Kelso et al. (1996) that the saddle point in the front part of the jet
is moving up and down, a motion with might be reduced or even inhibited by
the neglect of the pipe. In addition, the fixed boundary condition at y = 0
does not allow for any adjustment of the jet profile at that vertical position to
the incoming crossflow (in particular a downstream deflection of the profile).
On the other hand, as will be shown below, the present simulation captures all
the different flow phenomena and vortex systems observed in other simulations
and experiments. However, the relative significance of these systems to the
overall dynamics might be slightly changed due to the chosen inflow condition.
We believe that the underlying main physical mechanisms responsible for the
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generation and development of the vortex systems are correctly captured in our
model.

On the flat plate, homogeneous boundary conditions for the wall-parallel
velocity components u and w are prescribed, corresponding to the no-slip
boundary condition. The main parameters of the jet are the position of the
center of the jet orifice (xjet, zjet), the jet diameter D and the inflow ratio

R =
vjet
U∞

(3)

of the centerline velocity vjet and the crossflow velocity U∞. The jet discharging
into the crossflow is imposed by a wall-normal velocity

v(r, y = 0) = R(1 − r2) exp(−(r/0.7)4) , (4)

with r being the distance from the jet center (xjet, zjet), normalized by half the
jet diameter D,

r = (2/D)
√

(x− xjet)2 + (z − zjet)2 . (5)

This inflow profile corresponds to a (laminar) parabolic velocity profile of the
pipe flow, smoothened with a super-Gaussian function to allow for an efficient
treatment with the spectral discretization of the simulation code. This smooth-
ing slightly increases the radial gradient of the profile, leading to a more pointy
appearance than a true parabolic profile. This might be interpreted as the
applied profile having a slightly smaller diameter than the one used in the nor-
malization. Note also that the wall-normal velocity component v corresponds
to the inflow ratio R in the jet center, and is less than 10−5R for D/2 > 1.276.
For the boundary condition given in equation (4) the relation between the
maximum and the bulk velocity in the center of the jet is approximately 3.

Although physically the boundary layer is assumed to extend to an infinite
distance from the wall, the discretization requires a finite domain. Therefore,
an artificial boundary condition is applied in the free-stream at wall-normal
position Ly via a Neumann condition

∂u

∂y

∣
∣
∣
∣
y=Ly

=
∂v

∂y

∣
∣
∣
∣
y=Ly

. (6)

Far away from the wall, the wall-normal derivative of the base flow v is vanish-
ingly small, which together with incompressibility approaches u(x, y = Ly) ≈
U∞.

2.2. Data base and parameters

The parameters used for the present simulation cases are described next. The
computational domain has a total streamwise length Lx = 75, width Lz = 30
and height Ly = 20 in units of the displacement thickness of the crossflow
boundary layer at the domain inlet δ∗0 . The Reynolds number is set to Reδ∗

0
≡

δ∗0U∞/ν = 165, with U∞ being the free-stream velocity of the crossflow. The
jet is characterized by the same viscosity as the crossflow, and its inflow ratio
(based on the centre velocity) is specified as R = 3 according to equation (3).
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The jet center is located Lxδ
∗
0/8 downstream of the inflow plane. To further

define the problem setup, the diameter of the jet D is related to the boundary
layer thickness as D/δ∗0 = 3. These parameters are in the same range as e.g.
the ones considered by Kelso et al. (1996). Compared to Yuan et al. (1999)
the present Reynolds number ReD = U∞D/ν = 500 and the inflow ratio R are
lower. However, we employ resolved spectral DNS as a tool, and do not rely
on a subgrid-scale model. All computations were performed with a resolution
of (Nx, Ny, Nz) = (256, 201, 144) collocation points in physical space. The
adequacy of the resolution has been checked by considering Fourier spectra
and requiring a sufficient decay of the energy for small scales. Due to the dense
distribution of the Chebyshev collocation points close to the wall and the strong
wall-normal velocity component, the time step had to be chosen rather small
δt ≈ 3 · 10−4.

The present data base consists of two long DNS runs, each initiated from
laminar crossflow fluid (Blasius boundary layer), with the jet smoothly starting
to emerge from the wall at t = 0. In a first case (denoted DNS-SYM), the simu-
lation at time t = 0 does not contain any disturbances apart from the laminar,
two-dimensional crossflow boundary layer and the jet boundary condition. The
spanwise symmetry of the inflow condition about the plane z = 0 is therefore
maintained in the whole domain for all t > 0, even after the jet breaks up into
smaller vortices. In a second run (case DNS-ASYM), an asymmetric distur-
bance is superimposed upstream of the jet nozzle at t = 0, quickly triggering
non-symmetric breakup of the jet. In this case, the downstream part of the
jet is always asymmetric, although the initial disturbance has convected out of
the domain. Both of these simulations were run up to t = 700, corresponding
to about 14 flow-through times of the crossflow fluid. The jet reaches a sta-
tistically stationary state after about t = 100, corresponding roughly to two
flow-through times. All the analysis in the following will be based on snapshots
of the flow obtained for times 150 ≤ t ≤ 700. Two instantaneous snapshots
of the flow for the two cases DNS-SYM and DNS-ASYM are shown in figure
1. In this figure, the vortical motion in the jet is visualized by the negative λ2

vortex-identification criterion (Jeong & Hussain 1995), highlighting the com-
plex, unsteady flow patterns characteristic for the jet in crossflow. The different
spanwise symmetry of the flow for the cases DNS-SYM and DNS-ASYM is ap-
parent in the outflow plane, which is color-coded according to the spanwise
velocity component.

2.3. Steady flow and mean flow

In a first step, the time-invariant flow structures are studied. The steady part of
the flow is important to be characterized in some detail in order to get a better
understanding of the time-dependent oscillations and distortions developing
around the steady flow. Two different possibilities to obtain such a time-
invariant flow field have been considered. First, a straight-forward time-average
is performed for the period 150 ≤ t ≤ 700 by a weighted sum of all the snapshots
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Figure 1. Instantaneous snapshots of cases (a) DNS-SYM
and (b) DNS-ASYM at t = 700. The vortical structures are
visualized by means of iso-contours of constant λ2 = −0.09
(green); the gray contour depicts the streamwise velocity com-
ponent u = 0.2 near the flat plate. The symmetry properties of
the flow in the outflow plane are highlighted by color shading
according to the spanwise velocity component.

recorded with spacing ∆t = 1. This mean flow, however, is in general not a
pointwise solution to the governing steady Navier–Stokes equations, but rather
to the Reynolds-averaged Navier–Stokes equations, including Reynolds-stress
contributions 〈uiuj〉. The mean flow provides the most accurate description of
the flow in an averaged sense, i.e. what would be observed experimentally in the
mean. It is interesting to note that both cases DNS-SYM and DNS-ASYM lead
to essentially the same mean flow, although their instantaneous representation
is different (see figure 1).

On the other hand, a true steady solution fulfilling the steady Navier–
Stokes equations without additional Reynolds-stress terms can be obtained us-
ing the selective frequency damping (SFD) approach as described by Åkervik
et al. (2006) and applied to the present jet configuration by Bagheri et al.
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(2009b); numerical details and SFD parameters are discussed there. In princi-
ple, the SFD adds an explicit forcing term to the governing equations, penaliz-
ing any high-frequency disturbances by means of a temporal differential filter.
As opposed to the mean flow, this steady flow state represents a true equi-
librium solution, which is unstable for the present parameters (Bagheri et al.
2009b) due to global instability. This flow will therefore never be observed
in a real situation. The validity of the steady-state solution has been tested
numerically by starting a simulation from the steady state without active SFD
forcing. The flow eventually became unstable and developed unsteadily, how-
ever, the accuracy of the steady state is such that for about a time span of
∆t = 200 no significant change in the solution is detectable. Thereafter, the
instabilities would exponentially grow and eventually lead to similar flow fields
as cases DNS-SYM and DNS-ASYM, depending on the symmetry properties.

3. Flow features

In this section, the flow phenomena associated with the jet in crossflow are
examined in more detail based on the present DNS. In particular, the ubiq-
uitous features described in the literature are briefly reviewed and related to
observations in the present data.

3.1. Steady features

We begin by comparing the various vortex systems observed in a purely steady
solution with those appearing in the mean flow. Figure 2 compares a three-
dimensional visualization of the mean and steady flow. The steady structures
observed for both flows are; (i) the ubiquitous counter-rotating vortex pair
(CVP) rising up into the free-stream; (ii) a vortex sheet wrapping around the
CVP a few jet diameters in the wall-normal direction; (iii) the wall-vortex
system (WVS), consisting of the horse-shoe vortex bending around the up-
stream part of the jet nozzle, and the wall vortices extending for a long dis-
tance downstream of the nozzle. The latter vortices are streamwise-oriented,
counter-rotating vortices, which can be considered the extension of the horse-
shoe vortices downstream of the jet nozzle. These features have been described
in many publications for the mean flow, see e.g. Fric & Roshko (1994); Kelso
et al. (1996); Smith & Mungal (1998); Yuan et al. (1999), and they are present
in both the steady-state solution and the mean flow in very similar form. The
most significant differences are located further away from the wall, indicating
that the mean flow distortion due to fluctuations is small in the near-wall re-
gion. Most obvious is the clearly stronger, longer and higher-reaching CVP in
the steady flow, indicated by the label ① in figure 2. This can be explained by
the missing breakup of the vorticity, which leads to a lower momentum loss for
the jet fluid, thereby allowing the jet to longer retain its wall-normal velocity.
Since the mean flow is a solution to the RANS equations, it exhibits increased
momentum diffusion due to the Reynolds stresses.
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Figure 2. (a) Mean flow and (b) steady flow obtained by
SFD visualized by iso-contours of λ2 = −0.09 (solid green),
λ2 = −0.01 (opaque green) and u = 0.2 (grey) close to the wall.
The vertical plane towards the end of the domain is color-coded
according to the spanwise velocity component. The numbered
labels are discussed in the text.

A closer inspection of the region close to the jet nozzle (figure 2) shows
that up to approximately two jet diameters from the wall, a continuous vortex
sheet is present on the windward side of the jet (label ②). Referring back to
figure 1, this vortex sheet is also clearly visible; Lim et al. (2001) termed this
layer as cylindrical shear layer. At this wall-normal position, the leeward side
of the jet already shows the deformation of the jet cross section into the kidney
shape characteristic of the growing CVP (Muppidi & Mahesh 2006). An area
of negative streamwise velocity is located in the same region, indicating that
the roll-up of the sides is sucking in fluid from the downstream part of the
crossflow. Above approximately three jet diameters, a two-layer structure of
the growing CVP becomes apparent. The outer vortex shell is detaching from
the main CVP direction, forming two distinct vortex cores pointing in the
downstream direction and forming a second set of CVP, denoted lower CVP,
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label ③. The inner vortices continue to extend to higher wall-normal distances;
now as distinct counter-rotating vortices forming the dominant far-field CVP
labelled ①. Note that the direction of rotation is the the same on each side of
the axis of symmetry for the CVP and lower CVP, i.e. directed in such a way
that fluid is lifted up in between the vortices. Although the distinction between
the two CVP is clearest in the steady solution, they can also be identified in the
mean flow, figure 2(a), indicating that the respective dynamics is also present
in the time-dependent flow.

The present results show that for the development of a counter-rotating
vortex pair, the pipe below the jet nozzle is not necessary. This is in agreement
with the studies by Cortelezzi & Karagozian (2001) and Muppidi & Mahesh
(2006) which – with different numerical methods and degrees of complexity
– obtain a CVP in their simulations without modeling the inflow pipe. In
addition, the steady state clearly shows that for the development of a CVP
only a steady flow is necessary. To what extent the periodic roll-up of the
shear layer might further contribute to the circulation in the CVP (Kelso et al.
1996) can of course not be answered by considering the steady solution, however
it seems certain that this roll-up is not the origin of the CVP.

3.2. Unsteady features

In addition to the steady features, a number of unsteady motions are char-
acteristic of the jet in crossflow. Most dominant are the shear-layer vortices,
appearing predominantly on the upstream side of the jet trajectory for the given
inflow ratio (Kelso et al. 1996; Lim et al. 2001). These half-ring shaped vortices
grow, and quickly break down into a series of smaller vortices, which continue
to convect downstream and eventually dissipate due to viscosity. The origin
and evolution of these vortices has been described and documented by many
sources, e.g. Fric & Roshko (1994); Kelso et al. (1996); Blanchard et al. (1999);
Lim et al. (2001); Muppidi & Mahesh (2007). These vortices can be seen in the
visualizations in figure 1 for both the symmetric (DNS-SYM) and asymmetric
case (DNS-ASYM). The time signal recorded by a probe located in the shear
layer is shown in figure 3(a) for case DNS-ASYM together with its power spec-
trum. The peak frequency beats with a Strouhal number St ≡ fD/Vjet = 0.14
(figure 3c). This frequency will be denoted St2 in the following. For case DNS-
SYM, which is restricted to symmetric motion about the plane with z = 0, a
slightly higher Strouhal number, St = 0.17 (Bagheri et al. 2009b) is found. It
is interesting to note that this slight difference in frequency for the symmetric
and asymmetric shear-layer motion is also captured in the linear global stability
analysis (see Bagheri et al. 2009b, and section 5 below), which yields St = 0.19
and St = 0.17 for the symmetric and asymmetric global modes (denoted S1

and S3 in Bagheri et al. 2009b).

From visualisations it is also apparent that the symmetric case leads to
more regular flow patterns after the vortex breakdown; the arising vortex struc-
tures clearly resemble those documented by Cortelezzi & Karagozian (2001).
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Figure 3. (a),(b) Time signals and (c) power spectrum of
two probes in the flow. The red line corresponds to a probe lo-
cated in the separated region downstream of the jet, (x, y, z) =
(10.7, 1, 0), the blue line corresponds to a probe in the shear
layer, (x, y, z) = (12, 6, 2).

In the asymmetric case, the basic mechanism of vortex generation in the shear
layer is still present, however, the arising flow structures are not as clear as in
the symmetric case. In addition, the visual density of the visualized vortices is
much higher, indicating a more unstable flow configuration in the unconstrained
case.

Another characteristic unsteady feature of the jet in crossflow are the up-
right vortices (Fric & Roshko 1994; Kelso et al. 1996) appearing in the wake of
the jet, connecting the main jet trajectory and the wall vortex system, i.e. the
wall vortices. The upright vortices are roughly aligned with the wall-normal
direction, periodically shed away from the upstream part of the jet. Several
explanations of their origin have been proposed in the literature (see e.g. Kelso
et al. 1996), including the classical von Kármán-type vortex street. From the
present DNS data, the upright vortices were identified using isocontours of the
wall-normal vorticity ω2, see figure 4 for case DNS-ASYM. In the wake, the
upright vortices appear regularly with alternating sign of the vorticity. Probes
located in the jet wake record exactly the same frequency peak as in the shear
layer, i.e. St2 = 0.14. It thus seems that in the present flow for each shear-layer
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Figure 4. Isocontours of the wall-normal vorticity for case
DNS-ASYM (ω2 = ±0.1), orange isocontours correspond to
positive and green to negative values.

vortex a corresponding upright vortex is created and released. Inspection of an
animation clearly confirms this observation, i.e. that the upright vortices are
connected to the higher frequency St2. This physical insight will be further
supported below by the global mode analysis.

In addition to this high frequency St2, there is a clear lower frequency
present, both in the shear-layer signal as a secondary peak, but being most
dominant in a probe located in the recirculation zone downstream of the jet
orifice, see figures 3(b, c). This frequency is measured as St1 = 0.017. The
additional frequency peaks in figure 3(c) are all linear combinations of St1 and
St2, corresponding to higher harmonics triggered by non-linear interactions
between the two main frequencies.

Several additional time signals from other probes have been obtained and
compared to the ones presented here, and in all of these the two frequencies St1
and St2 appear as the two dominant fundamental frequencies. In particular,
in a probe upstream of the orifice close to the horseshoe vortex, a clearly
dominating energy peak at St1 is recorded. In probes located far downstream,
a much broader spectrum is obtained, however, still being dominated by St1
and St2. This shows that due to non-linearity the region between the discrete
frequencies is gradually filled up as the jet vortices decay into smaller eddies.

4. The separated region

There is some evidence (Hammond & Redekopp 1998) and numerous studies
(Theofilis et al. 2000; Alam & Sandham 2000; Barkley et al. 2002; Marquillie &
Ehrenstein 2002; Theofilis 2005; Giannetti & Luchini 2007; Åkervik et al. 2007)
that connect self-sustained oscillations in fluid systems with large unsteady
separated regions. The flow under investigation here has two regions of reversed
flow: a smaller, essentially steady separated region upstream of the jet which
coincides with the horseshoe vortex, and a larger unsteady region of reversed
flow directly downstream of the emerging jet near the wall.
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4.1. Analysis of the steady near-field

Figure 5(a) shows the two-dimensional steady flow in the center-plane z = 0
in the vicinity of the jet nozzle. Note that the mean flow essentially features
the same qualitative properties as the steady flow described here. Upstream
of the jet exit, a stagnation point and a small recirculation zone are observed.
On the leeward side, a much larger region with backflow is located; however,
interestingly a small region inside this recirculation zone has again positive u
velocity. In this plane, the flow is dominated by the high, slightly deflected,
wall-normal velocity due to the emerging jet, and a number of interesting stag-
nation/saddle points and vortex nodes. The wall-normal velocity component
also changes sign from negative in the near-wall region to positive further away.
The combination of the sign changes allows to identify three singular points of
interest in the downstream part of the jet: Two locations (red dots in figure 5a)
are characterized by positive divergence; and another constitutes a saddle point
(green dot). From the streamlines plotted, it is clear that the jet is entraining
crossflow fluid from the leeward side. The node located further downstream at
(x, y) ≈ (15.7, 2.3) has already been described by Kelso et al. (1996) and, in
the mean flow obtained from DNS, by Muppidi & Mahesh (2005). As opposed
to these references, however, in the present study an additional node location
could be identified at (x, y) ≈ (11.6, 0.63) inside the recirculation zone on the
boundary of the above mentioned hole. In between these two nodes another
saddle point can be found. The existence of two nodes in the steady flow fur-
ther indicates the complex flow physics associated with the downstream region
of the jet, and consequently, the various instabilities detected along the jet
trajectory.

On the windward side, the dominant horseshoe vortex is located at (x, y) ≈
(7.21, 0.37) (black dot), and a second vortex centre, located much closer to the
jet at (x, y) = (8.13, 0.35), is commonly associated with the hovering vortex
(Kelso et al. 1996). These two vortices have opposite directions of rotation.
In addition, two saddle points can be identified; the upper one separating the
crossflow fluid from being entrained in the jet or being recirculated.

A plan view of the streamlines in a (x, z)-plane close to the wall is shown in
figure 5(b). Three foci are identified; one close to the axis of symmetry (z = 0),
one on the downstream side of the jet boundary, and – most dominantly – in
the wake of the jet at (x, z) ≈ (14.31,−1.19). In all these points, negative
divergence is present indicating entrainment of fluid directed away from the
wall. It is interesting to note that the steady flow features a slightly different
layout of the various singular points as sketched by Kelso et al. (1996). In
particular, the dominant focus is clearly downstream of the jet nozzle, and a
secondary focus is present close to the axis of symmetry. This second focus
is due to the region with positive streamwise velocity embedded in the larger
region of backflow.
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Figure 5. Two-dimensional cuts of the steady flow, (a) in a
z = 0 plane and (b) in a wall-parallel plane close to the wall.
The solid black lines correspond to zero streamwise velocity
u = 0, the dashed black lines to v = 0. Saddle points are
indicated by green dots; nodes with red dots and foci with
black dots. Streamlines are plotted with colored lines. In (b)
the background gray shade corresponds to the amplitude of
the total velocity (u2 + v2)(1/2).

4.2. Movement of the separation region

The two recirculation regions described above are also detectable in the instan-
taneous visualization shown in figure 6. The animation of the DNS data shows
that the separation region downstream of the jet orifice is highly unsteady. In
the upper part of this region, patches of negative u are periodically released
with the fundamental frequency St2 = 0.14. This happens at a streamwise
position close to the jet exit, at which the shear-layer vortices are not yet
developed.
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Figure 6. Instantaneous visualization of the region close to
the jet orifice at t = 375 and t = 408. Green isocontours corre-
spond to v = 0.1 and grey contours to u = −0.1. The arrows
indicate the location of the low-frequency spanwise oscillation
of the separation region.

In the animations, also the lower frequency St1 characteristic of the present
setup can be observed. The two snapshots shown in figure 6 are separated by
∆t = 32 time units, which is approximately half the period of that lower fre-
quency St1 = 0.017. The visualizations show that the whole recirculation zone
downstream of the jet is periodically moving back and forth in the spanwise
direction. The respective positions are indicated in the figure by the arrows. As
the probe signals in figure 3 show, the low frequency peak is most dominant just
downstream of the jet. The oscillation of the separation region is subsequently
felt by the whole jet body and the wake vortex system further downstream.
One possible explanation for this motion is given by the comparison of the re-
spective Strouhal number to that of a solid cylinder (see also the corresponding
discussion by Fric & Roshko 1994; Ziefle 2008, on that topic). For a cylinder
wake, the relevant Strouhal number is defined as Stc = fD/U with U being
the uniform flow velocity in the far field. Adapting the present definition of
the frequency based on the jet velocity gives Stc = St1(Vjet/U∞)(U∞/U). As-
suming U/U∞ ≈ 1/3 due to the reduced streamwise velocity in the proximity
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of the wall gives Stc ≈ 9St1 = 0.153, which is on the same order of magni-
tude as expected for a solid cylinder. Note that this oscillation is not related
to the upright vortices which are associated with the higher frequency St2 as
discussed above.

On the other hand, a careful analysis of the separation region upstream
of the jet did not reveal any significant oscillation. In particular, the saddle
point upstream of the jet trajectory did not move, which is in contrast to the
prediction by Kelso et al. (1996). However, as mentioned earlier, the effect of
the chosen inhomogeneous boundary conditions without modeling the inflow
pipe might be a factor to explain this apparent difference.

We can thus conclude from observation in our DNS data that the separa-
tion region downstream of the jet is in fact oscillating in two directions with
two distinct frequencies: A high frequency oscillation in the vertical direction,
characterized by periodic shedding with the same frequency as the shear-layer
vortices and the upright vortices in the wake, and a lower frequency oscillation,
inducing a slow spanwise wiggling of the whole jet and its associated vortex
systems.

5. Global modes

The objective of this section is to analyze global modes of the jet in crossflow, in
order to gain further insight into the flow dynamics. A global mode is defined
as a coherent flow structure (e.g. wavepacket) that exists within the full three-
dimensional flow domain. In particular, we focus our attention on two different
types of global modes, namely global eigenmodes and POD modes.

First, we consider the linear subspace spanned by the leading global eigen-
modes of the Navier–Stokes equations linearized about the steady-state solu-
tion. In this subspace, the behavior of small-amplitude disturbances near the
steady solution is captured. More specifically, the eigenmode of the linearized
system with the largest growth rate determines whether the steady solution is
unstable or stable. As established by Huerre & Monkewitz (1990) – although
this analysis is constrained only to a neighborhood of the steady-state solu-
tion – if the baseflow is rendered unstable, the global (nonlinear) flow may
self-sustain global oscillation (e.g. vortex shedding).

Second, we consider the linear subspace spanned by a number of POD
modes – the eigenmodes of the spatial correlation matrix. This subspace iden-
tifies those parts of the phase space which contains the most kinetic energy,
typically attractors in phase space (Holmes et al. 1996). For the jet in crossflow
we observe as discussed in the previous section 3.2, two fundamental frequen-
cies associated with two self-sustained global oscillations, indicating a quasi-
periodic type of attractor.

5.1. Linear global eigenmodes

The evolution of infinitesimal perturbations u′(x, y, z, t) to a steady solution
(e.g. baseflow) U(x, y, z) is found by inserting u = U + ǫu′ and p = P + ǫp′,
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Figure 7. The linear spectrum of the jet in crossflow at
R = 3. The eigenvalues marked with squares correspond to
anti-symmetric eigenmodes, whereas black circles correspond
to symmetric eigenmodes.
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where p′ is the pressure perturbation, into (1) and neglecting terms of order
ǫ2. These equations are solved subject to the same boundary conditions in
x, y and z as eq. (1), however for the perturbation dynamics, the jet boundary
condition is not imposed. By enforcing the incompressibility condition and
incorporating the boundary conditions, the resulting linearized Navier–Stokes
equations (LNS) can be written as initial value problem,

∂u

∂t
= Au, u(t = 0) = u0 . (7)

In a discretized setting A is the n × n Jabobian matrix, where n = 3nxnynz

is the total number of degrees of freedom. If the baseflow is a steady solution,
equation (7) is autonomous and the eigenmodes of A are of the form

u(x, y, z, t)′ = eλjtφj(x, y, z) , j = 1, . . . , n (8)

where both the eigenvalues λj and eigenmodes φj are complex functions. The
eigenmode φj grows or decays in time with a rate given by of σj = Re(λj) and
oscillates with temporal frequency given by the ωj = Im(λj).

If the eigenmodes depend on two or three spatial coordinates they are
called global eigenmodes to differentiate them from local stability analysis. In
our fully three-dimensional case, n ≈ 107, and therefore the eigenmodes of A
have to be computed using an iterative algorithm (e.g. Arnoldi method) in com-
bination with matrix-free methods. This time-stepper technique is described
in Bagheri et al. (2009a,b). Linear global stability analysis of two-dimensional
steady base flows has only recently become standard in field of hydrodynamics
stability (see e.g. Theofilis 2005; Åkervik et al. 2007, 2008; Barkley et al. 2002;
Giannetti & Luchini 2007, among others).
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Mode Growth-rate (σ) Frequency (St) Residual Symmetry Vortex type

1 0.0685 0.169 10−13 A Shear/Upright
2 0.0622 0.106 10−13 A Shear/Upright
3 0.0441 0.183 10−9 S Shear
4 0.0333 0.23 10−9 S Shear
5 0.0303 0.25 10−9 S Shear
6 0.0274 0.043 10−8 A Wall
7 0.0246 0.30 10−13 S Shear
8 0.0233 0.32 10−13 S Shear
9 0.0230 0.218 10−7 S Shear
10 0.0227 0.375 10−13 S Shear
11 0.0211 0.40 10−13 S Shear

Table 1. The properties of each linear global eigenmode. ‘A’
refers to anti-symmetric modes and ‘S’ to symmetric modes.

In figure 7 the linear spectrum is shown. The spectrum was computed
using 1800 snapshots in order to obtain 22 eigenmodes with smaller residual
error than 10−7; see also Bagheri et al. (2009b). The eigenvalues, the properties
of the corresponding eigenmodes and their residuals are listed in Table 5.1. All
the computed modes are unstable and each mode φj is associated with an
instability, evolving near to the steady-state baseflow.

5.1.1. Anti-symmetric modes

The most unstable mode (φ1) is an anti-symmetric mode (symmetry refers to
the u and v component with respect to the z-axis) as shown with red λ2 contours
in figure 8(a). In the figure the base flow is shown in blue (λ2) and gray (u).
This mode oscillates with St = 0.169. Although the most dominant feature
of this instability is a wavepacket located on and around the CVP, it is also
associated with the upright vortices; we could observe (see figure 5b in Bagheri
et al. 2009b, where the same mode from a different angle is shown) a significant
spatial structure on the leeward side of the CVP, extending towards the wall in a
nearly normal direction to the CVP. The connection of these two vortex systems
was also observed in the nonlinear DNS simulation. The amplitude of the
mode very close to the wall is significantly smaller compared to the amplitude
on the jet as shown in figure 8(b), where isocontours of the spanwise velocity
component are plotted. The alternating positive and negative spanwise velocity
in the streamwise direction contributes mainly to the wall-normal vorticity
which constitute the upright vortices. In a linear approximation, the structures
of the global mode in the jet region, wake region and wall region grow with the
same rate and oscillate with the same frequency. The various vortex systems
are thus coupled, which illustrates the global character of the flow. The second
most unstable mode (φ2) is also anti-symmetric, with a very similar spatial
structure as the first mode as shown in figures 8(c, d). However, this mode
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Figure 8. Top view of 5 eigenmodes. Left column: contour
levels of the λ2 criterion, whereas the baseflow is shown in
blue (λ2) and gray (u). Right column: the structure of the
modes near the wall with positive (black) and negative (green)
contours of the w component. The growth rate of the modes
decrease from top to bottom. Modes shown on row 1,2 and 4
are anti-symmetric whereas row 3 and 5 show high-frequency
symmetric modes.
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oscillates with a lower frequency (St = 0.1) and is characterized by a somewhat
larger spatial wavelength than φ1. The global eigenmode (φ6) with the lowest
frequency St = 0.043 (anti-symmetric) is shown in figures 8(g, h). Its structure
is mostly concentrated close to the wall, and has a rather small amplitude along
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(a)

(b)

Figure 9. Top view of the superposition of the base flow and
(a) the most unstable global mode (b) the most unstable sy-
mmetric mode.

the CVP. In particular, the structure near the wall is considerably different
compared to the other modes. This mode is associated with the shedding of
vortices from the spanwise oscillation of the separated region discussed earlier
– reminiscent of the global mode of the cylinder wake (Giannetti & Luchini
2007).

To gain a better insight into how the instability affects the flow, we super-
impose on the steady solution the most unstable anti-symmetric mode with a
chosen amplitude such the modulation caused by the instability becomes clear.
As shown in figure 9(a), the most unstable mode modifies mainly the CVP;
a sinuous in-phase oscillation of the two vortex tubes is observed in top view
whereas a side view (not shown) reveals out of phase oscillations of the tubes.
Moreover, the wavelength of the modulation due to the instability seems of
the same order as the vortex cores of the CVP. These can be interpreted as
being the traits of a short-wavelength instability of a vortex pair as observed
by numerical simulation of Laporte & Corjon (2000) and the experiments of
Leweke & Williamson (1998). Such an instability is due to a resonance between
two waves of one vortex and straining field induced by the other vortex. In
figure 10 the streamwise vorticity component in a cross plane (yz-plane) far
downstream is shown for the base flow and the most unstable global mode.
The CVP centered around y = 14 can clearly be seen in figure 10(a). The
global mode, figure 10(b), shows a characteristic two-lobe structure in each
CVP vortex. This is remarkably similar to the vorticity computed analytically
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Figure 10. Streamwise vorticity at x = 40 for the steady
base flow (a) and the most unstable mode (b). Contour levels
are 0.1, 0.2, . . . , 1.0 · ωz,max, red is positive, blue negative.

for the elliptic instability (Waleffe 1990, figure 2) and the short-wave instability
(Leweke & Williamson 1998, figure 10).

These observations suggest (see also Blanchard et al. 1999) that part of
the globally unstable mode is an instability of elliptic type due to a strained
vortex. However, to fully confirm an elliptic instability the CVP tubes have to
analyzed locally similar to analysis of Fabre et al. (2000), which is not within
the scope of the present paper. Previous investigations (Leweke & Williamson
1998; Laporte & Corjon 2000) show that at the nonlinear phase – when the
amplitude of the short-wave instability has reached sufficiently large amplitude
– transverse vortical structures are created between and around the vortex
pair. The late stage of these vortical structures (see e.g. Laporte & Corjon
2000, figure 10) are somewhat similar to the structures shown in figure 1(b).

5.1.2. Symmetric modes

A number of the computed global modes (modes φ3 − φ5,φ7 − φ11 in Table
5.1 and marked with black circles in figure 7) represent symmetric shear-layer
modes with a rather high temporal frequency. The most unstable symmetric
mode is shown in figures 8(e, f) and the symmetric mode with the highest fre-
quency is shown in figures 8(i, j). The common feature of the symmetric modes
is that they have very small spatial support near the wall (see figures 8f and
8j). The global mode consists of a symmetric spanwise oriented row of vortex
loop that wrap around the upper part of the CVP and are gradually stretched,
and develop “legs” that align with the direction of CVP tubes; the direction of
rotation in the loop at z = 0 is clockwise viewed in negative z direction. Figure
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9(b) shows the superposition of the baseflow and the most unstable symmet-
ric global mode. The CVP are modulated in varicose fashion viewed from top.
Note that the wavelength of the symmetric instability is rather small compared
to the wavelengths commonly observed in the Crow instability (Crow 1970) of
a vortex pair. From a nonlinear simulation of the disturbance (not shown here)
we could observe, that as the disturbance grows in amplitude “arches” are cre-
ated, i.e. the vortex loops coil up around the upper side of the CVP and their
bases join with the CVP. This type of symmetric structures have been observed
in many studies (see e.g. Kelso et al. 1996; Cortelezzi & Karagozian 2001; Lim
et al. 2001), and have been associated with the roll-up of the cylindrical vor-
tex sheet (shear layer) emerging from the jet nozzle. The symmetric vortex
arches observed in the unstable symmetric global modes could thus be partly a
result of the Kelvin-Helmholtz roll-up at the upstream side of the jet column.
The cylindrical vortex sheet undergoes various stretching and folding processes
at the same time as the roll-up, resulting in significantly more complicated
structures on the lee side (rear) of the shear layer.

5.1.3. Connection to separated region

Global instabilities are commonly associated with a region in the flow where
there is a separation which induces vortex shedding (Theofilis et al. 2000;
Barkley et al. 2002). In section 4 two separation regions were identified near the
wall; one small steady separation region upstream of the jet orifice and one sep-
aration region just downstream of the jet orifice, oscillating in two directions,
slowly in the spanwise direction with St1 = 0.017 and rapidly along the jet
trajectory with St2 = 0.14. The Strouhal numbers of the unstable modes are
in the range [0.04, 0.17], and do not exactly match the two fundamental shed-
ding frequencies observed in the DNS. However, the stability analysis merely
accounts for the linear dynamics in the neighborhood of the steady-solution,
where the Strouhal numbers can be considerably different from the saturated
three-dimensional dynamics near the attractor.

It is well-known that when the reversed flow in an isolated free shear layer
exceeds roughly 15% of the main stream, the flow is absolutely unstable (Huerre
& Monkewitz 1985). Although the fully three-dimensional jet in crossflow is
considerably more complex, it was shown by Hammond & Redekopp (1998) that
typical backflow velocities in “realistic” separation bubbles are sufficiently large
to induce absolute instability. Absolute instability is a local concept for weakly
non-parallel flows and is not straight-forward to conduct such an analysis for
the jet in crossflow. However, due to the fact that globally unstable flows have
a region or pocket of local absolute instability somewhere in the flow (Chomaz
et al. 1991) and that this pocket is connected to a region of significant backflow
(Hammond & Redekopp 1998), it is likely that the separated region downstream
acts as an oscillator in the flow. It periodically sheds patches of vorticity, which
are convected into the jet, wake and wall region and amplified due to different
local mechanisms (such as Kelvin-Helmholtz or short-wave elliptic instability).
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Figure 11. The energy Ej = γj/
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i γi × 100 of the POD
modes with j = 1, . . . , 20. The POD modes and coefficients
corresponding to the eigenvalues depicted in color are shown
in figures 12 and 13, respectively. Red: antisymmetric high-
frequency mode, blue: symmetric high-frequency mode, green:
low-frequency mode.
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Finally, it should be mentioned that a general feature of absolutely unstable
spatially developing flows is that further downstream a convectively unstable
region follows and finally a stable region. In such flows, the unstable global
modes are located far downstream of the absolutely unstable region (Huerre &
Monkewitz 1990); the maximum amplitude of the global mode being located in
the convectively unstable region. In our setting, the shear layer and CVP could
merely act as a noise amplifiers. Although the present analysis suggests such
a scenario, additional local investigation of the current steady solution should
be undertaken to fully ascertain our conjectures.

5.2. POD decomposition

Given a set of flow-field snapshots at discrete times {u(t1), . . . ,u(tm)}, the
optimal finite-dimensional representation (in the L2 Hilbert space) of size k of
this data set is given by expansion into the first k POD modes (Holmes et al.
1996). This optimal basis is given by the eigenfunctions ψj of the autocorrela-
tion function (∫ t

0

u(t)u(t)T dt

)

ψj = γjψj . (9)

The eigenfunctions are mutually orthogonal and the eigenvalues are positive
valued, ordered by γj ≥ γj+1. Moreover, the eigenvalues γj represent twice
the kinetic energy in each mode ψj . The subspace spanned the k POD modes
corresponding to the largest k eigenvalues, contains the most energetic flow
structures in the field. The POD modes can be computed using the method of
snapshot (Sirovich 1987).

The POD modes of the jet in crossflow were computed using 550 snapshots
equidistantly distributed in time from t = 150 to t = 700. The transient flow
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Figure 12. Positive (red) and negative (blue) isocontours of
the u-velocity of 3 POD modes from top view and side view.
The first row corresponds to the modes marked with red cir-
cles; the second row to blue circles and the third row to green
circles in figure 11.
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evolution was hence not included in the data set. All computed modes satisfy
the orthogonality condition down to 10−10. The zeroth mode (ψ0) corresponds
to the time-averaged mean flow (shown in figure 2) which has been discussed
thoroughly earlier.

The energies of the modes ψ1−ψ20 are shown in figure 11, were we clearly
notice the pairing of modes, which is typically observed in flows containing
traveling structures. Each pair describes the phase and amplitude of one trav-
eling dynamical structure in the flow. The first pair of modes (ψ1,ψ2) contains
68% of the total energy (red circles in figure 11). The positive (red) and neg-
ative (blue) streamwise velocity component of one mode is shown in figures
12(a, b) from two angles. It clearly displays shear-layer vortices and to some
extent the upright vortices. The temporal behavior of this mode is charac-
terized by computing the POD coefficients via a Galerkin projection of the
flow-field snapshots onto the mode. The POD coefficient of this pair and its
corresponding power spectrum are shown with red lines in figures 13(a) and
13(d), respectively. There is one peak frequency at St = 0.138 which matches
the Strouhal number of the shedding of the shear-layer vortices observed from
DNS (St2 = 0.14). The mode is anti-symmetric and is located mainly near
the location where the shedding of the shear-layer vortices takes place. This
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indicates that the flow mechanism that contributes the most to the total flow
energy is the shedding of shear-layer vortices.

The second pair of modes (ψ3,ψ4) contains 1.9% of the total flow energy,
with one mode (ψ3) shown in figures 12(c, d). In contrast to the first pair,
this pair has a distinct spatial structure further downstream along the jet tra-
jectory and more pronounced upright vortices on the leeward side. Moreover,
anti-symmetric flow structures very close to the wall and far downstream along
the flat plate corresponding to wall vortices are also detected. The POD coef-
ficients and the corresponding power spectrum of this pair are shown in figures
13(b) and 13(d), respectively. The signal contains three frequency peaks, were
the largest peak is obtained for St1 + St2 = 0.158 and the second largest is
−St1 + St2 = 0.121, due to the interaction of the two fundamental shedding
frequencies.

Finally, we pair up two modes with similar energy levels consisiting of
modes ψ5 and ψ8, with the energy 1.8% and 1.3% respectively. Although
these modes do not have exactly the same energy they form a pair as shown by
the POD coefficients in figure 13(c). The corresponding power spectrum of the
time signal, figure 13(d), clearly shows a low-frequency peak with St = 0.0188
which nearly matches the shedding frequency St1 = 0.017 (associated with the
separation region downstream of the jet orifice and close to the wall). Indeed,
as shown in figure 12(f), this mode has a significant anti-symmetric and large-
scale structure near the wall. However, this mode also has structures along the
jet trajectory further away from the wall. This indicates that the shedding of
wall vortices is coupled to the jet body, i.e. the low frequency can be detected
nearly anywhere in the vicinity of the jet since the whole jet is oscillating with
that frequency.

6. Discussion and conclusions

We have performed numerical simulations of a jet in crossflow and analyzed two
steady and three unsteady vortex systems by means of the time-averaged mean
flow and its associated POD modes and the steady solution to Navier–Stokes
equations and its associated linear global eigenmodes.

The result can be summarized as follows.

(i) A steady-state solution of the jet has been analyzed, featuring a dom-
inant counter-rotating vortex pair (CVP), horseshoe and wake vortices. The
CVP is a true steady vortex system and the associated roll-up of shear-layer
vortices is not the origin of the CVP. The steady-state solution also shows
that the CVP is composed of an outer shell (shear layer), shielding the inner
CVP from the crossflow fluid. The downstream deflection of the outer vortex
sheet leads to the formation of a secondary (lower) CVP, composed of swirling
fluid of the crossflow. This secondary CVP can be observed for long distances
downstream, however, it is weaker than the main (upper) CVP.

(ii) Shear-layer vortices were observed in the non-linear DNS to be contin-
uously shed with a frequency of St2 = 0.14, initiated by a separation region
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Figure 13. The temporal behavior of POD modes are show
in terms of the POD coefficients. (a) POD coefficients of the
first pair, (b) second pair and (c) third pair of modes. The
power spectrum of the signals in (a,b,c) is shown with the same
color.

about one jet diameter along the jet trajectory. This frequency is one of two
fundamental frequencies in the flow, as all other frequencies in the flow were
found to be higher harmonics of these two. The frequency St2 = 0.14 matches
the frequency obtained from the POD analysis St = 0.138 for the most energetic
mode pair, whereas it is smaller than the Strouhal number 0.169 obtained from
the linear global analysis for the most unstable global mode. The leading POD
mode and most unstable linear global eigenmodes are both anti-symmetric co-
herent structures associated with the shear-layer vortices. In particular, we
could identify “two-lobe” structures in the most unstable global mode that are
strikingly similar to previous experimental, numerical and analytical studies of
elliptic short-wave instability of a vortex pair. The symmetric unstable modes
have “arch-like” structures of vortex loops that are similar to previous studies
of the Kelvin-Helmholtz shear-layer roll-up on the upper side of the cylindrical
vortex sheet. It remains to be shown if near the separated region a pocket of
absolute instability exists that sheds vortices which then grow as they prop-
agate along the CVP. However, we are investigating this issues further using
both global and local techniques.

(iii) Upright vortices were observed in the DNS which connect the shear-
layer vortices to the wall vortices. The upright vortices are also shed with
the shear-layer frequency St2. The connection of the vortex systems was also
confirmed by both the linear and POD analysis, since the shear-layer global
modes display significant connected structures on the leeward side of the CVP,
oriented in the vertical direction towards the flat plate.

(iv) The second fundamental frequency is the shedding of wall vortices
with St1 = 0.017 from a separation region just downstream of the jet nozzle.
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The spanwise oscillation of the separated region is similar to the von-Kármán
vortex street observed behind bluff bodies. The global coherent structures
also capture this dynamics. The physical insight gained by an unstable linear
global eigenmode showed remarkable similarities with global modes of the wake
behind circular cylinder. The POD mode associated with the wall vortices, on
the other hand, indicates that the whole jet is oscillating with the low frequency
as the coherent mode has non-zero amplitude along the jet trajectory. Similarly
to high frequency St2, the shedding frequency in the wall region St1 = 0.017
is very close to St = 0.0188 obtained from the POD analysis, but significantly
smaller than St = 0.043 obtained from the linear global analysis.

Computer time was provided by the Swedish National Infrastructure for
Computing (SNIC). Financial support by the Swedish Research Council (VR)
is gratefully acknowledged.
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Spectral analysis of nonlinear flows
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We present a technique for describing the global behavior of complex, nonlinear
flows, by decomposing the flow into modes determined from spectral analysis of
the Koopman operator, an infinite-dimensional linear operator associated with
the full nonlinear system. These modes, referred to as Koopman modes, are
associated with a particular observable, and may be determined directly from
data (either numerical or experimental) using a variant of a standard Arnoldi
method. They have an associated temporal frequency and growth rate and
may be viewed as a nonlinear generalization of global eigenmodes of a linearized
system. They provide an alternative to Proper Orthogonal Decomposition, and
in the case of periodic data the Koopman modes reduce to a discrete temporal
Fourier transform. The Arnoldi method used for computations is identical to
the Dynamic Mode Decomposition recently proposed by Schmid & Sesterhenn
(2008), so Dynamic Mode Decomposition can be thought of as an algorithm
for finding Koopman modes. We illustrate the method on an example of a jet
in crossflow, and show that the method captures the dominant frequencies and
elucidates the associated spatial structures.

1. Introduction

Many fluid flows exhibit complex phenomena that occur on a wide range of
scales in both space and time. Even with large amounts of information avail-
able from simulations, and comprehensive experimental measurements such as
time-resolved Particle Image Velocimetry (PIV), analysis of complex flow phe-
nomena directly from raw time histories of the dynamics is usually not fruit-
ful. In practice, one often analyzes flow structures by decomposing them into
modes. Common techniques include global eigenmodes for linearized dynamics
(see, e.g., Bagheri et al. 2009), discrete Fourier transforms, Proper Orthogo-
nal Decomposition (POD) for nonlinear flows (Holmes et al. 1996), balancing
modes for linear systems (Rowley 2005), and many variants of these techniques,
such as using shift modes (Noack et al. 2003) in conjunction with POD modes.

1Dept. of Mechanical and Aerospace Engineering, Princeton University, NJ 08544
2Dept. of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070
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Here, we present a modal decomposition for nonlinear flows based on spec-
tral analysis of a linear operator, called the Koopman operator, that is defined
for any nonlinear system. Even if the governing dynamics are finite dimen-
sional, the Koopman operator is infinite dimensional, and does not rely on
linearization of the dynamics: indeed, it captures the full information of the
nonlinear system. This operator has been used to analyze nonlinear dynamical
systems, for instance in Mezić & Banaszuk (2004) and Mezić (2005), and in
these works it was shown that for nonlinear systems evolving on an attractor,
modes corresponding to eigenvalues of the Koopman operator may be computed
using harmonic averages, or discrete Fourier transforms.

The paper is organized as follows. In section 2, we define the Koopman
operator and its modes associated with a particular observable. In section 3,
we show that one may compute approximations to these eigenvalues and their
associated modes using a version of the familiar Arnoldi algorithm that does not
require knowledge of an underlying linear operator. This algorithm is the same
as that referred to as Dynamic Mode Decomposition by Schmid & Sesterhenn
(2008). Finally, in section 4, we illustrate the method on an example of a jet
in crossflow.

2. Koopman operator and Koopman modes

Consider a dynamical system evolving on a manifold M such that, for xk ∈M ,

xk+1 = f(xk), (1)

where f is a map from M to itself, and k is an integer index. Note that one
could equivalently study continuous-time systems of the form ẋ(t) = f(x(t)),
but here we adopt the discrete-time setting, as we are ultimately interested in
analyzing discrete-time data. The Koopman operator is a linear operator U
that acts on scalar-valued functions on M in the following manner: for any
scalar-valued function g : M → R, U maps g into a new function Ug given by

Ug(x) = g(f(x)). (2)

Note that U is a linear operator, since U(αg1 + βg2)(x) = αUg1(x) + βUg2(x)
for any functions g1, g2, and scalars α, β. Although the dynamical system
is nonlinear and evolves on a finite-dimensional manifold M , the Koopman
operator U is linear, but infinite-dimensional.

The idea is to analyze the flow dynamics governed by (1) only from available
data—collected either numerically or experimentally—using the eigenfunctions
and eigenvalues of U . To this end, let ϕj : M → R denote eigenfunctions and
λj ∈ C denote eigenvalues of the Koopman operator,

Uϕj(x) = λjϕj(x), j = 1, 2, . . . (3)

and consider a vector-valued observable g : M → R
p. For instance, if x ∈ M

contains the full information about a flow field at a particular time, g(x) is a
vector of any quantities of interest, such as a velocity measurements at various
points in the flow. If each of the p components of g lies within the span of the
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eigenfunctions ϕj , then as in Mezić (2005), we may expand3 the vector-valued
g in terms of these eigenfunctions, as

g(x) =
∞∑

j=1

ϕj(x)vj . (4)

We typically think of this expression as expanding g(x) as a linear combination
of the vectors vj , but we may alternatively think of this expression as expanding
the function g(x) as a linear combination of the eigenfunctions ϕj of U , where
now vj are the (vector) coefficients in the expansion. In this paper, we will refer
to the eigenfunctions ϕj as Koopman eigenfunctions, and the corresponding
vectors vj in (4) the Koopman modes of the map f , corresponding to the
observable g. Note that iterates of x0 are then given by

g(xk) =

∞∑

j=1

Ukϕj(x0)vj =

∞∑

j=1

λk
jϕj(x0)vj . (5)

The Koopman eigenvalues, λj ∈ C, therefore characterize the temporal behav-
ior of the corresponding Koopman mode vj : the phase of λj determines its
frequency, and the magnitude determines the growth rate. Note that, as de-
scribed in Mezić (2005), for a system evolving on an attractor, the Koopman
eigenvalues always lie on the unit circle.

The following examples illustrate that eigenvalues and eigenfunctions of
the Koopman operator are related to objects we routinely use in fluid mechan-
ics, such as global eigenmodes (for linear systems) and the discrete Fourier
transform (for periodic solutions of 1).

2.1. Example: Koopman modes for linear systems

Suppose M is an n-dimensional linear space, and suppose the map f is linear,
given by

f(x) = Ax. (6)

It turns out that eigenvalues of A are also eigenvalues of U , and the eigenvectors
of A are related to eigenfunctions of U as well.

Let vj and λj denote eigenvectors and eigenvalues of A:

Avj = λjvj , j = 1, . . . , n, (7)

and let wj be corresponding eigenfunctions of the adjoint A∗ (that is, A∗wj =
λ̄jwj), normalized so that 〈vj ,wk〉 = δjk, where 〈·, ·〉 denotes an inner product
on M . Next, define scalar-valued functions

ϕj(x) = 〈x,wj〉 , j = 1, . . . , n. (8)

3Here, we assume that components of g lie within the span of the eigenfunctions of U . If
this is not the case, then to proceed rigorously, one may split U into regular and singular
components, and project components of g onto the span of the eigenfunctions, as done
in Mezić (2005).
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Then ϕj are eigenfunctions of U , with eigenvalues λj
4 , since

Uϕj(x) = ϕj(Ax) = 〈Ax,wj〉 = 〈x,A∗wj〉 = λj 〈x,wj〉 = λjϕj(x). (9)

Now, for any x ∈M , as long as A has a full set of eigenvectors, we may write

x =

n∑

j=1

〈x,wj〉vj =

n∑

j=1

ϕj(x)vj . (10)

For linear systems, then, the Koopman modes coincide with the eigenvectors
of A.

2.2. Example: Koopman modes for periodic solutions

Returning to the nonlinear setting, suppose we have a set of distinct vectors
S = {x0, . . . ,xm−1} that form a periodic solution of (1), such that xk+m = xk

for all k. A common way to analyze such a solution is to take its discrete Fourier
transform, which defines a new set of vectors {x̂0, . . . , x̂m−1} that satisfy

xk =
m−1∑

j=0

e2πijk/mx̂j , k = 0, . . . ,m− 1. (11)

Now, define a set of functions ϕj : S → C by

ϕj(xk) = e2πijk/m, j, k = 0, . . . ,m− 1. (12)

Then ϕj are eigenfunctions of the Koopman operator U , with eigenvalues

e2πij/m, since

Uϕj(xk) = ϕj(f(xk)) = ϕj(xk+1) = e2πij(k+1)/m = e2πij/mϕj(xk). (13)

Therefore, we may write the expansion (11) as

xk =
m−1∑

j=0

ϕj(xk)x̂j . (14)

Note the similarity with (10). Thus, if we restrict our phase space to the
periodic orbit S, the Koopman modes defined as in the previous subsection
are the vectors x̂j given by the discrete Fourier transform, and the phases
of the corresponding eigenvalues are the frequencies 2πj/m. This result in
fact applies more generally to non-periodic systems, as discussed in Mezić &
Banaszuk (2004) and Mezić (2005): when the dynamics are restricted to any
attractor, the Koopman modes may be calculated by harmonic averages, which
for finite-time datasets reduce to discrete Fourier transforms.

4Note that, unlike A, the operator U has a countably infinite number of eigenvalues, since
λk

j is also an eigenvalue, with eigenfunction ϕj(x)k , for any integer k.
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3. Computation of Koopman modes from snapshots

Here, we present an algorithm for computing the Koopman modes defined in
the previous section, given only values of a particular observable (snapshots),
sampled at regular times. As before, we will assume that the dynamics are
governed by (1), and that for any state x, we can measure a vector-valued
observable g(x) ∈ Rp. For instance, if we have access to a grid of velocity
vectors in a limited region of space (e.g. obtained via PIV), then p is the
number of grid points times velocity components.

In particular, below we show that the commonly-used Arnoldi algorithm,
when applied to a nonlinear system, actually produces approximations to eigen-
values of the Koopman operator, and their corresponding modes as defined in
the previous section. We first consider linear systems, and present a version of
the Arnoldi algorithm that does not require explicit knowledge of the under-
lying operator A. This variant of the algorithm is described on p. 287 of Saad
(1980), and is the same as that referred to as Dynamic Mode Decomposition
by Schmid & Sesterhenn (2008). We then provide an alternative interpreta-
tion of the algorithm that applies to nonlinear systems, and connects with the
Koopman modes.

3.1. Arnoldi algorithm for linear systems

Assume one has a linear dynamical system

xk+1 = Axk (15)

where xk ∈ Rn, and n is so large that we cannot compute eigenvalues of A

directly. A standard method for computing estimates of these eigenvalues is a
Krylov method, in which one starts with an initial vector x0 (often chosen to
be a random vector), and computes iterates of x0. After m− 1 iterations, one
has a collection of m vectors that span a Krylov subspace, given by

span{x0,Ax0, . . . ,A
m−1x0}.

One then finds approximate eigenvalues and eigenvectors by projecting A onto
this m-dimensional subspace, and computing eigenvectors and eigenvalues of
the resulting low-rank operator. If we stack the data vectors into an n × m
matrix

K =
[
x0 Ax0 A2x0 · · · Am−1x0

]
(16)

=
[
x0 x1 x2 · · · xm−1

]
, (17)

then we wish to find approximate eigenvectors of A as linear combinations
of the columns of K. The Arnoldi algorithm is a type of Krylov method in
which one orthonormalizes the iterates at each step, and it therefore involves
computing the action of A on arbitrary vectors. A variant of this algorithm
that does not require explicit knowledge of A is given below.

First, consider the special case where the m-th iterate xm is a linear com-
bination of the previous iterates. Following section 2 of Ruhe (1984), we may
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write

xm = Axm−1 = c0x0 + · · · + cm−1xm−1 = Kc (18)

where c = (c0, . . . , cm−1). Thus, we have

AK = KC (19)

where C is a companion matrix given by

C =










0 0 · · · 0 c0
1 0 0 c1
0 1 0 c2
...

. . .
...

0 0 · · · 1 cm−1










. (20)

The eigenvalues of C are then a subset of the eigenvalues of A: if

Ca = λa,

then using (19), one verifies that v = Ka is an eigenvector of A, with eigen-
value λ.

More generally, if the m-th iterate is not a linear combination of the pre-
vious iterates, then instead of the equality (18), we have a residual

r = xm − Kc,

which is minimized when c is chosen such that r is orthogonal to

span{x0, . . . ,xm−1}
. In this case, the relation (19) becomes

AK = KC + reT ,

where e = (0, . . . , 1) ∈ Rm. The eigenvalues of C are then approximations to
the eigenvalues of A, called Ritz values, and the corresponding approximate
eigenvectors are given by v = Ka, called Ritz vectors. Note that the full
Arnoldi method is more numerically stable than this method, and reduces A

to an upper Hessenberg matrix, rather than a companion matrix.

Algorithm

An important feature of the above algorithm is that it does not require ex-
plicit knowledge of the matrix A: all it requires is a sequence of vectors, as
summarized below.

Consider a sequence {x0, . . . ,xm} where xj ⊂ Rn. Define the empirical
Ritz values λj and empirical Ritz vectors vj of this sequence by the following
algorithm:

• Define K by (17) and find constants cj such that

r = xm −
m−1∑

j=0

cjxj = xm − Kc, r ⊥ span{x0, . . . ,xm−1}. (21)
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• Define the companion matrix C by (20) and find its eigenvalues and
eigenvectors

C = T−1ΛT, Λ = diag(λ1, . . . , λm), (22)

where eigenvectors are columns of T−1.
• Define vj to be the columns of V = KT−1.

If xj = Ajx0, then the empirical Ritz values λj are the usual Ritz values
of A after m steps of the Arnoldi method, and vj are the corresponding Ritz
vectors. These, then, are (usually) good approximations of the eigenvalues and
eigenvectors of A. However, if we do not have xj = Ajx0 (for instance, if
the sequence is generated by a nonlinear map), then at this point, it is not
clear what the above algorithm produces. We show below that for a nonlinear
system, the algorithm produces approximations of the Koopman modes and
associated eigenvalues.

3.2. Modal decomposition for nonlinear systems

A more general interpretation of the above algorithm is provided by the fol-
lowing theorem, which will be used below.

Theorem 1. Consider a set of data {x0, . . . ,xm}, and let λj, vj be the em-
pirical Ritz values and vectors of this sequence. Assume the λj are distinct.
Then

xk =
m∑

j=1

λk
j vj , k = 0, . . . ,m− 1 (23)

xm =

m∑

j=1

λm
j vj + r, r ⊥ span{x0, . . . ,xm−1}. (24)

Proof. Note that (23) may be written in matrix form as

K :=
[
x0 x1 · · · xm−1

]
=
[
v1 · · · vm

]








1 λ1 λ2
1 · · · λm−1

1

1 λ2 λ2
2 · · · λm−1

2
...

...
...

. . .
...

1 λm λ2
m · · · λm−1

m







.

(25)

The rightmost matrix above is a Vandermonde matrix, which we will denote T̃.
Note that Vandermonde matrices and companion matrices are closely related,
in that T̃ diagonalizes the companion matrix C defined in (20), as long as the

eigenvalues λ1, . . . , λm are distinct. That is, T̃ is precisely the matrix T in (22),

and so K = VT̃, which verifies (25), and therefore (23). Equation (24) then
follows from the last column of the equality
[
x1 x2 · · · xm

]
= KC + reT = KT̃−1ΛT̃ + reT = VΛT̃ + reT . (26)
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To illustrate how this theorem provides a connection with Koopman modes,
consider a vector-valued observable g : M → Rp for the dynamical system (1)
and its expansion (4) in the Koopman modes. Suppose we have a sequence of

observations g(xk), for k = 0, . . . ,m, and let λ̃j and ṽj be the empirical Ritz
values and vectors for this sequence. Then, by Theorem 1, we have

g(xk) =

m∑

j=1

λ̃k
j ṽj , k = 0, . . . ,m− 1 (27)

g(xm) =

m∑

j=1

λ̃m
j ṽj + r, (28)

with r ⊥ span{g(x0), . . . ,g(xm−1)}. Comparing with the expansion (5), the

empirical Ritz values λ̃j and vectors ṽj behave in precisely the same manner
as the eigenvalues λj and modes vj of U , but for the finite sum in (27) instead
of the infinite sum (5).

If r = 0 in (28), then as far as the data is concerned, the approximate
modes are indistinguishable from “true” eigenvalues and spectral modes of U ,
with the expansion (4) consisting only of a finite number of terms.

If r 6= 0, then there is some error, but this is in a sense the best one can
do, since the m + 1 observations cannot in general be spanned by m modes.
In fact, by the projection theorem, the error r in (28) is the same as the
smallest possible error in projecting g(xm) onto any modes ṽj formed from

linear combinations of the first m data vectors. In this sense, the values λ̃j

are then approximations of true eigenvalues λj of U , and the vectors ṽj are
approximations of the spectral modes vj , scaled by the constant values ϕj(x0).

5

4. Example: Jet in crossflow

The jet-in-crossflow configuration appears in a variety of applications and is a
common way of mixing a jet fluid—injected through an orifice—with a uniform
crossflow. Recently, Bagheri et al. (2009) showed that the jet in crossflow
exhibits self-sustained global oscillations that can be associated with vortex
shedding in different spatial regions. Using time traces, we extract and quantify
here the oscillatory behavior of the flow from fully nonlinear direct numerical
simulations (DNS) and show that the computed Koopman modes identify the
relevant frequencies and the corresponding three-dimensional flow structures
automatically.

The parameters and the numerical code are the same as in the DNS per-
formed in Bagheri et al. (2009); the jet inflow ratio is R ≡ Vjet/U∞ = 3, the
Reynolds number is Reδ∗

0
≡ U∞δ

∗
0/ν = 165 and the ratio between the crossflow

5An interesting situation occurs if g(x0) = g(xm). Then in (21), c0 = 1 and cj = 0 for all

other values of j. The empirical Ritz values are then the m-th roots of unity, λj = e2πij/m,
and the Vandermonde matrix T is the discrete Fourier transform matrix. Thus, in this
case, the empirical Ritz vectors are given by the discrete Fourier transform of the data, at
frequencies 2πj/m, as illustrated by the example in section 2.2.
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(a)

(b)

Figure 1. (a) Snapshot of the flow field at t = 400. Red
and gray isocontours represent λ2 = −0.1 and u = 0.2 (near
the wall) respectively. (b) The same quantities for the time-
averaged flow which also is the first Koopman mode.

displacement thickness and the jet diameter is δ∗0/D = 1/3. The incompressible
Navier–Stokes equations over a flat-plate are solved using a Fourier-Chebyshev
spectral method (Chevalier et al. 2007) and the jet with an initially parabolic
velocity profile is introduced as an inhomogeneous boundary condition for the
wall-normal velocity component at the wall (y = 0). The grid resolution is
256×201×144 grid points in a computational box (Lx, Ly, Lz) = (75, 20, 30)δ∗0.
The three-dimensional flow behavior is triggered by an asymmetric localized
perturbation imposed at t = 0. For the exact form of the jet-profile and further
numerical details see Bagheri et al. (2009).

The flow physics of the jet in crossflow has been studied extensively (see,
e.g., Fric & Roshko 1994; Kelso et al. 1996; Muppidi & Mahesh 2007) and
it is shown that it is mainly characterized by four to five vortical structures
depending on R and Re. In the present study, we could identify two steady,
two unsteady and one quasi-steady vortex systems. Four of these can be seen
in figure 1(a, b) where isocontours of the λ2-criterion (red) (Jeong & Hussain
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Figure 2. (a,b) Time signal probes located near the wall and
on the jet shear layer respectively (see the text). (c,d) The
spectral content of the corresponding time signals in (a,b) are
shown in black and the magnitudes of the first seven pairs
of spectral modes at each frequency are shown in red. The
amplitudes are normalized with their maximum values.

1995) and the streamwise velocity (gray) are displayed. The most significant
unsteady feature of the jet is the highly unsteady shear-layer vortices, see figure
1(a): These half-ringed shaped vortices grow along the jet trajectory, lead to a
breakdown of the ordered flow and, eventually, dissipate due to viscous effects.
Connected to the shear layer are the vertically oriented “upright vortices”,
which are periodically appearing vortices connecting the jet body and the wall
layer in the wake of the jet. These structures are easily identified from the
vorticity field, but are not visible here. On the other hand, the steady counter-
rotating vortex pair (CVP), characteristic of the jet trajectory, is visible in
the time-averaged mean flow, figure 1(b). Similarly visible in the mean, the
horse-shoe vortices wrap around the column of jet very close to the wall and,
further downstream, lead to the appearance of the quasi-steady wall-vortex
system as shown by the distortion of the velocity isocontour in 1(a, b). These
essentially streamwise-oriented vortices are subject to low-frequency oscillations
of the wall-vortex system originating in a shedding of the separation zone just
downstream of the jet orifice, and induce a movement of the whole jet body.
The steady structures were also identified in the steady nonlinear Navier-Stokes
solution computed numerically by Bagheri et al. (2009).

As found in Bagheri et al. (2009), two distinct self-sustained oscillations
could be detected from the DNS. A high-frequency shedding of the shear-layer
vortices and a very low frequency shedding of the wall vortices. Figure 2(a)
shows the time signal of the streamwise velocity u1(x1

P , t) from a probe located
just downstream of the jet orifice and close the wall, x1

P = (x, y, z) = (10.7, 1, 0).
In figure 2(c) its corresponding power spectrum shows the frequency content
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Figure 3. (a) The empirical Ritz values λj . The value cor-
responding to the first Koopman mode is shown with the blue
symbol. (b) The magnitudes of the Koopman modes (except
the first one) at each frequency. In both figures, the colors
vary smoothly from red to white, depending on the magnitude
of the corresponding mode.

û1(ω) of u1(t). The peak frequency corresponds to a vortex shedding of wake
vortices with the Strouhal number St ≡ fD/Vjet = 0.0174.

In figure 2(b, d), a second probe located a few jet diameters along the jet
trajectory x2

P = (12, 6, 2), shows a second oscillation that can be identified
with the shedding of the shear-layer vortices. The peak frequency oscillates
with St = 0.141 which is nearly one order of magnitude larger than the low-
frequency mode. Note that the peak frequencies of the power spectra vary
slightly depending on the location of the probe.

4.1. Koopman modes and frequencies

In this section we compute the Koopman modes and show that they directly
allow an identification of the various shedding frequencies. The empirical Ritz
values λj and the empirical vectors vj of a sequence of flow-fields

{u0,u1, . . . ,um−1} = {u(t = 200),u(t = 202), . . . ,u(t = 700)}
with m = 251 are computed using the algorithm described earlier. Thus, the
transient time (t < 200) is not sampled and only the asymptotic motion in
phase space is considered.

Figure 3(a) shows that nearly all the Ritz values are on the unit circle
|λj | = 1 indicating that the sample points ui lie on or near an attracting
set. The Koopman eigenvalue corresponding to the first Koopman mode is the
time-averaged flow and is depicted with blue symbol in figure 3(a). This mode,
shown in figure 1(b), captures the steady flow structures as discussed previously.
In figure 3(a), the other (unsteady) Ritz values vary smoothly in color from red
to white, depending on the magnitude of the corresponding Koopman mode.



324 C. Rowley, I. Mezić, S. Bagheri, P. Schlatter & D.S. Henningson

(a)

(b)

Figure 4. Positive (red) and negative (blue) contour levels of
the streamwise velocity components of two Koopman modes.
The wall is shown in gray. (a) Mode 2, with ‖v2‖ = 400 and
St2 = 0.141. (b) Mode 6, with ‖v6‖ = 218 and St6 = 0.0175.

The magnitudes defined by the global energy norm ‖vj‖, and are shown in
figure 3(b) with the same coloring as the spectrum. In figure 3(b) each mode
is displayed with a vertical line scaled with its magnitude at its corresponding
frequency ωj = Im{log(λj)}/∆t (with ∆t = 2 in our case). Only the ωj ≥ 0
are shown, since the eigenvalues come in complex conjugate pairs. Ordering
the modes with respect to their magnitude, the first (2-3) and second (4-5) pair
of modes oscillate with St2 = 0.141 and St4 = 0.136 respectively, whereas the
third pair of modes (6-7) oscillate with St6 = 0.017. All linear combinations of
the frequencies excite higher modes, for instance, the nonlinear interaction of
the first and third pair results in the fourth pair, i.e. St8 = 0.157 and so on.

In figures 2(c) and (d) the power spectra of the two DNS time signals (black
lines) are compared to the frequencies obtained directly from the Ritz eigen-
values (red vertical lines). The shedding frequencies and a number of higher
harmonics are in very good agreement with the frequencies of the Koopman
modes. In particular, the dominant Koopman eigenvalues match the frequen-
cies for the wall mode (St = 0.017) and the shear-layer mode (St = 0.14). Note
that the probe signals are local measures of the frequencies at one spatial point,
whereas the Koopman eigenvalues correspond to global modes in the flow with
time-periodic motion.

The streamwise velocity component u of Koopman modes 2 and 6 are
shown in figure 4. Each mode represents a flow structure that oscillates with
one single frequency, and the superposition of several of these modes results in
the quasiperiodic global system. The high-frequency mode 2 (figure 4a) can
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Mode DNS Global POD Koopman

Shear layer 0.141 0.169 0.138, 0.158, 0.121 0.141
Wall 0.017 0.043 0.0188, 0.0094, 0.158, 0.121 0.017

Table 1. Comparison of the frequencies (St = fD/Vjet) ob-
tained from DNS probes (shown in figure 2); the global eigen-
modes of the linearized Navier-Stokes; POD modes 1 and 6,
corresponding to mainly shear-layer and wall oscillations, re-
spectively; and Koopman modes.

be associated with the shear layer vortices; along the jet trajectory there is
first a formation of ring-like vortices that eventually dissolve into smaller scales
due to viscous dissipation. Also visible are upright vortices: on the leeward
side of the jet, there is a significant structure extending towards the wall. This
indicates that the shear-layer vortices and the upright vortices are coupled and
oscillate with the same frequency. The spatial structures of modes 4 and 8 are
very similar to those of mode 2, as one expects, since the frequencies are very
close.

On the other hand, the low-frequency mode 6 shown in figure 4(b) features
large-scale positive and negative streamwise velocity near the wall, which can
be associated with shedding of the wall vortices. However, this mode also has
structures along the jet trajectory further away from the wall. This indicates
that the shedding of wall vortices is coupled to the jet body, i.e. the low fre-
quency can be detected nearly anywhere in the vicinity of the jet since the
whole jet is oscillating with that frequency.

4.2. Comparison with linear global modes and POD modes

The linear global eigenmodes of the Navier-Stokes equations linearized about
an unstable steady state solution were computed by Bagheri et al. (2009) for
the same flow parameters as the current study. They computed 22 complex-
conjugate unstable modes using the Arnoldi method combined with a time-
stepper approach. The frequency of the most unstable (anti-symmetric) mode
associated with the shear-layer instability was St = 0.169, not far from the
value St = 0.14 observed for the DNS. However, the mode with the lowest fre-
quency associated with the wall vortices was St = 0.043, far from the observed
frequency of St = 0.017. These frequencies are summarized in table 1. The
global eigenmodes capture the dynamics only in a neighborhood of the unstable
fixed point, while the Koopman modes correctly capture the behavior on the
attractor.

We also compared the Koopman modes with modes determined by Proper
Orthogonal Decomposition (POD) of the same dataset. The POD modes them-
selves are shown in Schlatter et al. (2009), and capture similar spatial structures
to the Koopman modes shown in figure 4. The most striking distinction is in
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Figure 5. Comparison of time coefficients: the projection of
the flow field onto the most energetic POD mode (black), and
the coefficient of the most energetic Koopman mode (gray).

the time coefficients, an example of which is shown in figure 5: while a single
Koopman mode contains, by construction, only a single frequency component,
the POD modes capture the most energetic structures, resulting in modes that
contains several frequencies. The coefficient of the first POD mode oscillates
mainly with frequency St = 0.138, which is close to the shear-layer oscillation
frequency St = 0.141 observed in DNS. However, the signal contains other
frequencies as well, resulting from the interaction of the two fundamental os-
cillations (shear-layer and wall), St = 0.138 ± 0.017, which cause the beating
shown in figure 5. The frequencies present in this most energetic POD mode are
also summarized in table 1. Higher POD modes (in this case the sixth) capture
the wall oscillations, but the signal is polluted with other frequencies as well.
For situations such as the jet in crossflow where one is interested in studying
the dynamics of low-frequency oscillations (such as wall modes) separate from
high-frequency oscillations (such as shear-layer modes), the Koopman modes
are thus more effective at decoupling and isolating these dynamics.

5. Conclusions

We have presented a method for studying the dynamical behavior of nonlinear
systems, and illustrated the method on a jet in crossflow. The method involves
spectral analysis of the Koopman operator, an infinite-dimensional linear oper-
ator defined for any nonlinear dynamical system. In particular, given a particu-
lar observable (e.g. available measurements from an experiment or simulation),
we have defined a set of Koopman modes associated with this observable, re-
lated to eigenfunctions of the Koopman operator. For the special case of linear
systems where the observable is the full flow state, these modes reduce to the
global eigenmodes, and for periodic systems, the modes can be determined by
the discrete temporal Fourier transform. For more general systems, we have
shown that these modes may be computed using a familiar Arnoldi algorithm,
applied to samples of the nonlinear system.

We have used these modes to study the dynamical behavior of a jet in cross-
flow. The resulting modes illustrate the different spatial structures associated
with the shear layer and the near-wall region. For this example, the Koopman
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modes capture the relevant frequencies more accurately than global eigenmodes
of the linearized dynamics, and decouple the different frequency components
more effectively than modes determined by Proper Orthogonal Decomposition.

The authors gratefully acknowledge support for this work from the Na-
tional Science Foundation (CMS-0347239) and the Air Force Office of Scientific
Research (FA9550-09-1-0257), and computer-time allocation from the Swedish
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Noack, B., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A
hierarchy of low-dimensional models for the transient and post-transient cylinder
wake. J. Fluid Mech. 497, 335–363.

Rowley, C. W. 2005 Model reduction for fluids using balanced proper orthogonal
decomposition. Int. J. Bifurcation Chaos 15 (3), 997–1013.

Ruhe, A. 1984 Rational Krylov sequence methods for eigenvalue computation. Linear
Algebra Appl. 58, 391–405.

Saad, Y. 1980 Variations on Arnoldi’s method for computing eigenelements of large
unsymmetric matrices. Linear Algebra Appl. 34, 269–295.

Schmid, P. & Sesterhenn, J. 2008 Dynamic mode decomposition of numerical and
experimental data. 61st Annual Meeting of the APS Division of Fluid Dynamics.

Schlatter, P., Bagheri, S. & Henningson, D. S. 2009a Self-sustained global
oscillations in a jet in crossflow. Theor. Comput. Fluid Dyn. (submitted).



Paper 8

8





The stabilizing effect of streaks on

Tollmien–Schlichting and oblique waves:

A parametric study

Shervin Bagheri and Ardeshir Hanifi1

Phys. Fluids vol 19, pp 078103

The stabilizing effect of finite amplitude streaks on the linear growth of un-
stable perturbations (TS and oblique waves) is numerically investigated by
means of the nonlinear Parabolized Stability Equations. We have found that
for stabilization of a TS-wave, there exists an “optimal” spanwise spacing of
the streaks. These streaks reach their maximum amplitudes close to the first
neutral point of the TS-wave and induce the largest distortion of the mean flow
in the unstable region of the TS-wave. For a such distribution, the required
streak amplitude for complete stabilization of a given TS-wave is considerably
lower than for β = 0.45, which is the optimal for streak growth and used in
previous studies. We have also observed a damping effect of streaks on the
growth rate of oblique waves in Blasius boundary layer and for TS-waves in
Falkner-Skan boundary layers.

1. Introduction

In boundary-layer flows, the transition from a laminar state to a turbulent
one is usually caused by growth and breakdown of small amplitude perturba-
tions. For a long time the common understanding has been that any kind of
flow perturbation inside the boundary layer has a promoting effect on transi-
tion. However, a number of recent studies (Saric et al. 1998; Cossu & Brandt
2002; Fransson et al. 2005, 2006) has indicated that certain types of perturba-
tions inside the boundary layer can postpone the laminar-turbulent transition.
General feature of these perturbations seems to be a modification of mean ve-
locity profile to a more stable one. In two-dimensional mean flows, these are
streaky structures which create regions of alternating negative and positive
streamwise velocity perturbations. Streaks are usually found inside boundary
layers subjected to high free-stream turbulence. A damping effect of moder-
ate amplitude free-stream turbulence on Tollmien-Schlichting (TS) waves have
been observed in some experiments (Boiko et al. 1994). Numerical investi-
gations of Cossu & Brandt (2002) showed a clear stabilizing effect of streaks

1Also at Swedish Defence Research Agency, SE-164 90 Stockholm, Sweden

331



332 S. Bagheri & A. Hanifi

on growth of TS waves in Blasius flow. They reported an increasing damp-
ing effect with increasing streak amplitude. These results were later verified
by experimental works of Fransson et al. (2005) who, generated the streaks
by means of small roughness elements. Recently Fransson et al. (2006) also
showed that these streaks can truly delay the transition. Here, the transition
was triggered by means of high amplitude two-dimensional disturbances gener-
ated through random suction and blowing at the wall. These new results have
received great attention, e.g. Choi (2006). However, in all these studies, both
experimental and numerical, a single spanwise spacing (β = 0.45) of streaks
has been used, which corresponds to the most growing streaks. Therefore, we
aim to investigate whether other distributions of streaks are more efficient for
stabilizing TS-waves, so that a lower streak amplitude would be required for
transition delay. This is important because the amplitude of the streaks should
not exceed the threshold for secondary instability and instead promoting the
transition to turbulence. The present work is based on a parametric study
of the streak spacing. The feasibility of such a study, requires a relative fast
computational method, such as the nonlinear Parabolized Stability Equations
(PSE)(Bertolotti et al. 1992).

2. Numerical procedure

We consider flow disturbances which are periodic in time t and spanwise direc-
tion z. These disturbances are decomposed in Fourier modes as

q(x, t) =

M∑

m=−M

N∑

n=−N

q̃mn(x, y) exp(inβ0z − imω0t).

Here,

q̃mn = q̂mn(x, y) exp(i

∫

αmndx) (1)

is the amplitude function of the mode (mω0, nβ0) (referred to as (m,n)), where
β0 denotes the fundamental spanwise wavenumber, ω0 the fundamental fre-
quency and α is the complex-valued streamwise wavenumber. Further, x and
y are the streamwise and wall-normal coordinates, respectively. The evolution
of each mode is described by the nonlinear PSE as given e.g. Bertolotti et al.
(1992). In addition, we use a scaling proposed by Levin & Henningson (2003) to
modify the PSE to correctly describe the evolution of streaks. These equations
are then discretized using a fourth-order compact scheme for the wall-normal
derivatives and first- or second-order backward Euler for the streamwise deriva-
tives. It is well known that original PSE suffer from numerical instability for
small streamwise step-size. Here, we use the technique proposed by Andersson
et al. (1998) to stabilize the numerical integration. As initial condition for
the streak, we use optimal disturbances (Andersson et al. 1999) at the leading
edge, which in a linear framework lead to the maximum perturbation energy
at a certain downstream position. These are computed with a spectral code
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Figure 1. (a) Comparison of DNS and PSE simulations of
the non-linear downstream development of three streaks with
increasing amplitudes. (b) The evolution of the TS-wave in
presence of streaks. (c) The mean-flow distortion at Re = 640
caused by streaks.

used in Levin & Henningson (2003) based on an adjoint optimization technique
described in Andersson et al. (1999).

The procedure of the simulations is as follows. An optimal disturbance
is initiated close to the leading edge. Its linear downstream development is
followed up to a specified streamwise position, where the nonlinear calculations
begin by the assignment of an initial amplitude, defined as

As =
1

2

(

max
y,z

{us} − min
y,z

{us}
)

.

Here, us is the sum of the streamwise velocity component of all (0, n)-modes. At
this location, a single exponential disturbance is initialized, (m,n)-mode, with
an amplitude sufficiently low to insure its linear behavior. Unless otherwise
stated, this location is upstream of the first neutral point of the exponential
disturbances at Re0 =

√

x0Ue/ν = 250, where Ue is the streamwise velocity
at the edge of the boundary layer and ν the kinematic viscosity. The length
scale used here is

√

νx0/Ue. Usually, 20−30 modes were sufficient to correctly
describe the evolution of the disturbances.
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3. Results

3.1. Validation

The results obtained using the procedure described above, is verified against
the direct numerical simulations of Cossu & Brandt (2002). As in Cossu &
Brandt (2002), we consider the instability of a TS-wave of frequency F =
(ω0/Re) × 106 = 131.6 in the presence of a set of streaks (β0/Re = 6.36E − 4)
with different amplitudes (figure 1a). The initial profiles of the streaks are
optimized for maximum growth at Re = 707 and the nonlinear calculations
begin at Re0 = 272. As reported in Cossu & Brandt (2002) and shown in figure
1(b), the stabilizing effect on the TS-wave is observed for all streak amplitudes.
Here, the following norm of the disturbance

E =

(∫ ∞

0

u · u∗ dy

)1/2

,

is used as a measure of the TS-wave size. In figure 1(b), case A corresponds
to zero streak amplitude. For moderate streak amplitudes (B,C) a damping of
the growth of the TS-wave is observed, whereas for a sufficiently large streak
amplitude (D) the TS-wave is completely stabilized. In figure 1(c), the mean-
flow distortion u00, i.e. streamwise velocity component of the (0, 0)-mode, is
shown. This is induced by streaks and it modifies the velocity profile into a
“fuller” shape close to the wall. This seems to be the main mechanism behind
the stabilization effect of the streaks (Cossu & Brandt 2002).

3.2. Effects of the spanwise wavenumber of the streak

Previous studies (Cossu & Brandt 2002; Fransson et al. 2005, 2006) have solely
been focusing on the effects of the streak amplitude. As the development of
streaks also depends on its spanwise wavelength, it is of interest to investigate
its effects on TS-wave instability. Therefore, we vary the spanwise wavenumber
of streaks in the range [0.1, 1]. The initial profiles of these streaks are optimized
for maximum growth at Re = 400. Assigning the same initial amplitude for
each of them results in streaks with different maximum amplitudes. Since the
stabilizing effect depends strongly on the streak amplitude, it is difficult to draw
a definite conclusion about the significance of different values of β. Therefore,
it seems reasonable to compare streaks with different β but same maximum
amplitude. Here, for each streak we choose an appropriate initial amplitude
such that the maximum amplitudes, A∗

s , of each of them is 10% of the free-
stream velocity. To illustrate the effect of streak parameter β, we begin by
investigating the stability of a two-dimensional TS-wave with frequency F =
131.6 in the presence of the two streaks shown in figure 2(a). The streaks, A
and B, have the spanwise wavenumbers, βA = 0.45 and βB = 0.65 respectively
and fixed maximum amplitude, A∗

s = 10%. In figure 2(b), we show that in
the absence of streaks the TS-wave (dotted line) grows exponentially (with a
rate predicted by the linear theory) as it enters the unstable domain at branch
I, the shaded domain, and decays as it is propagated downstream away from
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Figure 2. (a) Evolution of amplitudes of two streaks with
β = 0.45 (solid) and β = 0.65 (dashed). (b) TS wave with
F = 131.6 in absence (dotted) and presence (dashed,solid) of
streaks. (c) The maximum value of the mean flow distortion
caused by the streaks.

the domain. In the presence of streaks a damping effect is observed, which is
larger for streak B (dashed line) than for streak A (solid line), despite the fact
that streak A maintains a larger amplitude in the most part of the unstable
domain of the TS-wave. Streak B, on the other hand, attains its maximum
amplitude close to the location of branch I of the TS-wave, and then rapidly
decays downstream. This can be explained if the distortion of the mean flow,
(0, 0)-mode, induced by these two streaks are compared. In figure 2(c), the
development of the maximum mean-flow distortion, i.e. u+ = maxy{u00}, for
streaks A and B is shown. It is apparent that streak B modifies the flow
considerably more than streak A, between branch I and II, due to larger values
of u+. This is caused by the larger amplitude of streak B upstream of branch
I.
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Figure 3. (a) The N-factor at branch II of the TS-wave
(F = 131.6) as a function of the spanwise wavenumber of
streaks. The maximum amplitudes of the streaks have been
fixed at A∗

s = 10%. (b) The averaged shape factor H̄ as a
function of the same set of streaks as in (a).

As a measure of the amplification of the TS-waves, we compute the N-
factor, defined as

N(x) = ln(E(x)/E(xI )).

In figure 3(a), N(xII) for the TS-wave with F = 131.6 is plotted as a function
of the spanwise wavenumber of the streaks, β. Here the maximum streak am-
plitudes are kept constant, A∗

s = 10%. As shown in figure 3(a), N(xII) attains
a minimum value for β ≈ 0.65. This indicates that there exists an optimal
streaky boundary layer, when the objective is to minimize the amplification of
the TS-wave. It should be mentioned that, due to nonlinear effects, there is
a slight upstream shift of the location of the A∗

s with increasing initial streak
amplitude (see figure 1a). Therefore, the “optimal” β depends weakly on the
streak amplitude. In order to relate the total modification of the mean flow
caused by streaks, to their stabilization effects we compare the N-factor with
the averaged shape factor H̄ . Here, H̄ is averaged in the streamwise direction
between branch I and II of the TS-wave. In figure 3(b), H̄ is plotted as a
function of β. In the absence of streaks, the shape factor of a Blasuis profile is
H̄ = 2.59, whereas in the presence of streaks H̄ is smaller, indicating a fuller
velocity profile. Furthermore, H̄ attains a minimum value in the presence of
streaks with β = 0.6, i.e. close to the β which minimizes the N-factor of the TS-
wave (shown in figure 3a). This indicates that the commonly used streak with



The stabilizing effect of streaks on TS-waves: A parametric study 337

Figure 4. The maximum growth rate σ∗ of TS-waves, F =
131.6 in (a) and F = 170 in (b), in the presence of streaks.

β = 0.45 is not the most efficient stabilizing streak. This value of β corresponds
to the vortices generated at the leading edge which experience the largest lin-
ear growth (Andersson et al. 1999). We have performed the same parametric
study of β for two other frequencies, F = 170 and 90. For both frequencies the
N-factor, N(xII), attains a minimum at approximately the spanwise wavenum-
ber (0.9 and 0.45 respectively), for which the streamwise averaged shape-factor
is the smallest. Again, the streak which is the most efficient for stabilizing a
TS-wave attains its maximum amplitude close to branch I of that TS-wave.

Now we aim at finding the minimum streak amplitude necessary for the
complete stabilization of a TS-wave. We consider two different streaks: the
optimal growing streak (β = 0.45) and a streak with β = 0.65, chosen such
that the maximum streak amplitudes are close to branch I of the given TS
wave. The maximum amplitudes are varied between 0−25% and the maximum
growth rates σ∗ = maxx{σ} of the TS-wave are computed for each streak. The
physical growth rates are calculated from the relation (Bertolotti et al. 1992)
σ = −αi + ∂

∂x ln(E). When σ∗ < 0 the TS-wave is completely stabilized. For
complete stabilization of a TS-wave with F = 131.6, the necessary amplitude of
the streak with β = 0.65 is As = 15%, whereas for β = 0.45 the corresponding
amplitude is As = 20%, see figure 4(a). For F = 170, the necessary amplitude
is reduced from As = 22% to As = 0.12%, when β is increased from 0.45 to
0.9, see figure 4(b). As the TS-wave frequency is decreased, the location of
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Figure 5. (a) The downstream development of oblique
waves (F = 131.6) in the absence (solid) and the presence
(dashed) of streaks. (b) The downstream development of a
TS-wave (F = 131.6) in the absence (solid) and the presence
(dashed) of streaks in boundary layer with adverse, zero and
favorable pressure gradient.

the branch I moves downstream and consequently streaks with smaller β are
required to stabilize the flow.

3.3. Stabilization of oblique waves

The focus of previous investigations (Cossu & Brandt 2002; Fransson et al.
2005) has been on reducing the linear growth of two-dimensional TS-waves,
as these disturbances are the first to become unstable in a Blasius boundary-
layer. However, certain transition scenarios (Bertolotti et al. 1992), require the
existence of oblique waves. Here, we choose two unstable oblique waves with
frequency F = 131.6 and spanwise wavenumbers β0 = 0.09 and 0.1123, respec-
tively. For these values of β0, a streak with a spanwise wavenumber β = 0.45 is
initiated at Re0 = 272 as modes (0, 5β0) and (0, 4β0), respectively. The oblique
disturbances are initiated as a pair of modes (1,±1) with sufficiently small am-
plitude to insure a linear behavior. The results are shown in figure 5(a), where
we compare the norm E of the oblique waves in the presence (dashed line) and
the absence (solid line) of a streak with the maximum amplitude A∗

s = 10%.
Similar to TS-waves, the linear growth of the oblique waves is found to be
damped when streaks are present.
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3.4. Effects of pressure gradient

We have also investigated the effects of streaks on the linear growth of exponen-
tial disturbances in boundary-layer flows with pressure gradients. In particu-
lar, boundary layers with the free-stream velocities given as Ue = U∞x

m, m =
βH/(2 − βH), where βH is the Hartree parameter. In figure 5(b), the evolu-
tion of a TS-wave with frequency F = 131.6 in boundary layers with favorable
(βH = 0.1), zero (βH = 0) and adverse pressure (βH = −0.1) gradients are
shown by the solid lines. By introducing a streak at Re0 = 278 with spanwise
wavenumber β = 0.45 and amplitudes As ≈ 13− 16%, the growth of TS-waves
is damped (shown by dashed lines).

4. Conclusions

We have found that the stabilization effect of streaks on the linear growth of
TS-waves in Blasius boundary layer, observed in previous studies, to also apply
to three dimensional disturbances and Falkner-Skan boundary-layer flows. We
have also found that by distributing the streaks “optimally” in the spanwise
direction, it is possible to completely stabilize a TS-wave, with considerably
lower streak amplitudes. For the TS-waves with high frequencies a reduction
of the maximum streak amplitude of almost a factor two can be achieved. The
streaks which most efficiently reduce the growth rate of a given disturbance
attain their maximum amplitudes close to the branch I of that disturbance.
These streaks generate a “fuller” velocity profile in the unstable domain of the
TS-waves. By computing the streamwise averaged shape factor of the modified
boundary layer, one can estimate the stabilization effect of streaks without
actually calculating the interaction with the targeted TS (or oblique) waves. It
should also be mentioned that the optimal growing streak, often associated with
the spanwise wavenumber β = 0.45, is not the most efficient one to suppress
TS-waves of all frequencies.

We wish to thank Luca Brandt, Carlo Cossu, Phillip Schlatter and Dan
Henningson for their helpful comments.
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