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Transition delay using control theory
BY S. BAGHERI AND D. S. HENNINGSON*

Linné Flow Centre, Department of Mechanics, KTH, 100 44,
Stockholm, Sweden

This review gives an account of recent research efforts to use feedback control for the
delay of laminar–turbulent transition in wall-bounded shear flows. The emphasis is
on reducing the growth of small-amplitude disturbances in the boundary layer using
numerical simulations and a linear control approach. Starting with the application
of classical control theory to two-dimensional perturbations developing in spatially
invariant flows, flow control based on control theory has progressed towards more
realistic three-dimensional, spatially inhomogeneous flow configurations with localized
sensing/actuation. The development of low-dimensional models of the Navier–Stokes
equations has played a key role in this progress. Moreover, shortcomings and future
challenges, as well as recent experimental advances in this multi-disciplinary field,
are discussed.

Keywords: transition delay; feedback control; flat-plate boundary layer

1. Introduction

In this review, we are concerned with the control of laminar–turbulent transition
using numerical simulations. The focus is mainly on the flow along a flat plate, as
it is the archetype of boundary-layer flows, contains the fundamental transition
physics and pertains to countless examples in both nature and industry. The
key assumption underlying the investigations is that a linear model can describe
the initial phase of the laminar–turbulent transition. This assumption is based
on the idea that, by suppressing the growth of small-amplitude disturbances as
early as possible, it may be possible to delay the entire process of transition
to turbulence. Secondly, the review focuses strictly on investigations where linear
control theory has been employed, and in particular optimal and robust feedback-
control methods. This paper complements other reviews in the field [1–3], by
keeping the presentation of algorithms and methods from control theory to a
minimum. We will instead emphasize on how computationally tractable linear
models of a fluid flow are devised and which fluid mechanical properties the
subsequent control can achieve.

*Author for correspondence (henning@mech.kth.se).

One contribution of 15 to a Theme Issue ‘Flow-control approaches to drag reduction in
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Figure 1. Snapshots of the nonlinear response (a,c,e) to a Tollmien–Schlichting (TS) disturbance
and (b,d,f ) to streamwise vortices at transitional Reynolds numbers (Rex ≈ 105–106). The flat
plate is shown in black and viewed from the top. (a,c,e) Grey (red online) iso-contour levels depict
the l2-criterion of the TS wavepacket at (a) t = 0, (c) t = 300 and (e) t = 1000. (b,d,f ) Dark/light
grey (red/blue online) iso-contour levels correspond to the positive/negative streamwise velocity
component of the streak at (b) t = 200, (d) t = 500 and (f ) t = 1000. The turbulent spots eventually
leave the computational domain and the flow returns to the steady boundary layer. (Online version
in colour.)

(a) Disturbance behaviour in wall-bounded flows

Consider a steady uniform viscous stream of flow with speed U that encounters
a flat plate of length L. It is appropriate to define the Reynolds number as
Rex =Ux/n, where 0≤ x ≤ L is the distance on the plate from the leading edge and
n is the kinematic viscosity. The critical Reynolds number, Rex , for the laminar–
turbulent transition is notoriously difficult to determine. Transition can occur
abruptly, gradually and at completely different locations on the plate, depending
on the size, spatial structure and temporal behaviour of the disturbances that
may be found in the laboratory or numerical experiments. For example, the
presence (or combination) of acoustic waves, roughness on the plate and vortical
structures in the free stream critically affects the transition process. To elucidate
this sensitivity and to highlight the essential physics, we perform two numerical
experiments of localized disturbances.
The first disturbance is a packet of travelling waves composed of a range of

small wavelengths in the streamwise direction and a rather large wavelength
in the spanwise direction (figure 1a). These nearly two-dimensional Tollmien–
Schlichting (TS) wavepackets are present when the background turbulence
level is extremely low (of the order of 0.05%). For sufficiently high Reynolds
numbers (above 106), they experience a rapid breakdown, characterized by the
appearance of significantly smaller spanwise wavelengths, high local shear layers
and inflection points in instantaneous wall-normal velocity profiles. Figure 1a,c,e
shows snapshots of the disturbance (top view of the plate) at three different
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Figure 2. The time evolution of the disturbance kinetic energy corresponding to a nonlinear
simulation (solid line) and linear simulation (dashed line). (a) TS wavepacket and (b) streak
wavepacket.

instances in time1 using the l2-criterion [4]. The small amplitude and nearly
two-dimensional disturbance gradually evolves into a localized turbulent spot
with a typical arrow-shaped structure.
A second type of disturbance is streamwise vortices with a dominant

spanwise length scale and nearly uniform extension in the streamwise direction
(figure 1b). To trigger turbulence, these streaks require significantly higher
amplitudes (10% of the free-stream velocity) than TS wavepackets and can
experience orders of magnitude of growth at relatively low Reynolds numbers
(around 105), through the so-called lift-up mechanism. As shown in figure 1b,d,f ,
the disturbance characterized by streaky elongated structures eventually breaks
down and evolves into a turbulent spot further downstream. In figure 2, the time
evolution of the disturbance kinetic energy is shown with a black solid line for
the TS wavepacket (figure 2a) and for the streak (figure 2b). The energy growth
of the two disturbances is characterized by completely different growth rates and
temporal scales: whereas the TS wavepacket grows at an exponential rate and
breaks down at t ≈ 500, the streaks grow at an algebraic rate with a much earlier
breakdown at t ≈ 200.

(b) Transition control

It is thus clear that, although the two disturbances meet the same fate,
their spatial (shape and size) and temporal features are very different. As a
consequence, flow-control studies have exploited the specific disturbance structure
by introducing other disturbances that counteract either the TS waves or the
streaks. For example, a second wave of appropriate amplitude and phase would
cancel the TS travelling wave by interference or blowing and suction at the wall
would cancel out the streaks. However, in many practical transition situations,
we have to assume that we don’t know the exact form of the disturbance and
different disturbance types can be present in the flow at the same time.

1In this paper, time is normalized with the free-stream velocity U and the displacement
thickness d∗

0.
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From a control viewpoint, the two transition scenarios have three salient
features in common. If the upstream disturbances in the boundary layer
are sufficiently small, the initial stage in the transition process is a linear
amplification. In figure 2, the kinetic energy of a disturbance with an infinitesimal
amplitude—where the nonlinear effects are neglected—is shown by the dashed
line. We observe that the energy of the infinitesimal amplitude disturbance and
the finite-amplitude disturbance initially grow with the same rate for both the
TS wavepacket and the streak.
The second common feature is that significant amplification of disturbances—

usually several orders of magnitude—takes place, but disturbances eventually
propagate out of the flow domain and leave behind the steady boundary-
layer flow. Moreover, disturbances propagate only in the downstream direction
since any upstream travelling structure is quickly damped. This behaviour
can be viewed as the transient growth of disturbance energy inflicted by the
non-normality of the stable linear system.
The third feature of wall-bounded transitional flows that has vital implications

for control design is the time delay (at the convective time scale) for the effects
of an action on the flow to be measurable at a downstream location (e.g. [5]).
As we shall see, systems with time delays are often challenging to control with
very few degrees of freedom. In the present context, transition control focuses on
a linear system governing the dynamics of small amplitude disturbances near the
laminar solution, where the aim is to reduce the sensitivity of the system (i.e. the
amplifying behaviour) with significant time delays as constraints.

2. Linear control systems

A large number of physical systems have the above features (linearity, sensitivity
and time delays) in common, and there is a complete and rigorous theory that
is able to provide us with optimal and robust controllers in order to manipulate
the system behaviour. The indisputably largest challenge in using linear control
theory for transition delay is to find a practical mathematical model of the
perturbation dynamics, the sensors and the actuators. The linearized Navier–
Stokes equations describe all aspects of the disturbance, but once discretized, they
lead to a very large model, with 105–108 d.f. depending on the flow configuration.
Such complex models do not lend themselves in a straightforward manner to
control design; it is too expensive to apply standard control theoretical tools
to models larger than 104. Even if we could design a controller from a Navier–
Stokes model, it would have the same high dimension as the model, and, therefore,
difficult to implement in experiments and too slow to run in real time.
In this paper, we review two approaches to obtain a feasible model of the

fluid flow

— develop a set of low-dimensional subsystems from the Navier–Stokes
equations, by exploiting some physical insight (e.g. spatial invariance of
the flow) and

— develop one low-dimensional model that preserves only the important
dynamical aspects for control design, either by systematically reducing
the order of the Navier–Stokes equations, or by using system-identification
techniques.

Phil. Trans. R. Soc. A (2011)
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Before we discuss the above methods in more detail, we provide the
setting for control design: the starting point is to formulate the linear flow,
including sensors, actuators, disturbances and objective functions in state-
space form,

q̇(t)=Aq(t)+ Bu(t) (2.1a)

and

y(t)=Cq(t)+Du(t). (2.1b)

The state vector is denoted by q ∈ Rn , where n is the dimension of the state-
space system and the constant matrix A governs the linear dynamics of the
state. If the above system is derived from the Navier–Stokes equations, then
q is the perturbation velocity, A is the discretized and linearized Navier–Stokes
equations including boundary conditions and n = 3nxnzny , where nx ,ny and nz are
the number of grid points in the x-, y- and z-directions, respectively. However, it
is not always possible to attach a physical meaning to the state-space formulation
(for instance, if system-identification techniques are used).
Any external influence on the flow contained in the forcing term Bu(t) is

decomposed into a spatial component B and a temporal signal u ∈ Rm , where m is
the number of inputs. In the simplest control configuration, m = 2, representing
one disturbance and one actuator, but often for three-dimensional flows, m is
substantially larger, as more than one actuator and disturbance are active at the
same time. Any information extracted from the flow is contained in the output
signal term y ∈ Rp, where the constant matrix C determines where in the spatial
domain flow measurements are extracted. Again, in the simplest control system,
p= 2, in order to include one output equation for the sensor measurements used
to detect the flow disturbances that we wish to control and one output equation
to quantify the performance of the control system. The norm of the latter output
defines a control objective function J ,

J (T )= ‖y‖2 =
∫T

0
q∗C ∗Cq+ u∗D∗Du dt. (2.2)

Finally, D represents a feed-through term that describes how the input can affect
the output, for example to penalize the control effort in J .

3. Distributed control for spatially invariant systems

A large number of studies have exploited the spatial invariance (or the
nearly spatial invariance) of certain flow configurations to derive state-space
formulations that are applicable to control theoretical tools. Consider channel
flow with two homogeneous directions (x , z) and one inhomogeneous direction (y).
By expanding the perturbation into a set of Fourier functions in the x- and
z-directions, it can be decoupled into a sequence of wavenumber pairs (k, l),
where the two fundamental wavenumbers are defined as a0 = 2p/Lx and b0 =
2p/Lz . As observed by Joshi et al. [6], the decoupling of the perturbation into
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Figure 3. Schematic figures of control configurations with (a) distributed control and (b) localized
control. In (a), the sensors and actuators are evenly distributed on the wall. The control can act in
either Fourier space (centralized control) or in physical space (decentralized control). In (b), only a
few sensors and actuators with compact spatial support are employed. (Online version in colour.)

wavenumber pairs is transferred to the system matrix A, which now has a block
diagonal form,

A= diag{A1,1, . . . ,Ak,l , . . . ,AK ,L}. (3.1)

Each of the block matrices Ak,l represent the familiar Orr–Sommerfeld/Squire
equations with the dimension n = ny , i.e. the number of grid points in the wall-
normal direction only. If one further assumes that inputs and outputs are evenly
distributed in x and z , then the input (B) and output (C ) vectors for each
wavenumber pair are also decoupled from one another,

B = [B1,1, . . . ,Bk,l , . . . ,BK ,L] and C = [C1,1, . . . ,Ck,l , . . . ,CK ,L]T. (3.2)

This means that instead of a three-dimensional state-space problem (2.1), one
can formulate a set of one-dimensional problems,

q̇k,l(t)=Ak,lqk,l(t)+ Bk,luk,l(t) (3.3a)

and
yk,l(t)=Ck,lqk,l(t)+Dk,luk,l(t), (3.3b)

for k = 1, . . . ,K , l = 1, . . . ,L and n = ny ≤ 102. Distributed control and sensing
(for example, blowing/suction and shear-stress measurements at the wall), require
thus KL actuators and sensors, i.e. one actuator and one sensor for each grid
point at the wall (see sketch in figure 3a). So in this formulation, the number of
inputs (m), outputs (p) and state (n) are of the same order.
Joshi et al. [6] were able to stabilize single wavenumber pairs of the linearly

unstable Poiseulle flow using optimal linear feedback control (linear quadratic
Gaussian; LQG) design together with boundary control (blowing/suction) and
sensor measurement at the wall. In a similar way, Bewley & Liu [7] controlled
the transient growth of individual stable wavenumber pairs using modern
robust and optimal control theory. These two seminal investigations paved the
way for future researchers as they took into account unknown and variable
disturbances in imprecise flow conditions, mathematical modelling of boundary
actuation, optimality and robustness (LQG/H∞ methods), minimal realizations
(controllability and observability) and so on.
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(a) Centralized approach

The first real attempt to control subcritical transition, based on the approach
discussed above, was by Cortelezzi et al. [8] in a two-dimensional periodic channel
at Re = 104. The order of the full system (2.1) was n ≈ 104, but could be decoupled
to 32 subsystems (3.3) of order less than 102. The authors designed one controller
for each wavenumber, such that, given shear-stress measurements at each point
at the wall, the controller provided the blowing/suction signal at that point so
that the shear stress was minimized and the control effort was penalized. Since
the controllers are active in Fourier space, the physical wall measurements must
first be converted via a fast Fourier transform (FFT) into Fourier space before
they are fed to the controllers; to obtain the blowing/suction signal, the control
signals have to be transformed back to physical space via an inverse FFT. Using
this approach, Cortelezzi et al. [8] were able to reduce the wall-shear stress up to
90 per cent when the system was excited with optimal initial conditions, leading
to the largest possible transient growth of shear stress. Lee et al. [9] extended the
controller into the spanwise direction in an ad hoc manner and applied it to the
turbulent channel flow at Ret = 100. They were able to reduce the turbulent drag
by 17 per cent.

(b) Decentralized approach

The major shortcoming with the so-called centralized approach adopted by
Cortelezzi et al. [8] is that the computational cost of the FFT and inverse FFT
increases rapidly with the number of wavenumbers. This issue was addressed
in a set of consecutive papers from the Royal Institute of Technology and
University of California, San Diego, flow-control groups (e.g. [10]). These authors
adopted a decentralized approach, where instead of the signals, the controllers
themselves were transformed back into physical space, after being designed in
Fourier space. This approach results in so-called convolution kernels, which
are computed only once and then used in physical space to provide control
signals directly from measurements. The decentralized approach is justified by
the theoretical predictions by Bamieh et al. [11]. These authors showed that
for spatially invariant systems with distributed controls and measurements,
controllers obtained by solving a set of smaller problems in Fourier space are
spatially localized in physical space. Several successful projects were initiated to
extend this approach to weakly spatially developing flows [12,13] and even to fully
turbulent flows [14].
With regard to transition control of the flat-plate boundary layer, this series

of work started with the application of full information control (i.e. assuming
we can measure the entire flow field at all times) in Högberg & Henningson
[15], it continued with detailed investigations of stochastic models for external
sources of excitations in Hœpffner et al. [16], and it finally culminated in
the partial information control in Chevalier et al. [12]. The use of stochastic
disturbance models allowed computation of well-behaved estimation feedback
kernels for three wall measurements: the two components of the skin friction
and the wall pressure. The combination of the three measurements, albeit
extracted on the wall, is able to estimate the full flow remarkably well, as
demonstrated in figure 4. Chevalier et al. [12] showed that using this setup, in
a boundary layer at transitional Reynolds numbers, the exponential growth of
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(a)
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Figure 4. Optimal feedback control of small-amplitude oblique waves developing in the flat-plate
boundary layer, visualized with iso-contour levels of the streamwise velocity component. In each
frame, the left-hand boxes (blue boxes online) represent the true flow, whereas the right-hand boxes
(brown boxes online) represent the estimated flow. In (a), a snapshot of the disturbance is shown
with no control/estimation active. In (b), only the estimator is active, where, based only on wall
measurements, the disturbance in the full domain can be fully reconstructed. In (c), the controller
is active, resulting in a disruption of the travelling wave. Finally, in (d), the controller has been
active for a sufficiently long time to suppress the disturbance. (Online version in colour.)

small-amplitude two-dimensional TS waves could be suppressed by two to three
orders of magnitude, and the algebraic growth of streamwise streaks could be
damped by a factor of two. In these studies—due to the compact support of the
feedback kernels—a small spanwise strip of the flat plate could be used for sensing
and actuation.
The true significance of damping small-amplitude perturbations for transition

delay was shown in direct numerical simulations and large-eddy simulations by
Monokrousos et al. [13] of the flat plate in the presence of free-stream turbulence
(Tu = 4.7%). As shown in figure 5, the decentralized feedback controller, which
uses only small strips of the flat plate for sensing and control, is able to delay the
entire transition process by damping the linear growth of perturbations, despite
the presence of strong nonlinear effects.
Although numerical simulations (as shown in figures 4 and 5) have shown the

efficiency of distributed feedback control, several shortcomings have rendered it
difficult for experimental implementation

— it introduces a very high-dimensional controller or it requires online Fourier
transforms,

— strictly speaking, it is only applicable to spatially invariant systems, and
— it is based on the assumption of an even distribution of sensors and
actuators.

As we mentioned earlier, with regard to the first point, high-order controllers
are inefficient in applications; today, we lack methods to reduce the order
of very high-dimensional controllers in a systematic way, as the methods
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Figure 5. Optimal feedback control of transition induced by free-stream turbulence using a ‘strip’
of actuation (blowing/suction) and of sensing (shear stress) on the wall. (a,b) Instantaneous views
of the streamwise velocity component in a parallel plane close to the wall, (a) without and (b)
with feedback control are shown. Rex ranges from 32 000 to 382 000. The reduction of the streak
amplitude is clearly visible. A turbulent spot appears further downstream in the uncontrolled
flow, while the flow is laminar when blowing/suction is applied. (c) The wall-normal maximum
of the r.m.s. value of the streamwise velocity perturbation is shown for the uncontrolled case
and for both full information control and compensation. (Thin line, no control; thick line, full
information control; dashed line, estimation-based control.) (d) The corresponding skin-friction
coefficient confirms the transition delay. (Thin line, no control; thick line, full information control;
dashed line, estimation-based control.) Adapted from Monokrousos et al. [13].

developed in the control community are only applicable to controllers of
moderate size. The second point is a severe restriction; even if the approach
can be extended to weakly spatially developing flows, more complex flows,
such as flows in ducts, corners, diffusers and on elliptic leading edges are
out of reach. Finally, the assumption of distributed sensors and actuators
restricts the approach to acting and sensing devices that can be manufactured
in very large numbers such as microelectromechanical systems type of
technology, whereas in many applications, this is not cost efficient, and only
a few localized sensors and actuators suffice to manipulate the flow in a
desired way.
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4. Localized control of spatially developing systems

In this section, we present the ‘next-generation’ techniques for a linear systems
approach to transition control that addresses the limitations of the methods
in §3 in a direct and efficient way. The most important feature of the techniques
outlined and reviewed herein is that they do not rely on physical insight into
the specific flow configuration, and can, in principle, be applied to any geometry.
Moreover, there are no assumptions about the shape and distribution of actuators
and sensors.
Transitional wall-bounded flows are strongly convection dominated, which

means that there is a very limited amount of information propagating upstream.
A natural setup of localized actuators and sensors for such flows is sketched
in figure 3b. The disturbance is measured by a set of detection sensors placed
upstream of a set of actuators. The sensor signals are fed through a low-order
controller before driving the actuators. Finally, a set of ‘error’ sensors downstream
of the actuators is introduced. The output of the error sensors can be used
to monitor the performance of the active control source and the objective of
the control system is the minimization of this error signal.2 It is important
to place actuators and sensors at appropriate locations to be able to capture
important dynamics and to manipulate the flow with small amounts of energy.
For convection-dominated flows, there are no systematic methods available to
choose optimal actuator and sensor locations and a trial-and-error procedure is
usually employed.
The present approach is based on the recognition that, based on whatever

filtered information delivered from the measured output signals to the controller,
suitable input signals are determined to achieve the desired flow behaviour.
Thus, of importance for control design is to extract the components necessary
to describe the relation between input and output time signals from the Navier–
Stokes equations. This input–output dynamics is often much simpler than the
full spatio-temporal perturbation dynamics. There are two approaches to find a
model of the input–output dynamics instead of the full perturbation dynamics:
(i) the use of model-reduction techniques to systematically reduce the complexity
of the Navier–Stokes system and extract the input–output dynamics and (ii) the
use of system-identification techniques to develop a mathematical model directly
from measurement, with no regard to the Navier–Stokes equations.

(a)Model reduction via Galerkin projection

The model-reduction technique discussed here falls into the category of
projection methods, where one projects the Navier–Stokes system onto an
appropriate low-dimensional subspace spanned by a set of flow fields, called
modes. For instance, expanding the state vector q(t) in a set of basis functions fi ,
we have

q(t)=
r∑

i=1
ai(t)fi , (4.1)

2The term feedback control is interpreted in different ways by different segments of the control
community. From an electrical engineering viewpoint, the set-up sketched in figure 3b can be
interpreted as feedforward, since the action of the actuators affects only the signal measured at
the downstream sensors and not the upstream sensors.
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input
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to input output

initial conditions
providing large output

Figure 6. Sketch of (a) controllability and (b) observability for the flat-plate boundary layer.
The response to an input is large downstream (because of strong convection), which results in
a large controllability of flow structures in the downstream part of the domain. Similarly, the flow
structures that will, after a transient time, result in a large sensor output are located far upstream,
resulting in strong observability in that region. (Online version in colour.)

where r' n. If the basis is orthonormal, the expansion coefficients ai(t) are
given by ai(t)= 〈q(t),fi〉, but if it is not orthonormal, they are given by ai(t)=
〈q(t),ji〉, where ji is the adjoint mode, satisfying the bi-orthogonality condition
〈fj ,ji〉 = dij . By inserting the above expansion into equation (2.1) and using the
bi-orthogonality condition, we get

ȧ(t)=Ara(t)+ Bru(t) (4.2a)

and
yr(t)=Cra(t)+Du(t), (4.2b)

where a(t)= [a1(t), . . . , ar(t)] ∈ Rr , and Ar ∈ Rr×r ,Br ∈ Rr ,Cr ∈ Rr are small
matrices that define the reduced-order model. In projection methods, the
dynamics captured by the reduced-order model depends on the choice of
expansion basis fi and the direction of projection, determined by the adjoint
basis jj . The expansion basis can be eigenvectors of the linearized Navier–Stokes
system [17] or different varieties of proper orthogonal decomposition (POD)
modes [18].
One of the most common model-reduction techniques in the linear control

community is balanced truncation [19]. The method is based on the important
notions of controllability and observability; concepts that are significant when
inputs and outputs are introduced. In particular, for a given input, say
blowing/suction through an orifice, controllability addresses the question which
flow fields are most easily triggered by the input. Similarly, for a given output, say
shear-stress wall measurements, observability addresses the question which flow
fields contribute the most to the output measurements. In figure 6, the regions in
the flow domain where controllability and observability are significant is sketched
for wall-bounded flows. These so-called controllable and observable states can
be identified from the spatial correlation matrices (also called Gramians) of the
linear system (2.1) and an associated dual (or adjoint) system. The projection
basis fj and its associated adjoint basis jj are then computed by diagonalizing
the product of the two Gramians.
Controllability and observability were considered already by early investigators

in this field [6–9], but not for the specific aim of reducing the complexity of
the Navier–Stokes equations. At that time, a numerical algorithm to apply this
technique directly on Navier–Stokes equations was not available. Inspired by
the so-called snapshot technique Sirovich [20] used to compute POD modes,
Lall et al. [21] and Willcox & Peraire [22] made significant progress in developing
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Figure 7. (a) Impulse and (b) frequency response of the flat-plate boundary layer when the system
is forced far upstream and measured far downstream. The solid lines show responses from direct
numerical simulation computations (n ≈ 105). The filled circles (red symbols online) show the
responses from the reduced-order model (r = 60). Adapted from Bagheri et al. [27]. (Online version
in colour.)

balanced truncation for very high-dimensional systems and nonlinear systems.
Finally, Rowley [23] was able to reduce the computation of the balanced
truncation method from a large eigenvalue problem to a relatively small singular
value decomposition problem. This so-called snapshot-based balanced truncation
method can be applied to reduce the complexity of very high-dimensional systems
(order n ≈ 104–108), if the number of inputs and outputs are considerably
smaller, i.e. m, p< 102. So far, this method has been validated against exact
balanced truncation techniques and compared with other ad hoc model-reduction
techniques based on POD modes on the channel flow [24], the Ginzburg–Landau
equation [25] and the problem of incompressible cavity flow [26].
Using a simple two-dimensional setup (two sensors, one actuator and one

disturbance as in figure 3b), Bagheri et al. [27], showed that a significant
order reduction can be combined with control theoretical tools to attenuate
disturbances in spatially developing flows. In figure 7, the sensor signal of the
Navier–Stokes system (solid line) is compared with the signals of the reduced-
order model (filled circles) when the two systems are forced with an impulse
(figure 7a) and harmonic signals (figure 7b). From the impulse response, we can
observe a time delay of 1500 time units before the sensors give a significant
output. From the frequency response, we can see that a wide range of frequencies
(u ∈ [0.03, 0.08]) are amplified, whereas low and high frequencies are damped. To
capture both the time-delay effects and the broad-band spectrum with a high
accuracy, at least 60 d.f. is necessary. The reduced order was used to design
a small optimal feedback controller, which could damp the energy of the two-
dimensional TS wavepackets forced upstream by orders of magnitudes. A similar
analysis was performed by Bagheri et al. [28], where instead of body forces,
blowing/suction actuators and wall-shear stress were employed. However, the fact
that the inputs and outputs were modelled as a body force does not mean that
they were unrealistic. It is the effect of an actuator that is important to model,
and not the actuator itself. Therefore, the action that the body force has on the
flow could possibly be reproduced, for example using plasma actuators.
The input–output approach can be extended to a fully three-dimensional

configuration [29,30]. In the homogeneous spanwise direction of the flat plate, an
array of localized sensors, followed by an array of actuators further downstream
are distributed near the rigid wall. The objective is to minimize the perturbation
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Figure 8. (a) Kinetic energy of a three-dimensional disturbance in the flat-plate boundary layer
without (solid line) and with (dashed line) feedback control. In the uncontrolled flow, an exponential
growth of three orders of magnitude is observed. The disturbance energy of the closed-loop system
obtained using a low-order (r = 60) controller has about one order of magnitude smaller peak
energy. Instantaneous snapshots of the disturbance field (b) without and (c) with feedback control,
demonstrate the effect of the controller: the two-dimensional structure of the disturbance in (b)
has been replaced by a smaller scale three-dimensional disturbance in the closed-loop system (c).
(Online version in colour.)

energy in a spatial domain spanned by a number of prudently chosen output
equations; for example, the leading 10 POD modes generated from the impulse
response of the disturbances or a number of localized Fourier modes. Reduced-
order (r ≈ 60) optimal controllers developed from balanced truncation models,
are able to reduce the growth of complicated three-dimensional disturbances by
orders of magnitudes as demonstrated in figure 8. In this particular configuration,
nine sensors and nine actuators were used to control the exponential growth
of the three-dimensional TS wavepacket discussed in §1. An efficient control
performance is also observed for the control of streaks (energy growth reduced
by a factor of two). However, since streaks reach their maximum energy faster
(figure 2) and have smaller spanwise scales compared with TS wavepackets, the
actuators and sensors are placed closer to each other in the spanwise direction
and are moved further upstream in the streamwise direction. It is interesting to
note, however, that the same physical shape of sensors and actuators can be used
to control both TS and streak wavepackets, indicating that it is not necessary to
design disturbance-specific devices to develop efficient controllers.

(b) System-identification methods

System identification is a well-established mathematical field, with the aim of
modelling systems from experimental measurements. In its simplest form, it is
performed by exciting a system (with an impulse, a step or a harmonic signal)
and observing its inputs and outputs over a time interval, followed by finding a
model that fits the input–output relation. The latter step is usually performed
by a statistically based method to estimate unknown parameters of the system.
A simple example of model parametrization is the ‘Autogression with

exogenous input model’. Given a sequence of input and output signals at
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discrete times,

[u(t1), u(t2), . . . , u(tk)] and [y(t1), y(t2), . . . , y(tk)], (4.3)

the output at the current time tk+1 can be written as a linear combination of the
previous input and output samples,

y(tk+1)= −
r∑

j=1
Ejy(tj)+

r∑

j=1
Fju(tj). (4.4)

The unknown parameters Ei ∈ Rp×p and Fi ∈ Rp×m are chosen such that the
difference between the output of the experiments and the model output given
the same input sequence is minimized in a least-square sense.
Since these models are developed purely from measurement signals for various

input signals, they capture the input–output dynamics, similarly to balanced
truncation. In fact, it was recently realized [31] that a common system-
identification algorithm [32] produces exactly the same reduced-order models as
snapshot-based balanced truncation. Neither simulations of the adjoint system
nor a Galerkin projection onto expansion basis are necessary to obtain low-order
state-space models. This equivalence is true only if the underlying system is linear
(which is certainly not the case in experiments). If the true flow behaviour is
nonlinear, the identified linear model may not converge to it, since a nonlinear
model cannot be represented by one single linear model, regardless of the length
of sampled input–output signals used. So, it is not always certain that system-
identification models can provide effective linear controllers since unmodelled
nonlinear dynamics may severely limit the performance.
A number of successful experimental investigations (e.g. [33,34]) of transition

delay have been conducted using system-identification techniques. For instance,
Rathnasingham & Breuer [35] used a set-up similar to the sketch in figure 3b:
an array of three shear-stress sensors were placed upstream of three synthetic
jets actuators followed by three error sensors far downstream. The linear
controller was based on stochastically estimated transfer functions between
the inputs and outputs, and the control objective was to minimize the
difference between the predicted signal of the estimated linear model and the
true signal from the experiments. They were able to reduce the streamwise
velocity fluctuations and the mean wall shear stress in a turbulent (Rex =
8× 105) boundary layer by 30 per cent and 7 per cent, respectively. A similar
localized set-up of sensors and actuators was employed in the wind-tunnel
experiment by Lundell [36]. He investigated the effects of simple feedback control
(when the measured shear stress was below a threshold, steady suction was
applied after some time delay) on the behaviour of streaks excited by external
free-stream turbulence.
There are a number of aspects of system-identification experiments that can be

further improved using numerical simulations: (i) in Rathnasingham & Breuer [35]
and Sturzebecher & Nitsche [34], the objective is to minimize the signals of
few surface hot-wire sensors located far downstream in the boundary layer. In
contrast to experiments, in model-based control, we are able formulate a control
objective that encompasses much larger domains also further away from the wall,
which enhances the control efficiency. (ii) The use of model-based estimation,
such as the Kalman filter can significantly improve the estimation accuracy
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of the flow state. (iii) Numerical investigations can be useful for experiments
by providing guidelines for the shape and spatial distribution of actuators and
sensors. Therefore, one can set up experiments after first evaluating a large
number of numerical simulations, in order to understand how to design and place
actuators and sensors.
Similar to distributed control discussed in §3, the localized/input–output

framework has its own set of drawbacks

— the placement of the actuators and sensors at the wall is related to the
spatial and temporal scales of the disturbances,

— different choices of sensors used to define the objective function can yield
different control results, and

— the computational cost of model reduction and system-identification
algorithms, as well as the experimental feasibility (i.e. wiring), increase
rapidly with the number of inputs and outputs.

In contrast to distributed control, in localized control, the location of actuators
and sensors in the streamwise direction and their spacing in the spanwise direction
is different for the control of streaks and TS waves. In a similar way, the
second point also makes the design disturbance specific. In experiments, output
signals can only be extracted from sensor measurements, whereas in numerical
simulation, a spatial domain spanned by an expansion basis (such as POD modes)
can be used to define the output signals. In either case, the control performance
depends on the choice of the output signals and some ‘engineering judgement’.
The final point may become a severe restriction due to the second point, since
defining an objective function that captures a significant amount of physical
information might require a large number of sensors.

5. Conclusions

This paper summarizes the research efforts to combine linear control theory,
hydrodynamic stability theory and numerical simulations to delay the transition
to turbulence in wall-bounded shear flows. The emergence of this particular field
in flow control is tightly coupled to the recent developments in direct numerical
simulation techniques, novel ‘matrix-free’ algorithms as well as increasing
computational resources. The control efficiency for attenuating small-amplitude
disturbances is equally good for localized control, based on reduced-order models,
as for distributed control based on convolution kernels. In the former approach,
only a few small localized sensors and actuators are employed and considerable
flow manipulation can be achieved by exploiting the large sensitivity typical of
wall-bounded flows. In the latter approach, the nearly spatial invariance of the
flow is instead exploited to evenly distribute sensors and actuators.
Although, linear control methods are particularly well suited for transition

control, they have been successfully applied to related flow-control fields, where
linear mechanisms are an essential part of the underlying physics. For example,
the linear growth and breakdown of streaks discussed here in the context of
transition are also observed in the regeneration cycle that has been proposed to
sustain turbulence. Nevertheless, the wide range of scales in both space and time
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in turbulent flows renders it a significantly more difficult and ‘nonlinear’ control
problem. A particular challenging task is to obtain an accurate estimate of a
turbulent flow using linear estimation techniques by incorporating realistic and
physical disturbance statistics both in space and time. Linear mechanisms also
play a fundamental role in separated flows or for flows that exhibit supercritical
transition, such as the Hopf bifurcation in a cylinder wake. For such flows,
linear control can provide efficient means to stabilize the unsteady self-sustained
oscillations well above critical Reynolds numbers (e.g. [26]).
Since Joshi et al. [6] introduced linear control theory to the fluid-mechanics

community, the number of research projects in this vein has increased at an
exponential rate. These studies—although purely theoretical or performed on
simple models—has brought us to a stage where the numerical development
of reliable controllers is possible to use in the laboratory experiments
and eventually in more complicated technological configurations. An equally
important contribution to this is the large number of experimental flow-
control studies devoted to the development and fabrication of flow-measurement
and actuation devices, as well as physical implementation of active controller
algorithms.
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