Spontaneous Symmetry Breaking of Hinged Flapping Filament Generates Lift

Shervin Bagheri (KTH, Stockholm) Andrea Mazzino & Alessandro Bottaro (Genova University, Italy)

Fluid & Elasticity 2012 La Jolla, San Diego, Nov. 14-16, 2012

Bio-Inspired Flow Control

How does non-smooth flexible surfaces, appendages affect moving bodies?

- How does the filament
 - interact with the fluid?
 - modify the motion of the body?

Symmetry Breaking

- Filament flaps asymmetrically
 - \rightarrow a net force/torque on body
 - \rightarrow reduced drag on body

Numerical Treatment

- Flow dynamics (Navier-Stokes)
- Filament dynamics (Euler-Bernoulli Beam)
- 4 parameters

$$L = \frac{L_s}{D}, \quad Re = \frac{UD}{\nu} \quad R_1 = \frac{\rho_s}{\rho_f D} \quad R_2 = \frac{B}{\rho_f U^2 D^3},$$

Resonance Condition

- Free vibrations of filament f_s
- Vortex shedding frequency f_c
- If $f_s \ll f_c$ filament very slow reaction time
- If $f_s \gg f_c$ filament react instantaneously
- Thus $f_s \sim f_c$ separates two different regimes
- Gives resonance condition:

$$L_r = \left(\frac{R_2}{R_1 f_c^2}\right)^{1/4}$$

15

- Energy
$$E = \frac{1}{2} \int_0^L R_1 |\mathbf{X}_t|^2 + R_2 |\mathbf{X}_{ss}|^2 ds$$

- Rescaled with filament density and length

$$(\rho_f, D) \to (\rho_s, L_s)$$

Flapping synchronized with vortex shedding, time scale

U/D

 \rightarrow rescaled non-dimensional filament energy

$$\tilde{E} = \frac{R_1}{L^3}E$$

L=2.25 (rigid)

17

Resonance

	Resonance (theoretical)	Resonance (computed)	Bifurcation (computed)
Flexible	1.25	1.25	1.6
Rigid	2.6	2.25	2.25

Can Filament Alter Motion?

- Swimming sea slug
 - flapping of wings (Re>10)
 - beating of cilia (Re<1)

- Inert cilia alter motion
 - interaction with fluid
 - without energy expended

Can Filament Increase Drift?

- Efficient wind-borne seed dispersal
 - Side force due to symmetry breaking may increase drift

Thank you!

Reference:

Bagheri, Mazzino & Bottaro, PRL, 109, 2012

See also:

Lisa Zyga, *PhysORG*, 22nd Oct (http://phys.org/news/2012-10-symmetry.html#ajTabs)

Outline

- General physics of
 - flow past a cylinder
 - flow past a filament
- Symmetry breaking of cylinder + filament
 - resonance between fluid & structure
 - generation of net lift, torque
- Immersed boundary method
- Conlusion & outlook

Fluid Equations

• Viscous incompressible fluid

Momentum
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$

Continuity ∇

$$\cdot \mathbf{u} = 0$$

- Flow solver
 - Discretize on Cartesian grid
 - No dynamic equation for pressure
 - Projection method

Flow Past Rigid Body

• Viscous incompressible fluid Momentum

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$

Continuity

$$\nabla \cdot \mathbf{u} = 0$$

No-slip

$$\mathbf{u} = 0$$
 on Γ

Immersed Boundary Method

Viscous incompressible fluid
 Momentum

Immersed Boundary Method

• Immersed boundary method

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} + \int_{\Gamma} \mathbf{f}(\zeta) \delta(\mathbf{x} - \zeta) \, \mathrm{d}\zeta$$
$$\nabla \cdot \mathbf{u} = 0$$

$$\mathbf{u} = 0$$
 on Γ

- Flow field: Eulerian (Cartesian grid)
- Boundary: Lagrangian points
- Boundary force to enforce no-slip
- Projection method

(Taira & Colonius, JCP, 2005)

Flow Past Flexible Filament

• Viscous incompressible fluid

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} + \int_{\Gamma} \mathbf{f}(\zeta) \delta(\mathbf{x} - \zeta) \, \mathrm{d}\zeta$$
$$\nabla \cdot \mathbf{u} = 0$$

No-slip

$$\mathbf{u}(\Gamma) = \dot{\zeta}$$

Filament dynamics

(Peskin, 1997, 2002, Kim & Peskin 2007)

Current Work

Problems to be tackled:

- 1. Free falling bluff body with filament
- 2. Interaction among particles with filament
- 3. Bodies with distributed, anisotropic coatings

Approach:

- 1. Numerical (Lagrangian methods)
- 2. Experimental (soap film experiments)
- 3. Theoretical (stability/bifurcation/resonance analyses)

FSI for Multiple Moving/Flexible Bodies

Developing direct numerical simulation of fluid/structure
→ combination of vortex methods and immersed boundary methods

(Zhang etal, Nature, 2000) (Rutgers etal, Rev. Sci. Inst. 2001)

Discretization of Fluid Equations

• Viscous incompressible fluid

Momentum
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$

Continuity $\nabla \cdot \mathbf{u} = 0$

• Discretize (Adams-Bashforth+Crank-Nicolson)

Momentum
$$\frac{u^{n+1} - u^n}{\Delta t} + \frac{3}{2}N(u^n) - \frac{1}{2}N(u^{n-1}) = -Gp^{n+1} + \frac{1}{2Re}L(u^{n+1} + u^n)$$

Continuity $Du^{n+1} = 0$

Algebraic system

- Algebraic system
 - Linear system

$$\begin{bmatrix} A & G \\ D & 0 \end{bmatrix} \begin{bmatrix} u^{n+1} \\ p \end{bmatrix} = \begin{bmatrix} r^n \\ 0 \end{bmatrix}$$

- LU Factorization

$$\left[\begin{array}{cc} A & G \\ D & 0 \end{array}\right] = \left[\begin{array}{cc} A & 0 \\ D & -DA^{-1}G \end{array}\right] \left[\begin{array}{cc} I & A^{-1}G \\ 0 & I \end{array}\right]$$

- Projection/Fractional step method
 - Momentum $Au^* = r^n$
 - Pressure Poisson $DA^{-1}Gp^{n+1} = Du^*$
 - Projection

$$u^{n+1} = u^* - A^{-1}Gp^{n+1}$$

