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Koopman-Dynamic Modes

ntroduced 3 years ago

— Dussin of papers in JEFM/PoF... ‘
— Power grid systems, network '
systems, elasticity, etc...

An euphoria in the community...
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Abstract

This article reviews theory and applications of Koopman modes in fluid
mechanics. Koopman mode decomposition is based on the surprising fact,
discovered in Mezi¢ (2005), that normal modes of linear oscillations have
their natural analogs—Koopman mod
namics. To pursue this analogy, one must change the representation of the
system from the s space repr to the dy governed by the
linear Koopman operator on an infinite-dimensional space of observables.
Whereas Koopman in his original paper dealt only with measure-preserving
transformations, the discussion here is predominantly on dissipative sys-
tems arising from Navier-Stokes evolution. The analysis is based on spectral
properties of the Koopman operator. Aspects of point and continuous parts
of the spectrum are discussed. The point spectrum corresponds to isolated
frequencies of oscillation present in the fluid flow, and also to growth rates
of stable and unstable modes. The continuous part of the spectrum corre-
sponds to chaotic motion on the attractor. A method of computation of the
spectrum and the associated Koopman modes is discussed in terms of gener-
alized Laplace analysis. When applied to a generic observable, this method
uncovers the full point spectrum. A computational alternative is given by
Arnoldi-type methods, leading to so-called dynamic mode decomposition,
and T discuss the connection and differences between these two methods. A
number of applications are reviewed in which decompositions of this type
have been pursued. Koopman mode theory unifies and provides a rigorous
background for a number of different concepts that have been advanced in
fluid mechanics, including global mode analysis, triple decomposition, and
dynamic mode decomposition.

s—in the context of nonlinear dy-




A Free Water Jet Into a Pool

Lehrdo da Vinci




Cloud Formation

e Clouds roll up into Kelvin-Helmholtz vortices

e Two streams of different velocity: shear layer instabilities
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Clould Formation

e Karman vortex street developing behind an island

e Periodic vortex shedding




Motivation

— Can we extract periodic motion from flow?

— Where/how does unsteadiness arise? Can we describe transient
motion of the flow?




Showcase: Jet in Crossflow

e Fluid injected through a hole into a crossflow

Smoke stacks Volcano eruptions Fuel injection/film
cooling
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The 4 Vortical Structures of

Jet in Crossflow

Counter-rotating vortex

_pair

Shear-layer vortices 3

Horse-shoe/wall vortices
Karman vortex street

Kelso, Lim & Perry 1996, JFM

Velocity ratio:
R=V/U=3

Reynolds number:

68U
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Re = 165




DNS Movie

llak, Schlatter, Bagheri, & Henningson (2012 JFM, 2012 PoF)




Numerical Simulations

e Identified from DNS:

— 2 events of vortex shedding
(oscillation of separated region)
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Bagheri, Schlatter, & Henningson (2009 JFM)




Spectral Expansion

e Expansion of flow field into

Koopman modes

o
u(t) = Zvjekf’t

Mezic, 2005, Nonlin. Dyn.
Rowley et al 2009, JFM

)\j € C Koopman eigenvalues

— Computational approach - Dynamic Mode Decomposition

Schmid, 2010, JFM
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Koopman Spectrum of
Jet in Crossflow

e Eigenvalues on the unit circle
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— Dominant frequencies match vortex shedding frequencies from DNS
— Computed using DMD (Dynamic Mode Decomposition) (Schmid 2010)
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KO O p m a n M O d e S Positive streamwise velocity I
Negative streamwise velocity —
e High-frequency mode:

— Captures shear-layer
structures

— Matches first DNS-vortex
shedding

St =0.141

e Low-frequency mode 5t =0.017 |

— Captures wall structures

— Matches second DNS-
vortex shedding

Rowley, Mezic, Bagheri, Schlatter
& Henningson 2009, JFM




Extraction of Structures

e Comparison:
— Linear Global modes: Normal mode analysis
— Proper Orthogonal Decomposition (POD) modes
— Koopman modes

Mode DNS Global POD

Koopman

Shear layer 0.141 0.169  0.138,0.158,0.121

Wall 0.017 0.043  0.0188,0.0094,0.158,0.121

0.141
0.017

Bagheri (2012 ARCME)
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Koopman mode/DMD

e General formulation
e Koopman modes of oscillators

e Cylinder flow as prototype
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Supercritical Flow Dynamics

Transient dynamic\

Unstable (laminar)
point
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Supercritical Flow Dynamics

e Focus on dynamics
on and near the
attractor

Transient dynamics

Neighborhood of attractor

Unstable (laminar)
point
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Cylinder flow above Re=47

Dynamical system has two critical elements

— Unstable equilibrium (baseflow, fixed point, stationary solution,..)

— Stable limit cycle (period orbit,...)

- (a)

Unstable eqiulibri'um
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Governing Egs of Fluid Motion

e Navier-Stokes equations

ot  70x; Redx;0x; Oux, osts
8%7;
0= 8xi’

e Discretization 2 dynamical system

— n-dimensional ODE:  u(t) = f(u; Re),

— Propagator: u(s +t) =T (u(s)).
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Observables

e Any function of the flow field g(u)
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— Infinitely many different observables: kinetic energy, probe, full

flow field

— May have different dimensions and may be nonlinear
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Governing Eqgs for Observables

e Convection equation

og _
ot

— Linear PDE (infinite-dimensional)

(f(u)- V)g = Lg

— Hyperbolic system: observable “passive tracer” transported by f(u)

Koopman Operator

e Formal solution: /

g(u(t)) = exp(Lt)g(uo) = Ug(uo),
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Spectrum of Koopman

e Linear operator - Spectrum

Lgbj(u) :)\jqu(u), j:O,l,Q,...

A

e What do ¢; and \; tell us about the flow?
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Oscillator — Cylinder flow (Re=50)

e Attracting limit cycle T

— Poincare map LIS

Uk_|_1 — SkUl -3

— Linearized Poincare map

Sk (U, +6U) = U, + MU + ...
Monodromy/Floquet matrix

* Frequency w = t_p,
2T

. Growthrate o0 <0
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Koopman Eigenvalues

— Formulas based on trace

Tr Uy = Zexp()\jt).
§=0

or

Tr U =1t, Z ‘ d5(t _ Ttp) . Trace Formula

—> Provides a subet of the Koopman eigenvalues

)\Jm:]g+zmw7 .72071727'°°7

Y

m=0,+1,42. ...

Cvitanovic & Eckhardt, 1991, Phys. A. Math
Gaspard 1998 (Cambridge)
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Analytical & Computational

spectrum
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Analytical & Computational

spectrum
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Analytical & Computational

spectrum
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Analytical & Computational

spectrum
Steady structures
v
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Analytical & Computational

spectrum
Structures oscillating with fundamental
l/frequency \l’
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Analytical & Computational

spectrum
Structures oscillating with subharmonic frequency
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Koopman modes

Expansion of an observable in Koopman eigenfunctions

Zaj% ZVJG
\

Koopman modes

)\j € C Koopman eigenvalues

Mezic, Nonlin. Dyn. 2005
Mezic, Ann. Rev. Fluid Mech. 2013 31




Koopman Modes

e Two steps
1. Scale separation: fast limit cycle period but slow saturation

A
a— — CL()A — CL1A|A|2,
ot

2. Spectral expansion of S-L equation

g(A) = Z a;jd; eXp(S\jT).

- Provides Koopman Modes

Bagheri, 2012, Submitted JFM
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Koopman modes (analytical)

Voo = U+ €u, S e,uu )+
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Bagheri, 2012, Submitted JFM

% ((1+38)(f + eal”)

1) ad.

Ao,0 =0
Ao =0
)\0,1 = 1w

M1 =0+ w

)\0,2 = 12w

)\1,2 =0+ 12w

Mean flow
(asymptotic)

Shift mode
(transient)

Global mode
(asymptotic)

Global mode
(asymptotic)

Subharmonic mode
(asymptotic)

Subharmonic mode
(transient)
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Spectral Expansion

e Expansion of flow field into

— Operator approach: Koopman Operator
Koopman modes

0
u(t) — E Vjekjt )\j € C Koopman eigenvalues
7=0

— Computational approach - Dynamic Mode Decomposition

u(t) — {/je)‘jt S\j € C Ritzvalues

Mezic, 2005, Nonlin. Dyn. Ritz vectors

Rowley etal 2009, JFM 34
Schmid, 2010, JFM




Koopman modes (computational)

Asymptotic modes Transient modes
® 3 T T PN T @ 3 T
ol = i o} SKift mod

o @

Subharmonic mode A 2

\_/

Bagheri, 2012, Submitted JFM
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Koopman mode: Mean Flow

Mean flow Ao,0 =0

10

15
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Koopman mode: Global mode
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Global mode )\O 1 — W
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Huerre & Monkewitz, 1990, Annual Rev. Mech
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Koopman mode: Subharmonic
Global mode
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Koopman mode: Shift mode
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Conclusions

e Analytical results
— Koopman eigenvalues form a lattice (trace formula)

— Koopman modes correspond to mean flow, shift mode, global
modes,..

e Computational results
— Ritz vectors/values good approximation near and on attractor
— Algebraic dynamics generates clusters/branches in spectrum
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