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Koopman-Dynamic Modes 

•  Introduced 3 years ago 
–  Dussin of papers in JFM/PoF… 
–  Power grid systems, network 

systems,  elasticity, etc… 

–  An euphoria in the community… 
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Abstract
This article reviews theory and applications of Koopman modes in fluid
mechanics. Koopman mode decomposition is based on the surprising fact,
discovered in Mezić (2005), that normal modes of linear oscillations have
their natural analogs—Koopman modes—in the context of nonlinear dy-
namics. To pursue this analogy, one must change the representation of the
system from the state-space representation to the dynamics governed by the
linear Koopman operator on an infinite-dimensional space of observables.
Whereas Koopman in his original paper dealt only with measure-preserving
transformations, the discussion here is predominantly on dissipative sys-
tems arising from Navier-Stokes evolution. The analysis is based on spectral
properties of the Koopman operator. Aspects of point and continuous parts
of the spectrum are discussed. The point spectrum corresponds to isolated
frequencies of oscillation present in the fluid flow, and also to growth rates
of stable and unstable modes. The continuous part of the spectrum corre-
sponds to chaotic motion on the attractor. A method of computation of the
spectrum and the associated Koopman modes is discussed in terms of gener-
alized Laplace analysis. When applied to a generic observable, this method
uncovers the full point spectrum. A computational alternative is given by
Arnoldi-type methods, leading to so-called dynamic mode decomposition,
and I discuss the connection and differences between these two methods. A
number of applications are reviewed in which decompositions of this type
have been pursued. Koopman mode theory unifies and provides a rigorous
background for a number of different concepts that have been advanced in
fluid mechanics, including global mode analysis, triple decomposition, and
dynamic mode decomposition.
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A Free Water Jet Into a Pool 

• Coherent structures 

• Vortical structures 

Leonardo da Vinci 



Cloud Formation 

•  Clouds roll up into Kelvin-Helmholtz vortices 

•  Two streams of different velocity: shear layer instabilities 



Clould Formation 

•  Karman vortex street developing behind an island 

•  Periodic vortex shedding  

Island near Chilean coast 



Motivation  

–  Can we extract periodic motion from flow? 

–  Where/how does unsteadiness arise? Can we describe transient 
motion of the flow? 
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Showcase: Jet in Crossflow 

•  Fluid injected through a hole into a crossflow 

Smoke stacks Volcano eruptions Fuel injection/film 
cooling 



The 4 Vortical Structures of  
Jet in Crossflow 

R = V/U = 3

Velocity ratio: 

Reynolds number: 

Re =
δ∗0U

ν
= 165

Shear-layer vortices 

1 

Horse-shoe/wall vortices 
2 

Counter-rotating vortex 
pair 

3 

Karman vortex street 
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Kelso, Lim & Perry 1996,  JFM  



DNS Movie 

Ilak, Schlatter, Bagheri, & Henningson (2012 JFM, 2012 PoF)  



Numerical Simulations 

•  Identified from DNS: 
–  2 events of vortex shedding 
    (oscillation of separated region)  
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Spectral Expansion 

•  Expansion of flow field into  

–  Computational approach - Dynamic Mode Decomposition 
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Schmid, 2010, JFM 

Koopman modes 

Koopman eigenvalues 

Mezic, 2005, Nonlin. Dyn.  
Rowley et al 2009,  JFM  



•  Eigenvalues on the unit circle 

–  Dominant frequencies match vortex shedding frequencies from DNS 
–  Computed using DMD (Dynamic Mode Decomposition) (Schmid 2010)   
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Koopman Modes 

•  High-frequency mode: 
–  Captures shear-layer 

structures 
–  Matches first DNS-vortex 

shedding  

•  Low-frequency mode 
–  Captures wall structures 
–  Matches second DNS-

vortex shedding   

St = 0.017

St = 0.141

 Positive streamwise velocity 
Negative streamwise velocity 

Rowley, Mezic, Bagheri, Schlatter 
& Henningson 2009,  JFM  



Extraction of Structures 

•  Comparison: 
–  Linear Global modes: Normal mode analysis 
–  Proper Orthogonal Decomposition (POD) modes 
–  Koopman modes 

14 

2.3. KOOPMAN MODES 31

Mode DNS Global POD Koopman

Shear layer 0.141 0.169 0.138, 0.158, 0.121 0.141
Wall 0.017 0.043 0.0188, 0.0094, 0.158, 0.121 0.017

Table 2.2. Comparison of the frequencies (St) obtained from
DNS probes (shown in figure 1.7); the global eigenmodes of the
linearized Navier–Stokes; POD modes 1 and 6, corresponding
to mainly shear-layer and wall oscillations, respectively; and
Koopman modes.

by Laporte & Corjon (2000) and Leweke & Williamson (1998). This analysis
clearly shows that the fundamental shedding frequency of the jet in crossflow is
associated with vortex loop structures on the jet, as a result from a saturation
of the first global instability mode discussed in the previous section.

The third pair φ5–φ6 oscillates with precisely the low-frequency vortex
shedding, St1 = 0.017 observed from numerical simulations. This anti-sym-
metric mode is shown in figure 2.10(b) and is clearly related to coherent struc-
tures in the wall region. The alternating positive and negative streamwise
velocity near the wall contributes to the wall-normal vorticity constituting the
nonlinear von Kármán vortex street. In fact, the structure of the wall-normal
vorticity near the wall is similar to the nonlinear wavepacket reported by Pier
(2002) and Barkley (2006) for the cylinder wake flow. We conclude that the
low-frequency shedding of the jet in crossflow is indeed associated with the von-
Kármán vortex street developing near the wall downstream of the jet, resulting
from a saturation of the global instability modes. It can be noted that this
mode has a nonzero amplitude in the jet region (along the jet body), which is
confirmed by the observation that the whole jet wiggles back and forth in the
spanwise direction.

2.3.3. Concluding remarks

For complex flows, where several self-sustained oscillations exist and are po-
tentially coupled, one is interested in studying the dynamics of the different
oscillations separate from each other. The Koopman modes are able decouple
and isolate these dynamics. In table 2.2 the frequencies obtained from the
analysis based on the Koopman modes and global eigenmodes of the linearized
system for the jet in crossflow are shown. For completeness, the frequencies
extracted from the Proper Orthogonal Decomposition (POD) modes are also
included in the table. The POD modes of the JCF are described in Schlatter
et al. (2009). The global eigenmodes capture the dynamics only in a neigh-
borhood of the unstable fixed point, resulting in linear frequencies that are
different from the nonlinear shedding frequencies. The Koopman modes, on
the other hand, correctly capture to the asymptotic dynamics on the attractor
of the nonlinear system. The method is thus able (by construction) to extract
global modes that oscillate with precisely the same frequency as the shedding

Bagheri (2012 ARCME)  



Koopman mode/DMD 

•  General formulation 

•  Koopman modes of oscillators 

•  Cylinder flow as prototype 

15 



Supercritical Flow Dynamics 

16 



Supercritical Flow Dynamics 
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•  Focus on dynamics 
on and near the 
attractor  

Neighborhood of attractor 



Cylinder flow above Re=47 

Spectral representation of oscillators 3
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Figure 1. Flow past a circular cylinder at Re = 50. Top frame shows contours of the vorticity
field (levels are set from −3 to 3 with increments of 0.4) of the unstable equilibrium solution
(a) and of a snapshot of the time-periodic solution (b). Bottom frame shows the lift CL (c) and
drag CD (d) coefficients as a function of time.

unstable equilibrium on the Koopman eigenvalues and Ritz values is discussed and the
difference between an expansion into Koopman modes and Ritz vectors is elucidated.

2. Governing equations

2.1. Description of fluid flow

We consider an infinitely long circular cylinder of diameterD in an uniform stream of flow
U∞. The fluid motion is governed by the two-dimensional incompressible Navier-Stokes
(N–S) equation,

∂ui

∂t
= −uj

∂ui

∂xj
+

1

Re

∂2ui

∂xj∂xj
+

∂p

∂xj
+ Fb,i, (2.1a)

0 =
∂ui

∂xi
, (2.1b)

where ui(x, y, t) is a fluid velocity component and p(x, y, t) and Fb,i(x, y, t) are La-
grange multipliers to enforce, respectively, fluid incompressibility and boundary con-
ditions. Moreover, the Reynolds number is defined as Re = U∞D/ν where ν is the
viscosity.

Equations (2.1) are discretized with staggered-grid finite-volume (second order) frac-
tional step formulation (Perot 1993). The computational grid does not conform with the
cylinder. Instead the no-slip boundary condition is enforced at Lagrangian points defining
the cylinder boundary by appropriate regularized surface forces Fb,i (Taira & Colonius
2007). We use a domain that is Lx = 60D long and Ly = 40D wide with a resolution of
Nx = 450 and Ny = 300 in the longitudinal and transverse directions, respectively. The
grid is non-uniform, with the minimum grid spacing h = 1/30 near the cylinder bound-
ary. We impose an uniform inflow (U∞, 0), convective outflow and symmetric boundary
conditions on the lateral domain sides. The solver has been validated by benchmarking
the lift and drag coefficients for various Reynolds numbers with those found in literature
(Taira & Colonius 2007). The spatially discretized yields a system of ordinary differential

18 

Unstable eqiulibrium Periodic limit cycle 

•  Dynamical system has two critical elements 

–  Unstable equilibrium (baseflow, fixed point, stationary solution,..) 

–  Stable limit cycle (period orbit,…) 



Governing Eqs of Fluid Motion 

•  Navier-Stokes equations 

•  Discretization  dynamical system 

–  n-dimensional ODE: 

–  Propagator: 
19 

Spectral representation of oscillators 3
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Figure 1. Flow past a circular cylinder at Re = 50. Top frame shows contours of the vorticity
field (levels are set from −3 to 3 with increments of 0.4) of the unstable equilibrium solution
(a) and of a snapshot of the time-periodic solution (b). Bottom frame shows the lift CL (c) and
drag CD (d) coefficients as a function of time.

unstable equilibrium on the Koopman eigenvalues and Ritz values is discussed and the
difference between an expansion into Koopman modes and Ritz vectors is elucidated.
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where ui(x, y, t) is a fluid velocity component and p(x, y, t) and Fb,i(x, y, t) are La-
grange multipliers to enforce, respectively, fluid incompressibility and boundary con-
ditions. Moreover, the Reynolds number is defined as Re = U∞D/ν where ν is the
viscosity.

Equations (2.1) are discretized with staggered-grid finite-volume (second order) frac-
tional step formulation (Perot 1993). The computational grid does not conform with the
cylinder. Instead the no-slip boundary condition is enforced at Lagrangian points defining
the cylinder boundary by appropriate regularized surface forces Fb,i (Taira & Colonius
2007). We use a domain that is Lx = 60D long and Ly = 40D wide with a resolution of
Nx = 450 and Ny = 300 in the longitudinal and transverse directions, respectively. The
grid is non-uniform, with the minimum grid spacing h = 1/30 near the cylinder bound-
ary. We impose an uniform inflow (U∞, 0), convective outflow and symmetric boundary
conditions on the lateral domain sides. The solver has been validated by benchmarking
the lift and drag coefficients for various Reynolds numbers with those found in literature
(Taira & Colonius 2007). The spatially discretized yields a system of ordinary differential

4 S. Bagheri

equations of dimension n = 2NxNy,

u̇(t) = f(u;Re), (2.2)

where u(t) is the flow field part the state space M ⊂ Rn and f represents a smooth
nonlinear vector field. The integration the dynamical system (in our case using a second-
order semi-implicit method), of the system (2.2) may formally be represented by the
propagator

u(s+ t) = Tt(u(s)). (2.3)

Given a field at time s, Tt provides the field at a later time t+ s on the trajectory.
For Reynolds number below the critical value of Rec = 46.6, the flow consists of two

steady symmetrical vortices. At Re = Rec the wake begins to oscillate periodically,
shedding alternating vortices from the upper and lower lateral sides of the cylinder. This
corresponds to a Hopf bifurcation, i.e. the dynamical system (2.2) develops self-sustained
oscillations (e.g. a limit cycle) from a stable stationary flow (e.g. an equilibrium). For
Re > Rec, the dynamical system thus has two critical elements co-existing, an attracting
limit cycle and an unstable equilibrium. In figure 1(a) the unstable equilibrium is shown
at Re = 50. It was obtained by following the stable branch from Re = 40 into the super-
critical regime. When the steady solution is perturbed by a small localized asymmetric
perturbation, the unstable eigenvector of the stability matrix grows exponentially and
after a transient time it eventually saturates on the limit cycle. An instantaneous flow
field on the limit cycle at Re = 50 is shown in figure 1(b).

2.2. Description of observables

In this investigation we describe the dynamics of (2.2) by studying the evolution of
such observables g(u) : M → Rm. A common observable for cylinder flow is the two-
dimensional function

g(t) = [g1, g2]
T = − 2

U2
∞D

�

x

�

y
Fb(x, y, t) dxdy

whose components correspond to the drag and lift coefficients (shown in 1c and 1d). Obvi-
ously, there exists infinite number of different observables, ranging from scalar quantities
(m = 1) such as kinetic energy, probe data to vector-valued quantity such as the full
state (m = n). Their time evolution is governed by a convection equation (Lasota &
Mackey 1994)

∂g

∂t
= (f(u) ·∇)g = Lg. (2.4)

The above system is linear, time-invariant (since equation 2.2 is autonomous) and infinite-
dimensional. Note however, that the observable can be a nonlinear function of u. More-
over, it is a hyperbolic system, with the physical interpretation of an observable as a
“passive tracer” transported by the vector-field f . We formally write the solution to (2.4)
as

g(u(t)) = exp(Lt)g(u0) = Utg(u0), (2.5)

where the evolution operator Ut is defined as the Koopman operator (Koopman 1931;
Lasota & Mackey 1994). This operator provides a linear description, which is valid also
far from equilibrium points, without the explicit linearization of (2.2). Note that (2.2) and
(2.3) predict the motion of the fluid flow u based on the discretization of conservation
laws of momentum and mass (2.1). The pair of equations (2.4) and (2.5) on the other
hand characterize the transport of any (possibly nonlinear) function of the flow field
g(u).
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Observables 

•  Any function of the flow field 

–  Infinitely many different observables:  kinetic energy, probe, full 
flow field 

–  May have different dimensions and may be nonlinear 
20 
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Spectral representation of oscillators 3
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Figure 1. Flow past a circular cylinder at Re = 50. Top frame shows contours of the vorticity
field (levels are set from −3 to 3 with increments of 0.4) of the unstable equilibrium solution
(a) and of a snapshot of the time-periodic solution (b). Bottom frame shows the lift CL (c) and
drag CD (d) coefficients as a function of time.

unstable equilibrium on the Koopman eigenvalues and Ritz values is discussed and the
difference between an expansion into Koopman modes and Ritz vectors is elucidated.

2. Governing equations

2.1. Description of fluid flow

We consider an infinitely long circular cylinder of diameterD in an uniform stream of flow
U∞. The fluid motion is governed by the two-dimensional incompressible Navier-Stokes
(N–S) equation,

∂ui

∂t
= −uj

∂ui

∂xj
+

1

Re

∂2ui

∂xj∂xj
+

∂p

∂xj
+ Fb,i, (2.1a)

0 =
∂ui

∂xi
, (2.1b)

where ui(x, y, t) is a fluid velocity component and p(x, y, t) and Fb,i(x, y, t) are La-
grange multipliers to enforce, respectively, fluid incompressibility and boundary con-
ditions. Moreover, the Reynolds number is defined as Re = U∞D/ν where ν is the
viscosity.

Equations (2.1) are discretized with staggered-grid finite-volume (second order) frac-
tional step formulation (Perot 1993). The computational grid does not conform with the
cylinder. Instead the no-slip boundary condition is enforced at Lagrangian points defining
the cylinder boundary by appropriate regularized surface forces Fb,i (Taira & Colonius
2007). We use a domain that is Lx = 60D long and Ly = 40D wide with a resolution of
Nx = 450 and Ny = 300 in the longitudinal and transverse directions, respectively. The
grid is non-uniform, with the minimum grid spacing h = 1/30 near the cylinder bound-
ary. We impose an uniform inflow (U∞, 0), convective outflow and symmetric boundary
conditions on the lateral domain sides. The solver has been validated by benchmarking
the lift and drag coefficients for various Reynolds numbers with those found in literature
(Taira & Colonius 2007). The spatially discretized yields a system of ordinary differential

Lift Drag 



Governing Eqs for Observables 

•  Convection equation 

–  Linear PDE (infinite-dimensional) 

–  Hyperbolic system: observable “passive tracer” transported by 

•  Formal solution:  

21 
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shedding alternating vortices from the upper and lower lateral sides of the cylinder. This
corresponds to a Hopf bifurcation, i.e. the dynamical system (2.2) develops self-sustained
oscillations (e.g. a limit cycle) from a stable stationary flow (e.g. an equilibrium). For
Re > Rec, the dynamical system thus has two critical elements co-existing, an attracting
limit cycle and an unstable equilibrium. In figure 1(a) the unstable equilibrium is shown
at Re = 50. It was obtained by following the stable branch from Re = 40 into the super-
critical regime. When the steady solution is perturbed by a small localized asymmetric
perturbation, the unstable eigenvector of the stability matrix grows exponentially and
after a transient time it eventually saturates on the limit cycle. An instantaneous flow
field on the limit cycle at Re = 50 is shown in figure 1(b).

2.2. Description of observables

In this investigation we describe the dynamics of (2.2) by studying the evolution of
such observables g(u) : M → Rm. A common observable for cylinder flow is the two-
dimensional function

g(t) = [g1, g2]
T = − 2

U2
∞D

�

x

�

y
Fb(x, y, t) dxdy

whose components correspond to the drag and lift coefficients (shown in 1c and 1d). Obvi-
ously, there exists infinite number of different observables, ranging from scalar quantities
(m = 1) such as kinetic energy, probe data to vector-valued quantity such as the full
state (m = n). Their time evolution is governed by a convection equation (Lasota &
Mackey 1994)

∂g

∂t
= (f(u) ·∇)g = Lg. (2.4)

The above system is linear, time-invariant (since equation 2.2 is autonomous) and infinite-
dimensional. Note however, that the observable can be a nonlinear function of u. More-
over, it is a hyperbolic system, with the physical interpretation of an observable as a
“passive tracer” transported by the vector-field f . We formally write the solution to (2.4)
as

g(u(t)) = exp(Lt)g(u0) = Utg(u0), (2.5)

where the evolution operator Ut is defined as the Koopman operator (Koopman 1931;
Lasota & Mackey 1994). This operator provides a linear description, which is valid also
far from equilibrium points, without the explicit linearization of (2.2). Note that (2.2) and
(2.3) predict the motion of the fluid flow u based on the discretization of conservation
laws of momentum and mass (2.1). The pair of equations (2.4) and (2.5) on the other
hand characterize the transport of any (possibly nonlinear) function of the flow field
g(u).

Koopman Operator 
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3. Spectrum of oscillators

The main concern of this paper is to use the Koopman operator Ut to describe the

dynamics of f(u). To this end, we begin by defining the scalar-valued observables φj :

M → C and the complex scalar λj ∈ C that satisfy

Lφj(u) = λjφj(u), j = 0, 1, 2, . . . (3.1)

as the Koopman eigenfunctions and Koopman eigenvalues. In order to be able to say

something specific about λj , we must choose on a particular category of observable

functions. This is because the spectrum of L depends on the choice of space of functions

that the Koopman operator is acting on. In this paper the functions g(u) are assumed to

be real-analytical functions, i.e. functions for which the Taylor expansion is convergent at

each point u. This choice of smooth and bounded observables significantly simplifies the

mathematical treatment of the spectrum. In particular, the spectrum becomes discrete

(consisting of isolated eigenvalues) as in (3.1).

The linear Koopman operator is defined for a particular nonlinear system (2.2), and

not for a specific solution. However, the assumption of analyticity allows us – as we show

in this section – to relate a subset of λj to stability eigenvalues of the limit cycle obtained

through a classical normal mode analysis of the linearized N–S equations. Therefore, we

begin this section with characterizing the behavior of perturbations in an infinitesimal

neighborhood of the limit cycle. Then from the trace of the Koopman operator Ut

Tr Ut =

∞�

j=0

exp(λjt). (3.2)

we analytically find an expression for the Koopman eigenvalues as a function of the local

stability eigenvalues.

3.1. Linear stability

The periodic flow may be described as limit cycle solution to (2.3)

Trtp(ua) = ua, r = 1, 2, . . .

where tp is the period of oscillations. For stability analysis, it is convenient to the describe

the dynamics in an alternative discrete-time tk = k∆t setting using a Poincare map.

This map governs the dynamics on a hyper-surface P(u) = 0 in state-space, for which all

pertinent trajectories intersect transversally. In other words, given a point Uk ∈ Rn−1

on the surface, the next point of intersection is given by the application of the Poincare

map S,i.e. Uk+1 = S(Uk) Applying S recursively, we may write the (k + 1)th point as

Uk+1 = SkU1 (3.3)

where U1 is the initial point. A fixed point Ua of the Poincare map satisfies

Ua = SrkpUa, r = 1, 2, . . . (3.4)

and corresponds to a point on the limit cycle with the period tp = kp∆t. A Taylor

expansion of Skp about Ua yeilds

Skp(Ua + δU) = Ua +MδU+ . . .

In this context, the monodromy matrix M = ∇Skp(Ua) describes the behavior of a

small perturbation δU. The associated eigenvalues (also known as Floquet multipliers)

are denoted by σj and it is assumed that they are all stable, i.e.

|σj | < 1 for j = 1, . . . , n− 1 (3.5)

Koopman eigenfunction Koopman eigenvalue 

φj λj
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The two most important characteristics of the limit cycle are the fundamental frequency
and the Lyapunov exponent, defined by

ω =
tp
2π

, σ =
ln |σ1|
tp

, (3.6)

respectively.

3.2. Trace formula for a limit cycle

The general trace formula derived in (Cvitanovic & Eckhardt 1991), in the special case
of a single limit cycle (see Appendix) is

Tr Ut = tp

∞�

r=1

δ(t− rtp)

| det(I−Mr)| . (3.7)

In Appendix A we provide a brief derivation of this formula, following in particular
Cvitanović (2010). The trace formula is a sum whose terms are nonzero only for integers
of the limit cycle period. The jth nonzero term describes how much after the jth return
to the Poincare section a small neighborhood volume (like a tube) of the stable limit cycle
has retracted. This relation thus connects a subset of the global Koopman eigenvalues to
the dynamics in the local stable manifold of the limit cycle.

In fact, from the Laplace transform of above formula, one can identify the Koopman
eigenvalues explicity from the roots of a so-called Zeta function. The Laplace transform
of trace of Ut is � ∞

0
e−stTr Utdt = Tr

1

s− L
,

indicating that the Koopman eigenvalues are the poles of the resolvent of L. Inserting
(3.7) in the above equation one obtains,

Tr
1

s− L
=

∂

∂s
ln(Z(s)),

where Z(s) is the so-called Zeta function,

Z(s) = exp

�
−

∞�

r=1

1

r

e−stpr

| det(I−Mr)|

�
.

Now, since the determinant does not depend on the basis which M is described in, we
may write it in terms of the eigenvalues of M,

1

| det(I−Mr)| =
n−1�

k=1

1

1− σr
k

, (3.8)

where we have assumed that |σk| < 1 for all k. Note that the Taylor series of the 2D
function is

(1− x)−1(1− y)−1 = 1 + x+ y + x2 + xy + y2 + . . . ,

when |x| < 1, |y| < 1. Each term in the product sequence (3.8) may thus be written as an
infinite sum. Define the vector j = [j1, j2, . . . , jn−1] whose elements are positive integers,
jk = 0, 1, 2, . . . . Using such a multi-index notation we may write the expression for the
stable direction as

1

| det(I−Mr)| =
n−1�

k=1

∞�

j=0

�
σj
k

�r
.
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Ritz values (DMD) 
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•  Two steps 
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•  Analytical results 
–  Koopman eigenvalues form a lattice (trace formula) 
–  Koopman modes correspond to mean flow, shift mode, global 

modes,.. 

•  Computational results 
–  Ritz vectors/values good approximation near and on attractor 
–  Algebraic dynamics generates clusters/branches in spectrum 


