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Context 

•  A linear approach to complex non-linear system 

–  Linear operators describing nonlinear flows 
(Perron-Frobenius, Koopman, Fokker-Planck, Chapman-Kolmogorov) 

•  Data-driven algorithms 

–  Dynamic Mode Decoposition (DMD), Optimal Mode 
Decomposition (OMD) 
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DMD of Noisy System: Helium Jet 

•  Input: Sequence of snapshots (from experiments) 

3 Schmid, Li, Juniper & Pust, TCFD, 2011 



•  Output: DMD modes (some “coherent structures”) 

DMD of Noisy System: Helium Jet 

4 Schmid, Li, Juniper & Pust, TCFD, 2011 



•  Output: DMD values (growth rate and frequency) 

•  Parabolas are due to the presence weak noise 

•  This DMD spectrum reveals two time scales 

DMD of Noisy System: Helium Jet 
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Effects of Noise: Limit Cycle 
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Effects of Noise 

•  White noise induce a new time scale  

–  Phase drift increases exponentially with rate  

–  Auto-correlation functions decreases exponentially with rate 

 Noisy limit cycle has two time scales: 

–  Limit cycle period:  

–  Quality factor: 

(Q is number of oscillations which periodicity is maintained) 7 



Stochastic Navier-Stokes 
Equations 

•  Consider noisy system 

and some observable: 
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Noise amplitude 

ẋ = f(x) +
√
�ξ(t)

White noise 

a(x)



Evolution Operators 

•  Ensemble average 

•  Evolution governed by linear operators 
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�at� =
�

a(x)ρ(x, t)dx

Probability density function 

Koopman operator 

�at� = �a, eAtρ0� = �eA
†ta, ρ0�



Spectral Decomposition 

•  Eigenvalue decomposition 

•  Eigenvalues can be obtained from 

–  WKJB expansion in noise amplitude  

–  Transform stochastic system to deterministic Hamiltonian system 
of twice the size (Onsager & Machlup, PRL, 1953) 

–  Compute trace of       
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Aφm = λmφm

(�)

A (Gaspard, 2002 JSP) 

m = 0, 1, 2, . . .



Spectrum of Deterministic Limit 
Cycle 
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Spectrum of evolution operator

λm = im
2π

T
m = 0, 1, 2, . . .



Spectrum of Noisy Limit Cycle 
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Sensitivity 

•  How sensitive is a limit cycle to noise? 

•  Large        high rate of phase diffusion  

•  What is the explicit expression for    ? 
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Sensitivity 

•  One obtains the expression 

where 

   first Floquet vector 
    
   first adjoint Floquet vector 

   obtained by solving linearized system 
14 

S = −fT
1 δx(T )

fT
1 e1

e1

f1

δx(T )



Sensitivity 

•  One obtains the expression 

where 

   first Floquet vector 
    
   first adjoint Floquet vector 

   obtained by solving linearized system 
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S = −fT
1 δx(T )

fT
1 e1

e1

f1

δx(T )

Small if system is non-normal 



Conclusions 

–  Quality factor can be read of the DMD spectrum 

–  Look into DMD literature: you observe parabolic 
branches! 

–  Determine whether randomness is due external noise or 
some intrinsic dynamics 

–  Noisy limit cycle may deviate from deterministic cycle if 
system is highly non-normal 
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