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The Koopman operator provides a powerful way of analysing nonlinear flow dynamics
using linear techniques. The operator defines how observables evolve in time along a
nonlinear flow trajectory. In this paper, we perform a Koopman analysis of the first
Hopf bifurcation of the flow past a circular cylinder. First, we decompose the flow
into a sequence of Koopman modes, where each mode evolves in time with one single
frequency/growth rate and amplitude/phase, corresponding to the complex eigenvalues
and eigenfunctions of the Koopman operator, respectively. The analytical construction
of these modes shows how the amplitudes and phases of nonlinear global modes
oscillating with the vortex shedding frequency or its harmonics evolve as the flow
develops and later sustains self-excited oscillations. Second, we compute the dynamic
modes using the dynamic mode decomposition (DMD) algorithm, which fits a linear
combination of exponential terms to a sequence of snapshots spaced equally in time.
It is shown that under certain conditions the DMD algorithm approximates Koopman
modes, and hence provides a viable method to decompose the flow into saturated
and transient oscillatory modes. Finally, the relevance of the analysis to frequency
selection, global modes and shift modes is discussed.
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1. Introduction
Flows in ducts, corners, cavities and past bluff bodies belong to a category of

fluid systems where self-sustained oscillations emerge from stationary conditions as a
control parameter is varied. It is of great practical significance to identify emerging
and saturated coherent structures associated with self-excited frequencies in the flow,
since they often lead to large structural vibrations, acoustic noise and resonance.
The objective of this paper is to represent the fluid flow as the superposition of
global flow structures, called Koopman modes (Mezić 2005, 2013), whose discrete
frequencies and growth rates are integer multiples of one another. Compared to
standard harmonic analysis, the present approach provides, in addition to saturated
modes, growing/decaying structures that may exists during a transient phase, i.e. when
the flow is not fully saturated. The identification of the modes and their associated
frequencies/growth rates can be formulated as an eigenvalue (or spectral) problem of
the Koopman operator (Koopman 1931). This linear operator is not related to the
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linearized Navier–Stokes operator, which is often employed in local stability analyses.
Instead it provides an indirect description of the full nonlinear flow through the
linear dynamics of observable functions of the state (such as kinetic energy, probe
signals etc.). It may seem surprising that there exists a linear description of inherently
nonlinear phenomena, but there is a caveat; namely, that the spectrum of the Koopman
operator may become arbitrarily difficult to analyse, involving continuous, degenerate
eigenvalues corresponding to eigenfunctions that are non-smooth and singular. In
this paper, we consider a flow approaching and evolving on a limit cycle. For this
particular nonlinear problem, the Koopman spectrum is discrete and the eigenfunctions
are regular. They may also be directly related to commonly known concepts developed
for flows with self-sustained oscillations, such as global modes (Huerre & Monkewitz
1990), mean flows and shift modes (Noack et al. 2003).

One algorithm that is able to extract oscillatory modes with growth rates from
a sequence of nonlinear flow samples is dynamic mode decomposition (DMD)
introduced by Schmid (2010). The so-called dynamic modes produced by DMD,
have received a great deal of attention (Schmid et al. 2011; Schmid 2011; Seena
& Sung 2011; Chen, Tu & Rowley 2012; Duke, Soria & Honnery 2012; Muld,
Efraimsson & Henningson 2012; Semeraro, Bellani & Lundell 2012), partially because
the algorithm is computationally cheap and can be applied to huge data sets. The
connection between dynamic modes and Koopman modes was first made in Rowley
et al. (2009). This work showed that an expansion of the flow field into dynamic
modes and Koopman modes is in the same (spectral) form, but whereas the former
expansion is finite and the latter is infinite.

The present study is motivated by further clarifying the connection between
Koopman modes and dynamic modes as well as their physical significance for flows
with distinct self-sustained oscillations. We focus on the configuration of the flow past
a circular cylinder in the Reynolds number range where only one limit cycle exists.
We analytically derive the Koopman modes and compare them to the computational
modes provided by the DMD algorithm. Prior to Mezić (2005), essentially all the
applied literature has focused on the adjoint Koopman operator: the well-known
Perron–Frobenious operator. Since an adjoint operator has the same spectrum as its
direct counterpart, the majority of the analysis of the present paper is related to
the theory developed for the Perron–Frobenious operator (Lasota & Mackey 1994;
Gaspard 1998; Cvitanović et al. 2013). In particular, the efficient computation of the
Perron–Frobenius eigenvalues is based on forming the trace of the linear operator
(Cvitanović & Eckhardt 1991). It is precisely the formula derived in Cvitanović &
Eckhardt (1991) for the Perron–Frobenious operator that we will use to find the
analytical form of Koopman eigenvalues.

There exists a number of alternative techniques for extracting oscillatory modes
from a fluid system. As already mentioned, one of them is a harmonic analysis,
for example a temporal discrete Fourier transform of sampled data. This approach
estimates a set of oscillating modes, but the decomposition requires a predetermined
set of frequencies and periodic sampled data. For more complex flows it can be
a cumbersome (and risky) task to estimate global fundamental frequencies from
local probe signals, before extracting global oscillating modes. A local procedure
for estimating global frequencies has been developed in the classical global mode
approach (Huerre & Monkewitz 1990). The theory, which is valid for parallel or
weakly non-parallel flows, established that the existence of a sufficiently large region
of local absolute instability implies that the entire flow can sustain self-sustained
oscillations. Based on this theory, local analyses of most of the canonical parallel
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or weakly non-parallel flows have been conducted in order to predict the vortex
shedding frequency. An alternative approach (see e.g. Pier 2002; Barkley 2006; Thiria
& Wesfreid 2007 and references therein) to identify coherent structures that can be
associated with vortex shedding is based on a linear analysis of the time-averaged
mean flow. For the cylinder wake, this technique provides global modes whose
discrete frequencies are in good agreement with the harmonics of the vortex shedding
frequency (Barkley 2006). However, such an analysis is not guaranteed to work for
other configurations (Sipp & Lebedev 2007) and to some extent lacks a theoretical
foundation. Finally, the use of the proper orthogonal decomposition (POD) (Lumley
1970) should be mentioned in this context. The method ranks coherent structures based
on their energy content by diagonalizing the time-averaged spatial correlation tensor.
Pairs of POD modes may correspond to oscillating flow structures if the flow (thus
the kinetic energy) is strongly dominated by periodic vortex shedding, but since the
method averages in time, there is no guarantee that it can pin down one structure
to one frequency. It was realized by Noack et al. (2003) that if the POD basis is
augmented by an additional ‘shift’ mode representing a mean flow modification, the
extended basis can accurately capture the transient dynamics. As demonstrated by the
present study, the current approach naturally takes into account transient flow regimes
by providing modes which in addition to a frequency also have a growth/decay rate.

The paper is organized as follows. Section 2 describes the essential dynamics of the
cylinder wake and the associated numerical method. The section ends with defining
a spectral expansion of the flow. In § 3, we briefly present the standard weakly
nonlinear analysis, which results in the one-dimensional Stuart–Landau (S–L) equation.
Section 4 introduces the linear Koopman operator with respect to the S–L equation
and derives the associated eigenvalues and eigenfunctions. Moreover, the Koopman
modes of the cylinder wake at Reynolds number, Re, near the critical threshold for
vortex shedding are derived. The leading modes are categorized and their physical
significance is discussed. Section 5 presents numerical results for the flow past a
circular cylinder at Re = 50. The dynamic modes and values extracted from the DMD
algorithm are compared to the Koopman modes and eigenvalues presented in § 4. In
§ 6, the Koopman eigenvalues at Reynolds number significantly above the critical one
are derived using a well-known trace formula from periodic-orbit theory (Cvitanović
et al. 2013).

2. Flow dynamics near onset of bifurcation
2.1. Configuration and discretization

We consider an infinitely long circular cylinder of diameter D in a uniform flow U∞.
The fluid motion is governed by the two-dimensional incompressible Navier–Stokes
(N–S) equations,

∂u
∂t
=−u ·∇u+ 1

Re
1u−∇p+ Fb, (2.1a)

0= ∇ ·u, (2.1b)

where u(x, t) = u(x, y, t) is the velocity field and p(x, t) and Fb(x, t) are Lagrange
multipliers to enforce, respectively, fluid incompressibility and boundary conditions.
The Reynolds number is defined as Re= U∞D/ν where ν is the viscosity.

Equations (2.1) are discretized with a staggered-grid finite-volume (second-order)
fractional step formulation (Perot 1993) using a second-order semi-implicit time
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FIGURE 1. (Colour online) Flow past a circular cylinder at Re = 50. The contours depict the
vorticity field (levels are set from −3 to 3 with increments of 0.4) of the unstable equilibrium
solution (a) and of a snapshot of the time-periodic solution (b).

integration. The computational grid does not conform to the cylinder. Instead the
no-slip boundary condition is enforced at Lagrangian points defining the cylinder
boundary by appropriate regularized surface forces Fb (Taira & Colonius 2007). We
use a domain that is Lx = 60D long and Ly = 40D wide with a resolution of Nx = 450
and Ny = 300 in the longitudinal and transverse directions, respectively. The grid is
non-uniform, with the minimum grid spacing h = 1/30 near the cylinder boundary.
We impose a uniform inflow (U∞, 0), convective outflow and symmetric boundary
conditions on the lateral domain sides. The solver has been validated by benchmarking
the lift and drag coefficients for various Reynolds numbers with those found in
the literature. Henceforth, both the flow field in (2.1) and its spatially discretized
counterpart of dimension n = 2NxNy will be denoted by u(t); a distinction between
them will be made explicitly if it is necessary.

For Reynolds number below the critical value of Rec = 46.6, the flow consists of
two steady symmetrical vortices. At Re= Rec the wake begins to oscillate periodically,
shedding alternating vortices from the upper and lower lateral sides of the cylinder. As
shown by Provansal, Mathis & Boyer (1987), this corresponds to a Hopf bifurcation,
i.e. the system (2.1) develops self-sustained oscillations (a limit cycle) from a stable
stationary flow (an equilibrium). Thus, for Re > Rec, the flow system has two
critical elements co-existing: an attracting limit cycle and an unstable equilibrium. In
figure 1(a) the unstable equilibrium is shown at Re= 50. It was obtained by following
the stable branch from Re= 40 into the supercritical regime. When the steady solution
is perturbed by a small localized asymmetric perturbation, the unstable eigenmode of
the stability matrix grows exponentially and after a transient time it saturates on the
limit cycle. An instantaneous flow field on the limit cycle at Re = 50 is shown in
figure 1(b).
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FIGURE 2. The drag coefficient CD as a function of time for the flow past a circular cylinder
at Re = 50. Intervals I–III pertain to transient dynamics, whereas interval IV pertains to the
saturated limit cycle dynamics.

2.2. Problem formulation

The general objective is to find a representation of the flow field in the form

u(t)=
∞∑

j=0

φjvj exp[(σj + iωj)t], (2.2)

where φj ∈ C is the amplitude, and vj a complex-valued flow structure associated with
the growth rate σj and the frequency ωj. For reasons that will become clear in the
following sections, we refer to amplitudes φj as Koopman eigenfunctions, the flow
structures vj as Koopman modes and λj = σj + iωj as Koopman eigenvalues of the
Navier–Stokes equations.

To characterize the saturation onto a limit cycle of a flow starting near the unstable
equilibrium, the evolution of the non-dimensional horizontal (drag) force on the
cylinder CD is shown in figure 2. One can identify four time scales associated with the
time intervals marked I–IV in the figure: I, exponential escape rate from the unstable
equilibrium; II, algebraic growth due to the interaction of the equilibrium and the
limit cycle; III, exponential relaxation rate to the limit cycle; and IV, period of the
oscillations on the limit cycle. Let us anticipate how a flow with these four time scales
may described by the expansion (2.2). First, if a term in the modal expansion basis
is unstable (σj > 0), then as t→∞, it will dominate compared to the stable terms
and an unbounded behaviour is predicted. However, the flow is bounded in time since
it settles on the limit cycle. As a consequence, there cannot be any asymptotically
growing structures and thus σj 6 0 for all modes in (2.2). Second, the algebraic time
scale (interval II) is non-modal (Schmid 2007) and cannot be captured by individual
exponential terms. The intervals I and II can be treated by introducing a generalization
(Gaspard et al. 1995; Gaspard & Tasaki 2001) of (2.2) and will reported in a future
investigation. The remainder of this paper deals with Koopman terms pertaining to the
attracting (interval III) and asymptotic (interval IV) dynamics. In particular, if σj 6= 0
then vj is a transient Koopman mode in the local stable manifold (i.e. defined as all
states that approach the limit cycle exponentially fast, see Guckenheimer & Holmes
1983) of the limit cycle, whereas modes with σj = 0 capture asymptotic dynamics on
the limit cycle.

In the next section, we define amplitude functions governed by the S–L equation, by
separating the time scales associated with saturation (slow) and oscillation (fast). Then
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in § 4, functions of the amplitude (referred to as observables) will be expanded in the
eigenfunctions of the Koopman operator in order to construct the expansion (2.2).

3. Multiple-scale expansion of the flow field
Close to the critical Reynolds number, the time (τ ) it takes for the state starting

near the unstable equilibrium to saturate on the limit cycle is long compared to
the characteristic time scale of the flow, i.e. the limit cycle period, tp = 2π/ω. A
multiple-scale analysis can be performed by separating the dynamics associated with
the scales τ and t. This will determine an amplitude equation (Chomaz 2005) that
describes the nonlinear transient dynamics in the vicinity of the bifurcation point. This
section summarizes the ‘global’ multiple-scale approach presented in Sipp & Lebedev
(2007), where the reader can find more details.

Consider a Reynolds number slightly larger than the critical value for the onset of
oscillations,

1/Re= 1/Rec − ε, 0< ε� 1. (3.1)

Introduce a long time scale τ = εt and expand the flow field as

u(t)= us + ε1/2u1(τ, t)+ εu2(τ, t)+ ε3/2u3(τ, t)+ · · · (3.2)

where us is the steady equilibrium point of the Navier–Stokes equation. Inserting
(3.2) and (3.1) into (2.1), one obtains a sequence of equations at orders

√
ε

k for
k = 0, 1, 2 . . . . The zeroth-order equation is the steady Navier–Stokes equation for us,

−(us ·∇)us + 1
Rec
∇2us −∇p0 = 0,

where p0 is chosen such that ∇ · us = 0. This equation is satisfied by construction,
since us is an equilibrium.

3.1. Order
√
ε

1

The leading-order (
√
ε

1) equation is

∂u1

∂t
= Au1, (3.3)

where A represents the linearized equation around us at the critical Reynolds number
i.e.

Au1 =−(us ·∇)u1 − (u1 ·∇)us + 1
Rec
∇2u1 −∇p1.

The multiplier p1 is chosen such that u1 is incompressible. For Re= Rec, the spectrum
of A is restricted to the stable half-plane with two neutral eigenvalues on the imaginary
axis. The neutral eigenfunction ũ1 of A with zero growth rate and frequency ω0

satisfies

Aũ1 = iω0ũ1, (3.4)

and governs the long-term dynamics. We may thus let

u1(τ, t)= A(τ )eiω0tũ1 + c.c., (3.5)

where A(τ ) is a complex scalar amplitude evolving on a slow time scale and
c.c. denotes the complex conjugate. This expansion term is called the first harmonic.
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3.2. Order
√
ε

2

The second-order term satisfies a linear equation as in (3.3), but now it is
inhomogeneous,

∂u2

∂t
= Au2 + F(1)2 + |A|2F(2)2 + (A2e2iω0tF(3)2 + c.c.), (3.6)

where

F(1)2 =−∇2us, (3.7a)

F(2)2 =−ũ1 ·∇ũ∗1 − ũ∗1 ·∇ũ1, (3.7b)

F(3)2 = ∇ũ1 ·∇ũ1. (3.7c)

For A = 0 only the steady forcing term F(1)2 is present. It represents the modification
of the neutral equilibrium us at 1/Rec to an unstable equilibrium at 1/Rec − ε. Thus,
physically, the destabilization at leading order is caused by a negative diffusion term.
Due to the quadratic nonlinear term in the N–S equation, we have two forcing terms
arising from the first harmonic u1: |A|2F(2)2 varies on slow time scale τ and describes
the interaction of u1 with its complex conjugate; A2e2iω0tF(3)2 varies on both time scales
(τ and t) and describes the interaction of u1 with itself.

Since (3.6) is linear, we may write the solution as the superposition of ũ(1)2 , ũ
(2)
2

and ũ(3)2 corresponding to the response of the linear system to F(1)2 ,F
(2)
2 and F(3)2 ,

respectively, i.e.

u2 = ũ(1)2 + |A2|ũ(2)2 + (A2e2iω0tũ(3)2 + c.c.), (3.8)

where

ũ(1)2 =−A−1F(1)2 , ũ(2)2 =−A−1F(2)2 and ũ(3)2 =−(i2ω0I − A)−1F(3)2 . (3.9)

We call ũ(1)2 , ũ(2)2 and ũ(3)2 , the basic flow modification, the zeroth harmonic and the
second harmonic, respectively.

3.3. Order
√
ε

3

The third-order equation with forcing terms proportional to exp(iω0t) is

∂u3

∂t
= Au3 + exp(iω0t)

(
−∂A

∂τ
u1 + AF(1)3 + |A|2AF(2)3 + c.c.

)
+ · · · , (3.10)

where

F(1)3 =−∇ũ1 ·∇ũ
(1)
2 − ũ(1)2 ·∇ũ1 −∇2ũ1, (3.11a)

F(2)3 =−∇ũ1 ·∇ũ
(2)
2 − ũ(2)2 ·∇ũ1 −∇ũ∗1 ·∇ũ(3)2 − ũ(3)2 ·∇ũ

∗
1. (3.11b)

The term F(1)3 involves the interaction of the first harmonic with the basic flow
modification as well as a negative diffusion of ũ1. The second forcing term F(2)3 arises
due to the interaction of the first harmonic with the zeroth and second harmonics.

In order to solve (3.10) for ũ3, one may assume that

u3 = Aeiω0tũ(1)3 + |A|2Aeiω0tũ(2)3 + c.c.+ · · · . (3.12)

However, each part of ũ(j)3 is not a solution to the linear problem with the forcing term
F(j)3 , since iω0 is an eigenvalue of A and thus (iω0I + A)−1 is not invertible. To find a
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unique solution, we choose

∂A

∂τ
= a0A− a1A|A|2, (3.13)

and thus include additional constraints involving the complex scalars a0 and a1.
This compatibility condition is the Stuart–Landau equation, governing the complex
amplitude A on a slow time scale τ . The scalar parameters of the S–L equation can
be determined by forming the inner product with the left eigenfunction of A (see e.g.
Sipp & Lebedev 2007).

Using (3.5), (3.8) and (3.12) and rearranging the terms according to their behaviour
in t, we can write the expansion (3.2) as

u(t)= us + ε(ũ(1)2 + |A|2ũ(2)2 )+ · · ·
+A(τ )eiω0t(

√
εũ1 + ε3/2ũ(1)3 + ε3/2|A|2ũ(2)3 + · · ·)

+A(τ )2e2iω0t(εũ(3)2 + · · ·)+ c.c.+ · · · . (3.14)

In the next section we take the final step in the construction of (2.2) by expressing the
temporal modulations of the amplitudes appearing in (3.14) in exponential form.

4. Koopman analysis
In the subsequent analysis, it is convenient to work with the S–L equation (3.13) in

polar coordinates A(τ )= r(τ ) exp(iθ(τ )),

∂r

∂τ
= f1(r)= µr − r3, (4.1a)

∂θ

∂τ
= f2(r)= γ − βr2, (4.1b)

where a0 = µ+ iγ and a1 = 1+ iβ. Given the initial condition A0 = r0eiθ0 , the solution
of (4.1) at a later time τ > 0 is given by

r(τ )= r0

(
µ

r2
0 + (µ− r2

0) exp(−2µτ)

)1/2

, (4.2a)

θ(τ )= θ0 + ω1τ + β ln
(

r(τ )

r0

)
, (4.2b)

where ω1 = γ − µβ. An analysis of (4.2) shows that the amplitude approaches the
attracting limit cycle at r = √µ exponentially fast with the Lyapunov exponent −2µ
and then oscillates with the frequency ω1.

The amplitudes A,A2, |A|2 and |A|2A in (3.14) may be regarded as scalar-valued
observables g(A) : C→ C of the S–L equation. Note that g depends implicitly on τ .
The time evolution of g(A) is governed by the differential operator (Lasota & Mackey
1994) L= (f ·∇), where f = (f1, f2), i.e.

∂g

∂τ
=
(

f1(r)
∂

∂r
+ f2(r)

∂

∂θ

)
g= Lg. (4.3)

This system is linear and infinite-dimensional. Note however that the observable can
be a nonlinear function of A. We define the evolution operator of (4.3),

Uτ = exp(Lτ), (4.4)
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as the Koopman operator (Koopman 1931; Lasota & Mackey 1994). This operator
provides a linear description, which is also valid far from equilibrium points, without
the explicit linearization of (4.1). Note that (4.1) and (4.2) predict the nonlinear
motion of the amplitude A. The pair of equations (4.3) and (4.4), on the other hand,
characterize the transport of any (possibly nonlinear) function of the amplitude g(A).

4.1. Spectrum of the Koopman operator
One objective of this paper is to use the spectral properties of Uτ to characterize
the flow as it approaches and settles on the limit cycle. To this end, we define the
observables φj : C→ C and the complex scalars λ̂j ∈ C that satisfy

Lφj(A)= λ̂jφj(A), j= 0, 1, 2, . . . , (4.5)

as the Koopman eigenfunctions and Koopman eigenvalues of the S–L equation,
respectively. We must choose a particular category of observable functions in order
to determine λ̂j. This is because the spectrum of L depends on the choice of space of
functions that the Koopman operator is acting on. In this paper the functions g(A) are
assumed to be real-analytical functions, i.e. functions for which the Taylor expansion
is convergent at each point A. This choice of smooth and bounded observables
simplifies the mathematical treatment of the spectrum significantly (Artuso, Hugh
& Cvitanović 2013). In particular, the spectrum becomes discrete as in (4.5).

In polar coordinates, φj(reiθ) is a periodic function of the phase θ , and may thus be
expressed as a Fourier series,

φj =
∞∑

m=−∞
φ̂j,m(r) exp(imθ), (4.6)

where φ̂j,m(r) denotes the Fourier coefficient. Inserting this expansion into (4.5) one
obtains

Lφj,m(A)= λ̂j,mφj,m(A), (4.7)

for j = 0, 1, 2, . . ., m = 0,±1,±2, . . . and φj,m = φ̂j,m(r) exp(imθ). Since L in (4.3)
is not self-adjoint, the Koopman eigenfunctions φj,m are not mutually orthogonal
functions. The eigenfunctions are bi-orthogonal to a set of functions ψi,n, i.e.

〈φj,m, ψi,n〉 = δijδnm. (4.8)

Assume that g(A) ∈ span(φj,m), then using the bi-orthogonality condition, g(A) can be
expanded as

g(A)=
∞∑

j=0

∞∑
m=−∞

α
(g)
j,mφj,m(r) exp(λ̂j,mτ), (4.9)

where the (j,m)th expansion coefficient in (4.9) is given by

α
(g)
j,m = 〈ψj,m, g(A)〉. (4.10)

By considering the flow evolving only in intervals III and IV in figure 2, we can
find an analytical spectrum of L with respect to the S–L equation. Note that restricting
the dynamics to the local stable manifold and to the limit cycle does not mean that
the derived Koopman eigenvalues are local and valid only in these regions. It can be
shown using the trace formula (see Cvitanović & Eckhardt 1991, and appendix B)
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that for real-analytical observables the full discrete spectrum is simply the union of
the eigenvalues associated with all the equilibria and periodic orbits that may exist
in state space. Thus the spectrum of L is patched together by eigenvalues directly
associated to different critical elements. We refer readers to Gaspard (1998) for details.
In appendix A, we derive that for the limit cycle the expansion coefficients are given
by

α
(g)
j,m =

{
1
j!
∂ (j)

∂y

[
ĝm

(√
µ

1+ y

)
(1+ y)−imβ/2

]}
y=0

, (4.11)

where ĝm is the Fourier coefficient of g(A). From (4.11) one may evaluate any
expansion coefficient of any analytical observable. For example for g(A) = |A|2, the
zeroth expansion coefficient is

α
(|A|2)
0,0 =

{(
µ

1+ y

)
(1+ y)−imβ/2

}
y=0

= µ. (4.12)

The Koopman eigenfunctions and eigenvalues satisfying (4.7) (see appendix A) are

φj,m =
(
µ

r2
0

− 1
)j

exp
[

im
(
θ0 + β ln

(√
µ

r0

))]
, (4.13)

and

λ̂j,m =−j2µ+ imω1, (4.14)

respectively. We observe from (4.13) that Koopman eigenfunctions are nonlinear
functions of r0. To demonstrate how nonlinearity is taken into account, consider the
first three expansion terms of g(A)= |A|2:

|A|2 = µ− µ
(
µ

r2
0

− 1
)

e−2µτ + µ
(
µ

r2
0

− 1
)2

e−4µτ + · · · . (4.15)

The nonlinear evolution of |A|2 is thus described as a linear combination of a steady
term and a sequence of exponentially decaying nonlinear functions of r0.

4.2. Spectral expansion of N–S equations
The combination of the multiple-scale expansion of the flow field (3.14) and the
spectral expansion of the observable amplitudes (4.9) yields the Koopman modes.
In (3.14), the following amplitudes arise: A,A2, |A|2 and A|A|2. Each of them can be
expanded in Koopman eigenfunctions (4.13) of the S–L equation,

u(t)= us + εũ(1)2 +
( ∞∑

j=0

α
(|A|2)
j,0 φj,0eλ̂j,0τ

)
εũ(2)2

+
( ∞∑

j=0

α
(A)
j,1 φj,1eλ̂j,1τ

)
eiω0t(
√
εũ1 + ε3/2ũ(1)3 )

+
( ∞∑

j=0

α
(A|A|2)
j,1 φj,1eλ̂j,1τ

)
eiω0tε3/2ũ(2)3

+
( ∞∑

j=0

α
(A2)
j,2 φj,2eλ̂j,2τ

)
ei2ω0tεũ(3)2 + · · · . (4.16)
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Note that the spectral expansions consist of a single sum; since the relevant
observables are integer powers of A, only one non-zero Fourier coefficient appears
in each expansion, i.e. m = 1 for A = 1, m = 2 for A2, m = 0 for |A|2 and m = 1 for
|A|2A. Moreover, using (4.14) and τ = εt, we may write the temporal part of the above
expansion terms as

λj,m = λ̂j,mε + imω0 =−2jµε + im(ω1ε + ω0). (4.17)

These complex values are defined as the Koopman eigenvalues with respect to the
N–S equations. The real part is a multiple of the Lyapunov exponent σ = −2µε,
characterizing the relaxation onto the limit cycle on a slow time scale. The imaginary
part is a multiple of the frequency ω = ω1ε + ω0 of the saturated oscillating flow. It
is composed of the frequency of the linear eigenfunction (ω0) and the modification
arising due the nonlinear saturation (ω1ε). As shown in figure 3 the Koopman
eigenvalues form a lattice in the stable half of the complex plane, with a horizontal
and vertical spacing corresponding to ω and σ respectively. The expansion (4.16) can
now be written in a spectral form,

u(t)=
[
us + εũ(1)2 + εα(|A|

2)
0,0 ũ(2)2

]
+
∞∑

j=1

φj,0

[
α
(|A|2)
j,0 εũ(2)2

]
eλj,0t

+
∞∑

j=0

φj,1

[(
α
(A)
j,1 (
√
εũ1 + ε3/2ũ(1)3 )+ α(A|A|

2)
j,1 ε3/2ũ(2)3

)]
eλj,1t

+
∞∑

j=0

φj,2

[
α
(A2)
j,2 εũ

(3)
2

]
eλj,2t + · · ·

= v0,0 +
∞∑

j=1

φj,0vj,0eλj,0t +
∞∑

j=0

φj,1vj,1eλj,1t +
∞∑

j=0

φj,2vj,2eλj,2t + · · · , (4.18)

where the Koopman modes v0,0,vj,0,vj,1 and vj,2 of (2.1) are defined as the terms in
square brackets in the above equation. Note that the expansion of g(A) = |A|2 which
appears in the first line of (4.16) has been split into two parts. As observed from (4.15)
the first expansion term of this observable has the Koopman eigenfunction φ0,0 = 1
corresponding to the eigenvalue λ̂0,0 = 0. This stationary term is proportional to ũ(2)2
and is treated separately above. As stated in Rowley et al. (2009), we can regard the
above expression (4.18) as expanding the flow field u(t) in a linear combination of
the Koopman eigenfunction φj,m, where the spatial structures vj,m are the corresponding
coefficients in the expansion. In our particular case, for which the Reynolds number
is slightly above Rec, the Koopman eigenfunctions φj,m are functions of the initial
amplitude A0 = r0 exp(iθ0). As we have seen in § 3, for small ε the flow evolves in a
slow manifold and the only degree of freedom is A. In the more general case when
the Reynolds number is significantly larger than Rec, there is no slow manifold and the
Koopman eigenfunctions are functions of the full initial state u0.

The coefficients α(g)j,m may be calculated in a straightforward manner up to any order
from (4.11). The leading-order expansion coefficients (j= 0, 1 and m= 0, 1, 2) are

α
(A)
0,1 =

√
µ, α

(A)
1,1 =−

√
µ(1+ iβ)/2, (4.19a)

α
(A2)
0,2 = µ, α

(A2)
1,2 =−µ(1+ iβ), (4.19b)
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FIGURE 3. (Colour online) Koopman eigenvalues of the Navier–Stokes equation as given
by the analytical expression (4.17). Squares (red online) and circles mark eigenvalues
corresponding to the asymptotic and transient modes, respectively. Koopman modes
associated with eigenvalues labelled ¬–® are given in (4.20)–(4.22), whereas ¯–± are given
in (4.26)–(4.28).

α
(|A|2)
0,0 = µ, α

(|A|2)
1,0 =−µ, (4.19c)

α
(|A|2A)
0,1 = µ3/2, α

(|A|2A)
1,1 = µ3/2(3+ iβ)/2. (4.19d)

Inserting (4.19) into (4.18), the leading (j = 0, 1 and m = 0, 1, 2) Koopman modes
are constructed explicitly up to order

√
ε

3. We categorize the modes into two kinds:
(i) asymptotic modes (j= 0), which describe the saturated dynamics on the limit cycle;
(ii) the transient modes (j 6= 0), which evolve in the local stable manifold of the limit
cycle.

4.3. Asymptotic Koopman modes
Three leading asymptotic Koopman modes (j= 0,m= 1, 2, 3) are

v0,0 = us + εũ(1)2 + εµũ(2)2 , (4.20)

v0,1 =√µε(ũ1 + εũ(1)3 + εµũ(2)3 ), (4.21)

v0,2 = εµũ(3)2 , (4.22)

corresponding, respectively, to the following Koopman eigenvalues:

λ0,0 = 0, λ0,1 = iω, λ0,2 = i2ω. (4.23)

The eigenvalues are on the imaginary axis and integer multiples of the fundamental
frequency of the limit cycle (square symbols in figure 3). Let us take closer look
at the physical significance of the above Koopman modes. The first mode (4.20)
corresponding to λ0,0 = 0 is the time-averaged mean flow. At the leading order, it
is composed of us + εũ(1)2 , which is the unstable equilibrium at Re = (1/Rec − ε)−1,
and εũ(2)2 , which arises due to the interaction of the first harmonic with its complex
conjugate.

The asymptotic mode v0,1 in (4.21) corresponding to the eigenvalue λ0,1 = iω,
represents a structure oscillating with the fundamental frequency of the limit cycle
(ω). It thus represent a global mode as defined by Huerre & Monkewitz (1990). The
superposition of the first two terms

√
εũ1 + ε3/2ũ(1)3 is the unstable eigenfunction of the
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linearized system around the equilibrium us + εũ(1)2 . The remaining term (ε3/2µũ(2)3 ) in
v0,1 is the difference between the linear eigenfunction and the saturated fundamental
mode of the limit cycle. It is generated due to the interaction of harmonics ũk, ũl

such that k+ l= 1. The mode (4.22) represents an asymptotic structure oscillating with
the second harmonic frequency of the limit cycle (2ω). This term arises due to the
nonlinear interaction of the unstable eigenmode with itself.

The eigenfunctions corresponding to (4.20)–(4.22) are

|φ0,0| = 1, arg(φ0,0)= 0, (4.24a)

|φ0,1| = 1, arg(φ0,1)= θ0 + β ln
(√

µ

r0

)
, (4.24b)

|φ0,2| = 1, arg(φ0,2)= 2θ0 + 2β ln
(√

µ

r0

)
. (4.24c)

The magnitude of the Koopman eigenfunctions of all asymptotic modes is one,
whereas their phase depends on r0. This is intuitive, since only the phase dynamics
of the limit cycle should depend on the initial state. Assuming that the norms of
the terms ũ1, ũ2, ũ3 appearing in (4.20)–(4.22) are of order one, we get the following
scaling:

‖v0,m‖2 ∼ (εµ)m/2. (4.25)

Since εµ < 1, the norm of the asymptotic Koopman mode oscillating with m times
the fundamental frequency decreases with the exponent m/2. As a consequence,
Koopman modes with increasingly higher frequencies make a smaller contribution
to the dynamics.

4.4. Transient Koopman modes
Three leading transient Koopman modes (j= 1,m= 1, 2, 3) are

v1,0 =−εµũ(2)2 , (4.26)

v1,1 =
√
µε

2

(
(1+ iβ)(ũ1 + εũ(1)3 )+ εµ(3+ iβ)ũ(2)3

)
, (4.27)

v1,2 =−ε(1+ iβ)µũ(3)2 , (4.28)

corresponding, respectively, to the following Koopman eigenvalues:

λ1,0 = σ, λ1,1 = σ + iω, λ1,2 = σ + i2ω. (4.29)

These eigenvalues are aligned along a horizontal line at a distance σ =−2µε from the
imaginary axis (circle symbols in figure 3). The mode v1,0 in (4.26) is non-oscillatory
and decaying with the Lyapunov exponent of the limit cycle (σ ). Its spatial structure
is proportional to the difference between the time-averaged flow (v0,0) and the steady
unstable equilibrium (us + εũ(1)2 ), i.e.

v1,0 ∼ v0,0 − (us + εũ(1)2 ). (4.30)

In the applied model-reduction community such a structure is referred to as a
‘shift mode’. Its importance for robustness in low-dimensional models has been
demonstrated in many investigations (Noack et al. 2003; Tadmor et al. 2010).

The mode (4.27) oscillates with the fundamental frequency and decays with the
Lyapunov exponent of the limit cycle. It has the same spatial ingredients as the
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Mode Eigenvalue Name Symmetry

v0,0 λ0,0 = 0 Mean flow Symmetric
v1,0 λ1,0 = σ Shift mode Symmetric
v0,1 λ0,1 = iω Global mode Antisymmetric
v1,1 λ1,1 = σ + iω Transient global mode Antisymmetric
v0,2 λ0,2 = i2ω 2nd harmonic Symmetric
v1,2 λ1,2 = σ + i2ω Transient 2nd harmonic Symmetric

TABLE 1. Properties of the leading Koopman modes of an oscillator. The symmetry of the
modes is based on the assumption of a symmetric unstable equilibrium state us.

asymptotic v0,1 in (4.21), but the relative contribution and phases of ũ1, ũ
(1)
3 and ũ(2)3

are different. This connection between the transient and asymptotic modes holds for
all oscillatory structures, e.g. the transient higher harmonic Koopman mode (4.28)
compared to (4.22) has the same spatial structure but phase shifted by β.

The Koopman eigenfunctions corresponding (4.26)–(4.28) are

|φ1,0| = µ/r2
0 − 1, arg(φ1,0)= 0, (4.31a)

|φ1,1| = µ/r2
0 − 1, arg(φ1,1)= θ0 + β ln

(√
µ

r0

)
, (4.31b)

|φ1,2| = µ/r2
0 − 1, arg(φ1,2)= 2θ0 + 2β ln

(√
µ

r0

)
. (4.31c)

The magnitude of the Koopman eigenfunctions is zero at the limit cycle if the initial
state is exactly on the limit cycle r0 = √µ. When r0 6= √µ, the significance of the
transient modes – in terms of their relative contribution to the flow trajectory u
– strongly depends on the flow field at t = 0. As one may expect, the magnitudes grow
with the distance of the initial amplitude from the limit cycle. Note that higher-order
transient modes, vj,m for j= 2, 3, . . . , decay faster both in time (with the exponent jσ )
and in amplitude (as (µ/r2

0 − 1)j) as j increases.
The physical significance and symmetry of the Koopman modes are summarized in

table 1.

5. Dynamic mode decomposition
We show in this section that the DMD algorithm provides an approximation to the

derived Koopman modes and eigenvalues. DMD is one method in the category of
techniques of fitting a linear combination of exponential terms to a finite number of
samples of a function spaced equally in time. In other words, we wish to model u(t)
by a sum of r + 1 exponential terms,

ũ(t)=
r∑

j=0

ṽj exp(λ̃jt). (5.1)

Here, ṽj ∈ Cn is the Ritz vector corresponding to the Ritz value λ̃j ∈ C, with λ̃i 6= λ̃j

for i 6= j. The general objective is to identify r, the Ritz values and vectors such that
ũ(t) is a least-squares fit to u(t). The connection between expansion into Ritz vectors
and Koopman modes was made in Rowley et al. (2009). By comparing the expansions
(5.1) and (2.2), we may expect ṽj ≈ φjvj and λ̃j ≈ λj.
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The DMD algorithm provides Ritz vectors (i.e. corresponding to dynamic modes in
Schmid 2010) and values by an exact fit of the first r samples and a least-square fit of
the last sample. The algorithm is not optimal (Chen et al. 2012) for finding the Ritz
vector and values in (5.1) and may be sensitive to noise (Duke et al. 2012), but it is
a direct method (as opposed to iterative) with a reasonably cheap computational cost.
Suppose that we have sampled the flow r + 1 times at a constant time interval 1t,
i.e. u0,u1, . . . ,ur, where uk = u(1tk). The Ritz values λ̃j and Ritz vectors ṽj of this
sequence satisfy

uk =
r−1∑
j=0

ṽj exp(λ̃jk1t), k = 0, 1, . . . , r − 1, (5.2)

and

ur =
r−1∑
j=0

ṽj exp(λ̃jr1t)+ r for r⊥ span(u0,u1 . . . ,ur−1). (5.3)

These discrete-time expansions are special case of (5.1).

5.1. The algorithm
The DMD algorithm in its simplest form consists of the following three steps.

(a) Write the (r + 1)th sample (ur) as linear combination of the first r states and an
error term, i.e.

ur = c0u0 + c1u1 + · · · + cr−1ur−1 + r= Xc+ r, (5.4)

where c = [c0, . . . , cr−1]T, X = [u0,u1 . . . ,ur−1] ∈ Rn×r and r ⊥ span(X). Then
solve the least-square problem for c,

c= X+ur, (5.5)

where X+ = (X ∗X)−1X ∗ is the pseudo-inverse of X .
(b Form a matrix in companion form,

C =



0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2

...
. . .

...

0 0 . . . 1 cr−1


∈ Rr×r, (5.6)

and diagonalize it

C = TΛT−1. (5.7)

(c) Finally, construct the matrix

V = XT . (5.8)

The Ritz values are then given by diagonal elements of Λ and the Ritz vectors by
the columns of V . Further details on the algorithm can be found in Rowley et al.
(2009), Schmid (2010) and Chen et al. (2012).
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FIGURE 4. (Colour online) Koopman eigenvalues obtained from the formula (4.17) with
values given in (5.9) are depicted with squares (blue online). Ritz values obtained from direct
numerical simulation of the N–S equations at Re = 50 for t ∈ [700–1400] are depicted with
circles (red online). Ritz vectors associated with eigenvalues labelled ¬–± are shown in
figures 5 and 6.

The residual of the DMD algorithm is small if the state at the final time is nearly
linearly dependent on the previous states. This is certainly a reasonable assumption if
a sufficiently long data sequence is collected from the periodic fully saturated flow.
However, we can also expect the assumption to be good for transient trajectories
approaching the limit cycle, as long as sufficiently many points on the limit cycle are
included. The average residual levels out due to the fact that the columns of X become
increasingly linearly dependent as they align with the most dominant Ritz vectors
(Schmid 2010). The vector norms sj = ‖ṽj‖, often display a decay of several orders of
magnitude for the first few Ritz vectors. The condition number of the Ritz vector j is
κ = sj/s0 and provides a way to identify numerically sensitive modes. The threshold
in the results presented in the following sections is κ ∈ O(10−5–10−6). Finally, we
mention that one can improve the stability of the above algorithm via a similarity
transformation of the companion matrix (Schmid 2010) based on the singular value
decomposition (SVD) of X . When using the SVD algorithm, the correct norm of the
modes can be recovered from (5.2), as shown by Chen et al. (2012).

5.2. Ritz vectors and values in intervals III–IV
We collect snapshots from t = 700 to t = 1400 (with 1t = 1) from a direct numerical
simulation (DNS) of the flow past a circular cylinder at Re = 50. During this time
interval the state evolution is restricted to the local stable manifold of the limit cycle
and to the limit cycle (intervals III–IV in figure 2).

In figure 4, the Ritz values λ̃j,m of this data set are compared to the Koopman
eigenvalues given by (4.17). At Re = 50 the frequency and Lyapunov exponent of the
limit cycle are approximately (see Sipp & Lebedev 2007)

σ =−2εµ≈−0.03, (5.9a)
ω = ω0 + εω1 ≈ 0.79. (5.9b)

These values are thus the theoretical prediction of the horizontal and vertical spacing
of the lattice formed by the Koopman eigenvalues. We observe that λ̃j,m ≈ λj,m, i.e. the
Ritz values are collocated on this lattice.
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FIGURE 5. (Colour online) Ritz vectors corresponding to the attractor modes of the cylinder
flow at Re = 50. Contours show the stream function, where positive (negative) values are
depicted with black (grey) lines. Labels ¬–® correspond to the Ritz values in figure 4. The
modes are complex and shown at one phase only.

The Ritz vectors associated with Ritz values in figure 4 are shown in figures 5 and
6. The DMD-extracted modes correspond to the Koopman modes listed in table 1.
The three first Ritz vectors on the limit cycle (j = 0,m = 0, 1, 2) corresponding to the
eigenvalues labelled ¬–® are shown in figure 5. The zeroth mode, ṽ0,0 is the time-
averaged flow on the limit cycle and has a reflection symmetry about the centreline
y = 0. The first mode ṽ0,1 corresponds to the part of the flow field that oscillates
with the fundamental vortex shedding frequency ω0. This mode has the same spatio-
temporal symmetry and the same streamwise spacing between the vortices as the full
nonlinear cylinder flow. The second mode ṽ0,2 is due to the interaction of the first
mode with itself. The second harmonic oscillates with twice the fundamental frequency
and shows opposite symmetry to the first mode.

The Ritz vectors corresponding to transient Koopman modes (j = 1,m = 0, 1, 2) are
shown in figure 6. As predicted by the analysis in the previous section, we observe
that the transient fundamental (label °) and second harmonic (±) modes have the
same spatial structure as their corresponding asymptotic modes (­ and ®); their
difference is a matter of magnitude and phase. The shift mode (¯) is a transient
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FIGURE 6. (Colour online) Ritz vectors corresponding to the transient modes of the cylinder
flow at Re = 50. Contours show the stream function, where positive (negative) values are
depicted with black (grey) lines. Labels ¯–± correspond to the Ritz values in figure 4. The
modes are complex and shown at one phase only.

structure that has no resemblance to any asymptotic mode; it consists of the difference
between the mean flow and the steady unstable equilibrium. This mode characterizes
the decay of the recirculation zone when the flow departs from the steady solution to
the time-averaged solution.

5.3. Ritz values in intervals I–IV
In figure 7, Ritz values of X containing snapshots from t = 500 to t = 1400 are shown.
This sequence of data also includes samples from the early transient (intervals I–II in
figure 2), where the state evolution initially is not near the limit cycle.

Despite the fact that X contains samples of exponentially growing structures within
time interval I, all Ritz values are stable. Since the dynamics in X is globally stable
(e.g. the state saturates on a limit cycle) a least-square fit of exponential terms cannot
predict unbounded growth. We observe distinct discrete eigenvalues on the imaginary
axis, in good agreement with the asymptotic (j = 0) Koopman eigenvalues in (4.17).
The remaining Ritz values, however, are significantly different from those shown in
figure 4 and do not correspond to any values predicted by (4.17). Instead they form
distinct continuous branches for each frequency. In contrast to the asymptotic Ritz
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FIGURE 7. (Colour online) Ritz values obtained from Navier–Stokes equation at Re = 50
for t ∈ [500–1400] are depicted with circles (red online), whereas the Koopman eigenvalues
obtained from the formula (4.17) with values given in (5.9) are depicted with squares (blue
online).

values, the complex branches are very sensitive to the choice of DMD parameters.
In particular, the location of the branches in the vertical direction is sensitive to the
amount of algebraic growth/decay in the transient trajectory, which makes this part
of the spectrum highly dependent on the collected data set. As the algebraic growth
increases, i.e. sampling closer to the unstable equilibrium point, the complex branch
approaches the imaginary axis. The reason for the appearance of the complex branch
is that DMD is attempting to describe the nonlinear data set with a linear combination
of exponential terms. When the sampled data contains non-exponential behaviour, it
needs a cluster of complex modes to describe the dynamics. We do not exclude
the possibility that these transient Ritz values correspond to some other Koopman
eigenvalues, for example a continuous set, than those derived in (4.17).

6. Koopman eigenvalues at Re > Rec

In this section, we derive the Koopman eigenvalues of a limit cycle for any
Reynolds number. Let g(u) denote a scalar-valued bounded observable of the flow
field. We define the Koopman operator with respect to the Navier–Stokes equations as

∂g

∂t
= (f (u) ·∇)g= Lg, → Ut = exp(Lt), (6.1)

where f (u) satisfies

∂u
∂t
= f (u;Re), (6.2)

and represents the spatially discretized Navier–Stokes equations of dimension n =
2NxNy. The integration (in our case using a second-order semi-implicit method) of
(6.2) may formally be represented by a time-forward map, defined as

u(s+ t)= Tt(u(s)). (6.3)

Given a field at time s, Tt provides the field at a later time t + s on the trajectory.
From relation (4.17), we have established an explicit expression for the Koopman

eigenvalues in terms of the fundamental frequency and Lyapunov exponent of the limit
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cycle for Re slightly larger than Rec. As we show below, the trace formula developed
in Gaspard (1998) and Cvitanović et al. (2013) establishes the relation (4.17) for
Re > Rec. In the following subsection, we determine the fundamental frequency (ω)
and the Lyapunov exponent (σ ) of a limit cycle using a Poincaré map. Then from the
trace of the Koopman operator Ut

TrUt =
∞∑

j=0

exp(λjt), (6.4)

we analytically find an expression for the Koopman eigenvalues as a function of ω and
σ .

6.1. Linear stability
The periodic flow may be described as a limit cycle solution to (6.3):

Trtp(ua)= ua, r = 1, 2, . . . , (6.5)

where tp is the period of oscillations. For stability analysis, it is convenient to describe
the dynamics in an alternative discrete-time tk = k1t setting using a Poincaré map.
This map governs the dynamics on a hyper-surface P(u)= 0 in state-space, for which
all pertinent trajectories intersect transversally. In other words, given a point Uk ∈ Rn−1

on the surface, the next point of intersection is given by the application of the Poincaré
map S, i.e. Uk+1 = S(Uk). Applying S recursively, we may write the (k + 1)th point as

Uk+1 = SkU1, (6.6)

where U1 is the initial point. A fixed point Ua of the Poincaré map satisfies

Ua = SrkpUa, r = 1, 2, . . . , (6.7)

and corresponds to a point on the limit cycle with the period tp = kp1t. A Taylor
expansion of Skp about Ua yields

Skp(Ua + δU)= Ua + MδU + · · · . (6.8)

The monodromy matrix M = ∇Skp(Ua) of dimension (n − 1) × (n − 1) governs the
dynamics of the small perturbation δU . We order the eigenvalues of M (also known as
Floquet multipliers) as

|Λ1|> |Λ2|> · · ·> |Λn−1|. (6.9)

The limit cycle is stable if |Λ1| < 1. The corresponding Floquet exponents are defined
as

µj = 1
tp

ln |Λj|. (6.10)

The two most important characteristics of the limit cycle are thus the fundamental
frequency and the Lyapunov exponent, defined by

ω = 2π
tp
, σ = µ1 = 1

tp
ln |Λ1|, (6.11)

respectively.
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6.2. Trace formula for a limit cycle

The general trace formula derived in Cvitanović & Eckhardt (1991), in the special case
of a single limit cycle, is

Tr Ut = tp

∞∑
r=1

δ(t − rtp)

|det(I − Mr)| . (6.12)

In appendix B we provide a brief derivation of this formula, following in particular
Cvitanović (2013). The trace formula is a sum whose terms are non-zero only for
integers of the limit cycle period. The rth non-zero term describes how much, after the
rth return to the Poincaré section, a small neighbourhood volume (i.e. a tube) of the
limit cycle has retracted. This relation thus connects the trace of Ut to the dynamics in
the local stable manifold of the limit cycle.

In fact, from the Laplace transform of the above formula, one can identify the
Koopman eigenvalues explicitly from the roots of a so-called Zeta function. The
Laplace transform of the trace of Ut,∫ ∞

0
e−st Tr Ut dt = Tr

1
s− L

, (6.13)

indicates that the Koopman eigenvalues are the poles of the resolvent of L. By
inserting (6.12) in the left-hand side of the above equation one obtains

Tr
1

s− L
= ∂

∂s
ln(Z(s)), (6.14)

where Z(s) is the so-called Zeta function (called the spectral determinant in Cvitanović
et al. 2013),

Z(s)= exp

[
−
∞∑

r=1

1
r

e−stpr

| det(I − Mr)|

]
. (6.15)

Now, since the determinant does not depend on the basis which M is described in, we
may write it in terms of the eigenvalues of M

1
| det(I − Mr)| =

n−1∏
k=1

1
1−Λr

k

, (6.16)

where we have assumed that |Λk| < 1 for all k. Note that the Taylor series of the
two-dimensional function (1− x)−1(1− y)−1 is

(1− x)−1(1− y)−1 = 1+ x+ y+ x2 + xy+ y2 + · · · , (6.17)

when |x| < 1, |y| < 1. Each term in the product sequence (6.16) may thus be written
as an infinite sum. Define a multi-index vector j = [j1, j2, . . . , jn−1] with elements
as positive integers, jk = 0, 1, 2, . . . . Using the multi-index notation defined in
appendix C, we may write (6.16) as

1
| det(I − Mr)| =

∑
j

Λrj (6.18)
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and consequently the Zeta function as

Z(s)= exp

[
−
∞∑

r=1

1
r

(
e−stp

∑
j

Λj

)r]
. (6.19)

Finally, applying the identity
∑

xr/r = − ln(1 − x), we obtain the final form of the
Zeta function for a limit cycle:

Z(s)=
∞∏
j

(1− e−stpΛj). (6.20)

The zeros Z(s)= 0 are given by the zeros of individual terms in the product, i.e.

exp[−tp(s− µ · j)] = 1. (6.21)

Taking the logarithm of both sides, we obtain

sj,m = µ · j + imω (6.22)

with m = 0,±1,±2, . . . . For our particular choice of analytic observables the
spectrum of Ut is reduced to its minimal components, namely as any integer multiple
of the stability eigenvalues.

6.3. Koopman eigenvalues for the cylinder flow
Consider the cylinder flow at Rec,3D > Re > Rec, where Rec,3D = 182 is the critical
Reynolds number for which the limit cycle becomes unstable. Suppose that the
frequency and the Lyapunov exponent of the limit cycle are ω and σ respectively.
Then, the Koopman eigenvalues λj1,0,...,0,m obtained from (6.22) corresponding to this
stability eigenvalue are

λj,m = jσ + imω, (6.23)

with j = 0, 1, 2 . . . and m = 0,±1,±2, . . . . This formula agrees with the Koopman
eigenvalues (4.17) derived in § 4 from a weakly nonlinear theory. Thus, for any stable
limit cycle, the Koopman eigenvalues form a lattice on the lower half of the complex
plane. The marginal eigenvalues on the horizontal imaginary axis corresponding to
j = 0 correspond to the non-decaying time-averaged mean (m = 0) and periodic
dynamics (m 6= 0) on the limit cycle. The remaining eigenvalues j 6= 0 are decaying
and describe the transient behaviour of flow in the local stable manifold of the limit
cycle.

7. Discussion
We have limited the analysis to a periodic orbit and to observables that are bounded

and smooth, where only a discrete spectrum exists. The Koopman eigenvalues (6.23)
associated with the limit cycle are only a subset of the discrete spectrum of Ut. If
significant transients are considered, then the unstable equilibrium also contributes
to the flow dynamics and consequently to the spectrum of Ut. In fact, the full
Koopman spectrum (for analytical observables) consists of the union of the eigenvalues
associated with the two critical elements (Gaspard 1998). For chaotic attractors and/or
by enlarging the functional space of observables, eigenvalues other than those given
by the trace formula may be found. In fact, the non-periodic part of the attractor
has a continuous spectrum, resulting in an additional term in the expansion of an
observable in the form of an integral. Mezić (2005) showed that the decomposition of
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a chaotic attractor into a mean, periodic and fluctuating part is a rigorous version of
the ‘triple decomposition’ for turbulent flows (Reynolds & Hussain 1972). Moreover,
the fluctuating part of the field is more conveniently treated as a stochastic process,
for which the POD modes are the appropriate expansion basis. Thus, when Koopman
modes were introduced by Mezić (2005), they were considered as a complement to
POD modes and not a replacement.

It has been argued that Koopman modes are a nonlinear generalization of linear
global stability modes. In fact, it was shown in Rowley et al. (2009) that for a linear
flow f (u) = Au, the Koopman modes are equivalent to linear global modes and the
Koopman eigenvalues are equivalent to stability eigenvalues. This result holds even if
A is unstable, and hence also if the solutions are unbounded. The relationship between
linear stability analysis and Koopman modes for bounded observables is however very
different. If an unstable equilibrium co-exists with an attractor which naturally results
in bounded observables, then all Koopman eigenvalues are stable. The characterization
of unstable dynamics is more appropriately done with the adjoint Koopman operator,
which is the well-known Perron–Frobenuis operator (Cvitanović et al. 2013). There is
an analogy between the adjoint-direct Koopman operator and the adjoint-direct linear
Navier–Stokes operator for convection-dominated open shear flows. These flows are
characterized by convective non-normality (Marquet et al. 2009): the linear stability
eigenmodes are located far downstream where the response to upstream incoming
disturbances is large; the corresponding adjoint global modes on the other hand are
located upstream, characterizing the sensitivity of the flow to disturbances. Similarly.
the Koopman modes are located near or on an attractor, whereas the corresponding
adjoint modes are located ‘upstream’ in time, near the unstable dynamics.

8. Conclusions
In this paper, we have explicitly constructed Koopman modes for flows developing

and undergoing self-sustained oscillations by using a standard multiple-scale expansion
of the flow field in combination with a spectral expansion of the amplitude. The
spatial structures describe the asymptotic dynamics on the limit cycle and the transient
dynamics on the local stable manifold of the limit cycle. They correspond to the
time-averaged mean flow, the shift mode and nonlinear fundamental/higher-harmonic
global modes. The frequencies and growth rates of the modes form a lattice in the
lower-half of the complex plane, where the spacing in the vertical and horizontal
directions correspond, respectively, to the fundamental frequency and the Lyapunov
exponent of the oscillator. This is in accordance with the formulae derived by forming
the trace of the Koopman operator.

We have established a relationship between the Koopman modes and the Ritz
vectors obtained from the dynamic mode decomposition algorithm. We showed that
near and on the attractor, the Ritz vectors and values of an appropriate empirical data
set approximate Koopman modes and eigenvalues. When the sampled dynamics is far
from the limit cycle, where the influence of unstable basic flow may be significant,
the Ritz values corresponding to transient Ritz vectors cluster together and do not
correspond to any of the derived discrete Koopman eigenvalues. Whether these Ritz
values correspond to Koopman eigenvalues other than those predicted by the trace
formula remains to be investigated.

Since its introduction by Schmid (2010), DMD is becoming an increasingly
popular post-processing tool, in fluid-dynamical applications particularly, but also in
other applied areas. The algorithm allows, in a rather straightforward manner, the
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extraction of physical (or ‘dynamic’) information from huge data sets generated
from experimental devices or large-scale numerical simulations. The approximation
of Koopman modes is only one application of the algorithm; when viewed as
curve-fit of sampled data, it can also be useful to approximate linear eigenvalue
problems (Schmid 2010), discrete Fourier transforms (Chen et al. 2012), etc. This
particular work together with Rowley et al. (2009) puts the DMD algorithm on a
firm mathematical base within the field of evolution operators for the particular class
of flows with intrinsic periodic behaviour. However, further validation between Ritz
values and Koopman modes for chaotic and noisy systems, pertaining for example
to high-Reynolds-number flows, remains to be conducted. It seems, however, that the
standard DMD algorithm is sensitive to noise-contaminated data (Duke et al. 2012).
For the application of DMD to more complicated configurations a promising, albeit
more expensive, variant of the algorithm is the ‘Optimized’ DMD introduced by Chen
et al. (2012).
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Appendix A. Derivation of equations (4.11)–(4.14)
The Koopman eigenfunctions, eigenvalues and expansion coefficients are derived

with respect to the S–L equation (see also Gaspard et al. 1995; Gaspard & Tasaki
2001). The observable g(A) in polar coordinates is a periodic function in θ and may
thus be represented as

g(A)=
∞∑

m=−∞
ĝm(r) exp(imθ). (A 1)

Inserting (4.2b) in the exponent of (A 1), we obtain

g(A)=
∞∑

m=−∞
ĝm(r) exp

[
im(θ0 + ω1τ + β ln

(
r

r0

)]

=
∞∑

m=−∞

[
ĝm(r)

(
r

r0

)imβ
]

exp [im(θ0 + ω1τ)] . (A 2)

To put the above expression in the form of (4.9), we need to extract the exponential
decay rate e−2µτ from the terms in the brackets of (A 2). Rewrite r(τ ) as a function of
the new variable y,

r(τ )=
√

µ

1+ y(τ )
, (A 3)

with

y(τ )= µ

r(τ )2
− 1=

(
µ

r2
0

− 1
)

exp(−2µτ), (A 4)
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where (4.2a) has been used. In the transformed variable we have

ĝm(r)

(
r

r0

)imβ

=
[

ĝm

(√
µ

1+ y

)
(1+ y)−imβ/2

](√
µ

r0

)imβ

. (A 5)

In the y-coordinate, the limit cycle at r = √µ is mapped to the origin y = 0 and the
repelling point at r = 0 is mapped to infinity. This mapping is convenient if we are
interested in the nonlinear attracting dynamics of the limit cycle at y= 0 (i.e. intervals
III and IV in figure 2). We thus Taylor expand (A 5) around y= 0,

ĝm(r)

(
r

r0

)imβ

=
∞∑

j=0

{
1
j!
∂ (j)

∂y

[
ĝm

(√
µ

1+ y

)
(1+ y)−imβ/2

]}
y=0

(√
µ

r0

)imβ

yj. (A 6)

Denoting the complex scalar in the braces by α(g)j,m and transforming back from y to r0,
we have

ĝm(r)

(
r

r0

)imβ

=
∞∑

j=0

α
(g)
j,m

(√
µ

r0

)imβ(
µ

r2
0

− 1
)j

exp(−2jµτ). (A 7)

By inserting the Taylor expansion into (A 2) we get the final spectral form of the
observable,

g(A)=
∞∑

j=0

∞∑
m=−∞

α
(g)
j,m

(
µ

r2
0

− 1
)j

exp
[

im
(
θ0 + β ln

(√
µ

r0

))]
exp [(−2µj+ imω1)τ ]

=
∞∑

j=0

∞∑
m=−∞

α
(g)
j,mφj,meλ̂j,mτ , (A 8)

and may identify the scalar expansion coefficients, the Koopman eigenfunctions and
the Koopman eigenvalues. In a straightforward manner it can be verified that φj,m and
λ̂j,m satisfy (4.7) for j= 0, 1, . . . and m= 0,±1,±2, . . . .

Appendix B. Derivation of equation (6.12)
This appendix follows the derivations presented in Cvitanović (2013) and Gaspard

(1998), except that the analysis is restricted to the simpler case of a limit cycle.
The formal definition of a trace (6.4) assumes that we already have computed the
eigenvalues of Ut. A different way of defining the trace of an evolution operator is
in terms of its kernel. Using a Dirac-delta function, the Koopman operator for any
bounded observable function g(u) can be written as

Utg(u)=
∫

M

δ (w− Tt(u)) g(w) dw (B 1)

where u belongs to the manifold M ⊂ Rn. This form of the Koopman operator is
similar to the form of integral operators, for which one may define the trace as

TrK =
∫

M

K (u,u) du, (B 2)

where K is the kernel. Integral operators are in L2-space as well as compact, that
is they can in many respects be treated as finite-rank matrices. The kernel of Ut is
singular and the operator is certainly not in L2. However, if the dynamical system f is
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real-analytic, it has an analytic continuation to a complex extension of the state space,
where the singularity can be ‘removed’ and the problem reduced to the standard theory
of integral operators (Artuso et al. 2013).

Inspired by this definition, we define the trace of the Koopman operator as

Tr Ut =
∫

M

δ(u− Tt(u)) du. (B 3)

From (B 3), one observes that the trace of Ut receives a contribution whenever the
trajectory returns to the starting point after r repetitions of the limit cycle period tp.
Note that the trace is a property of the operator and independent of the observable.
From (B 3), it is clear that the trace of Ut is only non-zero if u = Ttu. These
trajectories are precisely those on the limit cycle or the equilibrium.

To proceed, we decompose the time-forward map Tt into two parts: the (n–1)-
dimensional Poincaré map S and a one-dimensional return-time function τ . The
Poincaré map captures the transverse part of the periodic dynamics, since the flow
component tangent to the limit cycle, which is not in the span of the Poincaré surface,
has not be taken into account. Assuming that the longitudinal state component has
a certain mean velocity v as it traverses the limit cycle, one may transform this
component to a time-coordinate system using the relation v dt. Thus the full dynamics
is described by the Poincaré map S and by the first-return function τ(U) that provides
the (non-constant) time interval between successive points U on the Poincaré surface,
e.g. tk+1 = tk + τ(Uk).

Applying τ recursively, we may write (k + 1)th time as a function of the first point,

tk+1 = t1 +
k−1∑
j=0

τ(SjU1). (B 4)

Now, decompose the kernel of Ut (B 3) into two parts

Tr Ut =
∫

P(u)=0
dU
∫ τ(U)

0
dtδ(U − SkU)δ

(
t −

k−1∑
j=0

τ(SjU)

)
, (B 5)

where Sk and τ are defined in (6.6) and (B 4), respectively. We treat the two Dirac-
delta functions separately, starting with Sk. First recall that the Dirac-delta function
applied to a scalar-valued function g(x) is∫

δ(g(x)) dx=
∫
δ(x)|g′(0)−1| du=

∑
j

1
|g′(xj)| , (B 6)

where xj are the roots of g(x). This property may be generalized to n − 1 dimensions
and applied to the first Dirac-delta in (B 5),∫

P(u)=0
δ(U − Sk(U)) dU = 1

| det(I − Mr)| , (B 7)

where I denotes the identity matrix. The second part of the trace can be written as
(Cvitanović 2013) ∫ τ(U)

0
δ

(
t −

k−1∑
j=0

τ(SjU)

)
dt = tp

∞∑
r=1

δ(t − rtp). (B 8)
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Inserting the identities (B 7) and (B 8) in (B 5), we get the trace formula for a single
limit cycle,

Tr Ut = tp

∞∑
r=1

δ(t − rTp)

| det(I − Mr)| , (B 9)

which was first derived by Cvitanović & Eckhardt (1991).

Appendix C. Multi-index notation
Define a multi-index as an array of n non-negative integers jk = 0, 1, 2, . . .:

j = [j1, j2, . . . , jn] ∈ Nn, (C 1)

Consider next the product of n− 1 Floquet multipliers

Λ=Λ1Λ2 · · ·Λn−1 = exp[tp(µ1 + µ2 + · · · + µn−1)] (C 2)

(the imaginary parts of complex pairs cancel in the exponent), and define

µ= [µ1, µ2, . . . , µn−1] ∈ Rn−1. (C 3)

Λ can now be raised to jth power as

Λj = exp(tpµ · j)=Λj1
1 Λ

j2
2 · · ·Λjn−1

n−1 . (C 4)
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Quantum (ed. P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner & G. Vattay). Niels Bohr
Institute, chaosBook.org/version14.

BARKLEY, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75, 750–756.
CHEN, K., TU, J. H. & ROWLEY, C. W. 2012 Variants of dynamic mode decomposition: boundary

condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22 (6), 887–915.
CHOMAZ, J. M. 2005 Global instabilities in spatially developing flows: non-normality and

nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392.
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