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Active linear control is applied to delay the onset of laminar–turbulent transition in the
boundary layer over a flat plate. The analysis is carried out by numerical simulations
of the nonlinear, transitional regime. A three-dimensional, localized initial condition
triggering Tollmien–Schlichting waves of finite amplitude is used to numerically
simulate the transition to turbulence. Linear quadratic Gaussian controllers based
on reduced-order models of the linearized Navier–Stokes equations are designed,
where the wall sensors and the actuators are localized in space. A parametric
analysis is carried out in the nonlinear regime, for different disturbance amplitudes,
by investigating the effects of the actuation on the flow due to different distributions of
the localized actuators along the spanwise direction, different sizes of the actuators and
the effort of the controllers. We identify the range of parameters where the controllers
are effective and highlight the limits of the device for high amplitudes and strong
control action. Despite the fully linear control approach, it is shown that the device
is effective in delaying the onset of laminar–turbulent transition in the presence of
packets characterized by amplitudes a≈ 1 % of the free stream velocity at the actuator
location. Up to these amplitudes, it is found that a proper choice of the actuators
positively affects the performance of the controller. For a transitional case, a≈ 0.20 %,
we show a transition delay of ∆Rex = 3.0× 105.
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1. Introduction
This paper considers the control of laminar–turbulent transition in the flat-plate

boundary layer triggered by the growth and breakdown of finite-amplitude three-
dimensional disturbances. In clean environments characterized by low levels (Tu < 1 %)
of free stream turbulence (FST), nearly two-dimensional Tollmien–Schlichting (TS)
wavepackets are often observed in the boundary layer. The amplitude of these
perturbations grows at an exponential rate, and when reaching amplitudes of order
1 % of the free stream velocity a rapid breakdown eventually leads to a turbulent
flow. This scenario is referred to as the classic route to transition (Kachanov 1994).
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A different scenario, bypass transition as observed for higher values of FST (Tu > 1 %),
is characterized by the presence of three-dimensional streaks. The amplitude of these
streamwise elongated structures grows at an algebraic rate and is approximately one
order of magnitude larger than that of the TS waves before the final breakdown
(Andersson et al. 2001). From a technological point of view it is of interest to control
these routes to transition in order to reduce drag, which in turn may lead to significant
savings, for instance, in the operational cost of cargo ships and commercial aircraft.

The combination of control theory tools applied to linear system dates back to
the works by Joshi, Speyer & Kim (1997), Bewley & Liu (1998) and Cortelezzi
et al. (1998). In the following decade, several successful projects were initiated
extending these concepts to more complicated configurations; an account of research
developments can be found in Kim & Bewley (2007), Sipp et al. (2010) and Bagheri
& Henningson (2011).

The main idea behind the present investigation is to explore the possibility of
delaying transition to turbulence by mitigating the perturbations arising in a flow. To
accomplish this aim, linear quadratic Gaussian (LQG) controllers are designed using
localized actuators and sensors in combination with reduced-order models (ROMs). We
can summarize the procedure as follows.

(a) Introduction of inputs (disturbances and actuators) and outputs (sensors) in the
system.

(b) Identification of a ROM.
(c) Design of a low-order controller based on the ROM.
(d) Analysis of the controlled flow by testing the performance with numerical

simulations.

In the control literature, this framework is usually referred to as reduce-then-
design (see, e.g., Anderson & Liu 1989). A ROM properly reproducing the linear
input–output behaviour can be obtained in a systematic way using balanced truncation
(Moore 1981), usually approximated for high dimensional systems by the snapshot-
based algorithm proposed by Rowley (2005); in this case, we need a model of the
flow (i.e. the linearized Navier–Stokes equation) and the related adjoint. In a recent
application, Ma, Ahuja & Rowley (2011) propose for fluid flow control a system
identification algorithm usually referred to as eigensystem realization algorithm (ERA)
(see Juang & Pappa 1985); they show the equivalence between approximate balanced
truncation and ERA, although using the latter algorithm neither simulations of the
adjoint system nor a Galerkin projection onto the balanced mode basis are necessary to
obtain low-order models. Once the low-order controller is designed, it can be tested in
full direct numerical simulations (DNS) or large eddy simulations (LES).

The reduce-then-design scheme has been successfully employed for the control of
the cavity flow by Rowley & Juttijudata (2005), Åkervik et al. (2007) and Barbagallo,
Sipp & Schmid (2009), channel flow by Ilak & Rowley (2008) and two-dimensional
infinitesimal perturbations developing in a boundary layer by Bagheri, Brandt &
Henningson (2009a). The control of three-dimensional infinitesimal perturbations in
a spatially developing boundary layer over a flat plate has been analysed by Semeraro
et al. (2011). In the present work, the analysis of the closed loop is extended to
fully nonlinear simulations to verify the possibility of delaying the transition to
turbulence promoted by growing localized perturbations of finite amplitudes. The
initial condition is that computed by Monokrousos et al. (2010) using a time-stepper-
based optimization (Schmid 2007). Monokrousos et al. (2010) showed that long
optimization times provide an initial condition triggering a wavepacket of TS waves,
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FIGURE 1. Evolution of a TS wavepacket. (a–c) The streamwise component is shown from
the top, in the x–z plane, at three different instants of time: (a) t = 400; (b) t = 1000; (c)
t = 1600. The isosurface levels equal 30 % of the maximum velocity (grey) and minimum
velocity (black). (d) Evolution of the perturbation energy E(t) in time; the dashed line
indicates the linear prediction, while the solid line depicts the energy of the packet shown
in (a–c). (e) Amplitude a(t) of the wavepacket as a function of time, same legend as (d).

whereas large amplifications in short times are obtained when streamwise vortices are
used as initial condition.

We focus our attention on the first type of perturbation, the TS waves. In
figure 1(a–c), the spatial evolution of the wavepacket is shown from the top, in
the x–z plane, at three different instants of time. The Cartesian coordinates are
indicated by x = (x, y, z), where x, y and z are the streamwise, wall-normal and
spanwise directions. The Reynolds number is defined as Re = U∞δ∗0/ν, where δ∗0 is
the displacement thickness at the inflow position, U∞ is the uniform free stream
velocity and ν is the kinematic viscosity. We choose Re = 1000, corresponding to
Rex ≈ 3 × 105 at the computational inlet. Hereafter, the perturbation velocity field,
defined as the deviation of the velocity components from the stationary baseflow U(x),
will be denoted as u(x, t)′. As shown in figure 1(a), the streamwise component of
the wavepacket is nearly two-dimensional at t = 400. This stage of the evolution is
well-predicted by linear theory; indeed, the perturbation energy

E(t)= 〈u′,u′〉Ω, (1.1)

with Ω indicating the computational domain, is in good agreement when comparing
the fully nonlinear and the linear configurations figure 1(d).

The packet grows in size along the spanwise and streamwise directions while
propagating downstream in the computational box. At time t = 1000, the packet starts
to develop three-dimensional structures and loses its spanwise coherence. For t > 1000,
a quick energy growth is observed, characterized by a strong deviation from the linear
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prediction. We define the amplitude of a disturbance by

a(t)= (max
x,y,z

u′ −min
x,y,z

u′)/2U∞, (1.2)

(see Andersson, Berggren & Henningson 1999; Andersson et al. 2001). Thus, we
account for the maximum and minimum pointwise perturbation velocities. At this
stage, the amplitude of the wavepacket quickly increases from a ≈ 1–2 % up to
values comparable with the free stream velocity at t ≈ 1600 (figure 1e). This final
stage is characterized by the presence of a turbulent spot, strongly dominated by
three-dimensional structures (see figure 1c).

In this paper, we examine the effect of the controller on the perturbation when the
flow is still laminar, corresponding for the TS waves to amplitudes a ≈ 1 % as shown
in figure 1(a), and determine under which conditions the control action can result
in a delay of the initial stages of the laminar–turbulent transition. The extension of
our previous work is not trivial due to the three-dimensional, localized nature of the
control action. The necessity of introducing localized actuators is a constraint often
found in experimental configurations and can represent a first limitation of the control
design; considering the TS instabilities, applications can be found in the experimental
works by Sturzebecher & Nitsche (2003) and Li & Gaster (2006). For the bypass
transition and the associated streak growth, the reader can refer to the experimental
analysis carried out by Lundell (2007) and Monokrousos et al. (2008). In the present
investigation, the actuation is produced by a finite number of localized elements
described by a solenoidal Gaussian-like function, forcing all of the components of the
velocity field. We consider three different configurations of actuators characterized
by different distribution of the localized elements in the spanwise direction and
different dimension of the forcing. We then move our focus from the analysis of the
controllers to the physics of the actuation, which plays a fundamental role in a fully
three-dimensional configurations. Indeed, the localization of the actuators can promote
instabilities that, in combination with the nonlinearities of the flow, can trigger an early
transition to turbulence. Thus, a preliminary parametric analysis is a necessary step
for the assessment of the performance that can actually be achieved when a linear
controller is used to damp finite-amplitude perturbations.

This paper is organized as follows: we briefly outline the input–output system in
§ 2. More details about the model reduction problem and the control scheme are given
in Appendix. The performance achieved in the nonlinear simulations and the analysis
of the controlled system are discussed in § 3, where the effects of the spanwise
distribution of the actuators and of the control effort are investigated. The effects of
the actuation are further analysed in § 4 using velocity spectra based on amplitude
expansion. The paper ends with a discussion of the main conclusions in § 5.

2. Configuration
The dynamics of a viscous, incompressible flow over a flat plate is governed by the

Navier–Stokes equations

∂u
∂t
=−u ·∇u−∇p+ 1

Re
∇2u+ λ(x)u, (2.1a)

0=∇ · u, (2.1b)

where the velocity field is denoted with u(x, t)= (u, v,w) and the pressure with p(x, t).
The simulations presented in this paper were performed using a pseudo-spectral DNS
code (Chevalier et al. 2007). The solution is approximated by Fourier expansion in the
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Cases Resolution Box
Nx × Ny × Nz [Lx,Ly,Lz]

Linear Control design 768× 101× 120 [1000, 30, 120π]
Nonlinear Parametric study 768× 101× 256 [1000, 30, 256]
Nonlinear Transition delay 1536×101×384 [2000, 30, 256]

TABLE 1. Summary of the performed simulations. For each case, the resolution and the
computational box are reported.

horizontal directions (x, z) and Chebyshev polynomials along the wall-normal direction
(y); the temporal advancement is approximated by a four-step third-order Runge–Kutta
method for the nonlinear term, and a second-order Crank–Nicolson method for the
linear term. Thus, within the spatial approximation, periodicity is assumed in the
spanwise direction and enforced in the streamwise direction by a fringe region λ(x) at
the outlet of the domain (Nordström, Nordin & Henningson 1999). The fringe region
extends for 20 % of the physical length of the domain in all of the cases summarized
in table 1. Dirichlet conditions enforce zero perturbations velocity at the wall (y = 0),
while Neumann conditions are applied in the free stream (y= Ly).

Linear simulations were performed for the design of the controller. Simulations of
the nonlinear flow were used for the assessment of the controller performance in
presence of finite-amplitude perturbations. The box size and resolution are reported in
table 1 and discussed in the following sections.

2.1. Inputs and outputs
The control design is based on the Navier–Stokes equations linearized around a steady
state, U(x) = (U,V, 0); the baseflow is computed by marching forward in time the
discretized fully nonlinear (2.1) until a steady solution is obtained. In the following,
the problem variables will indicate the spatial-discrete counterparts, while using the
same symbols of the spatial-continuous variables.

The set-up is sketched in figure 2, where we display the arrays of actuators and
sensors, spanning the spanwise direction. The arrays are formed by m localized
actuators and p sensors; as shown in the sketch, the disturbance is introduced far
upstream in the domain. The controller is designed such that the perturbation energy
is minimized in the region downstream of the actuators. The resulting linear-time
invariant system is

u̇(t)′ = Au(t)′ + B1w(t)+ B2φ(t), (2.2a)

ψ(t)= C2u(t)
′ + ηg(t), (2.2b)

z(t)= C1u(t)
′. (2.2c)

The perturbation velocity is indicated with u(t)′ = (u′, v′,w′) ∈ Rn, where the u′, v′

and w′ are the streamwise, wall-normal and spanwise components. The number of
degree of freedom resulting from the discretization of the system is n = 3NxNyNz,
i.e. the number of grid points times the velocity components. The system matrix
A ∈ R(n×n) represents the linearized and discretized Navier–Stokes equations including
the boundary conditions, already reported above. The column vector B1 ∈ Rn models
incoming external perturbation, located far upstream (on the left in figure 2).
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FIGURE 2. (Colour online) Sketch of the control configuration. The disturbance (B1) consists
of an optimal initial condition. A low-order LQG controller is designed; based on the output
extracted by a spanwise row of sensors (C2), the controller computes the control signals
feeding a row of actuators (B2). The objective of the controller is to minimize the disturbance
energy in the region marked with the grey colour. The inset figure shows that all of the
sensors are wired to all of the actuators (so-called centralized control, see Appendix).

The optimal, localized initial condition triggers a wavepacket of TS waves
(Monokrousos et al. 2010). The temporal behaviour described by the signal w(t) ∈ R
is the disturbance signal excitation, assumed as a unit-variance white noise process.
The matrix B2 ∈ Rn×m represents the spatial distribution of the actuators, located in a
spanwise array of m elements and modelled as volume forcing localized close to the
walls. The control signal is represented by φ(t) ∈ Rm.

The output signals ψ(t) ∈ Rp in (2.2b) are extracted by the array of p localized
sensors C2 ∈ Rp×n, which are placed a short distance upstream of the actuators.
The noise contamination of the signal is modelled by the unit-variance white noise
g(t) ∈ Rp, whose level is set by the constant η. A large value of η introduces high
levels of noise corruption on the measurements ψ(t), while a small value indicates
high fidelity of the information extracted by the sensors C2.

The output signal z(t) ∈ Rk in (2.2c) is used to assess the performance of the
controller. Output projection is performed (Rowley 2005): the signal is obtained by
projecting the velocity field on a sequence of k = 10 proper orthogonal decomposition
(POD) modes, capturing ≈93 % of the perturbation energy. The modes are generated
by a dataset of snapshots collected from the impulse response to the initial condition
B1 and are represented by the rows of C1 ∈ Rk×n. By adopting this approach, the
signal z(t) ∈ Rk represents an approximation of the energy content of the system;
based on the output z(t), a fictitious output is defined as

z(t)′ =
[
C1

0

]
u(t)′ +

[
0

R1/2

]
φ(t), (2.3)

where the diagonal entries of the matrix R ∈ Rm×m correspond to the control penalty
l2. Thus, the first term is related to the energy of the system through the projection
performed on the POD basis, while the second term is related to the control effort.
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Configuration ROM size Spacing Sensors Actuators
r ∆z p m σx σy σz

L9 60 20 9 9 5 1.5 6
L17 200 10 17 17 5 1.5 6
S17 150 10 17 17 2 1.5 4

TABLE 2. The main parameters characterizing the three configurations used in this work:
the size of ROM (r); the spacing among each element of the sensors’ and actuators’ array
(∆z); the number of sensors (p) and actuators (m); the spatial distribution of the actuators
(described by σx, σy, σz). In all of the configurations, the central element of the sensors
and actuators arrays is placed at z = 0. The sensors are characterized by the same spatial
distribution for all of the cases (σx, σy, σz)= [5, 1.5, 6]

A quadratic cost function is defined via (2.3):

E {‖z(t)′‖2
L2(0,∞)} = E

{
1
2

∫ ∞
0
(z(t)′)Hz(t)′ dt

}
= E

{
1
2

∫ ∞
0
(u(t)′)HCH

1 C1u(t)
′ + φ(t)HRφ(t) dt

}
, (2.4)

where E (·) is the expectation operator and the superscript (·)H indicates the transpose
matrix. The aim of the controller is to minimize (2.4) by computing a control signal
φ(t) based on the information obtained from the signals ψ(t). The control effort can
be modified by changing the parameter l: large values penalize the control signal, and
are characterized by a weaker actuation, while higher control efforts are obtained when
low values for l are chosen.

Each of the m actuators in B2 and p sensors in C2 is represented by a volume
forcing localized in a region close to the wall. In particular, the columns of the
matrix B2, and the rows of the matrix C2 are obtained from the discretization of the
Gaussian-like solenoidal function

h(x, x0)=

 σxŷ
−σyx̂

0

 exp(−x̂2 − ŷ2 − ẑ2), (2.5)

where

x̂= x− x0

σx
, ŷ= y

σy
, ẑ= z− z0

σz
. (2.6)

All of the elements of the arrays have the same spatial distribution; the scalar
quantities σx, σy and σz determine the size of the inputs and are listed in table 2.
The location in the x–z plane is given by x0 = (x0, z0). From this, we define each
actuator as

B2j = h(x, xφj), (2.7)

where xφj = (400, zφj). The location of the elements along the spanwise direction z is
given by

zφj = j1z, j=−(m− 1)/2,−(m− 1)/2+ 1, . . . , (m− 1)/2, (2.8)
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where ∆z is the spacing among the actuators along the spanwise direction and j an
integer number (see also table 2). From a physical point of view, the actuators mimic a
manipulation of the flow close to the wall. A sketch of the actuators’ array is shown in
figure 2; the number of actuators m for each array and the spacing among the elements
are two of the main parameters analysed in § 3.1. The flow measurements are obtained
by averaging the velocity field over a small portion of the domain defined by the
function (2.5) used as weights. In particular,

C2ju(t)
′ =
∫
Ω

(h(x, xψ j)
Hu(t)′) dx dy dz, (2.9)

with xψ j = (300, zψ j). The distribution along the spanwise direction z varies according
to (2.8), where p = m. The number of sensors p characterizing each configuration is
reported in table 2; note that the spatial size of the weights is kept equal for all of the
cases, with (σx, σy, σz) = [5, 1.5, 6]. Finally, as mentioned before, the weights for the
output z(t) are represented by the POD modes.

Our choice of model for the actuators and sensors as localized volume forcing is
relevant for practical implementations. Examples are provided by the experimental
works by Sturzebecher & Nitsche (2003) and Li & Gaster (2006) for control of TS
wavepackets. Moreover, the actuator chosen here makes the setup rather close to the
action provided on the flow by simple models mimicking plasma actuators (Kriegseis
2011). Indeed, a first simplified way to model them consists of localized forcing
which reproduce the net force generated by the actuator. These actuators have recently
received considerable attention as a viable candidate for transition control (Grundmann
& Tropea 2008).

The control design follows the same steps outlined in Semeraro et al. (2011),
where the control of three-dimensional perturbations was investigated within the linear
framework. We follow the reduce-then-design scheme (see e.g. Anderson & Liu 1989);
first, ROMs of the system are obtained by applying the ERA, see Juang & Pappa
(1985) and Ma et al. (2011). The control design is performed by following the LQG
approach, applied on the low-order models; for a derivation of the LQG solution, we
refer the reader to Lewis & Syrmos (1995) and Dullerud & Paganini (1999). More
details on the control design are contained in Appendix.

The multi-input multi-output (MIMO) configuration characterizing the system
requires a proper multivariable approach for the control design (see e.g. Skogestad
& Postlethwaite 2005). In this work, we followed the centralized control approach,
where all of the m actuators are connected to all the p sensors and only one control
unit is designed. For centralized controllers, the stability of the closed-loop system is
guaranteed (Glad & Ljung 2001).

3. Transition delay
In this section, the controlled flow is analysed; first, in § 3.1, the performance is

discussed by comparing the three different configurations listed in table 2 within
the linear approximation. The analysis is completed within the nonlinear framework
by investigating the effect of the controller when finite-amplitude perturbations are
considered (§ 3.2). We identify the range of amplitudes where the controllers are
effective; to this end, we introduce a global measure that accounts for the energy
damping. Finally, the delay of transition from laminar to turbulent flow is investigated
by considering a longer box in § 3.3. A summary of the simulations performed is
reported in table 1.
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3.1. Performance in the linear regime
A rigourous assessment of the performance within the linear limit has been carried out
by considering a parametric analysis; we investigate two different sets of parameters:

(1) the parameters characterizing the hardware of the controllers, i.e. the location
along the streamwise direction of the actuator and sensor rows, the spacing among
the localized elements of each row and the size of the actuators and sensors;

(2) the control penalty l; we assume the noise level η = 0.01 fixed.

In particular, in addition to the configuration analysed in Semeraro et al. (2011),
hereafter labelled as L9, two new setups are introduced, labelled as L17 and S17 (see
table 2).

The control unit L9 consists of elements equispaced along z with ∆z = 20;
this spacing has deemed sufficient in Semeraro et al. (2011) to guarantee good
performance in the linear regime. The number of actuators m = 9 is chosen to cover
the width of the travelling TS waves at the actuators’ location. The elements are the
Gaussian-like functions in (2.5), whose spatial shape is defined by the values of σx, σy

and σz (reported in table 2). The same distribution is considered for the elements of
the two arrays used in L17; in this case, m = p = 17 elements are introduced for
each array, equispaced with ∆z = 10. Thus, we consider an array covering the same
spanwise length of the controller L9, but characterized by half of the original spacing.
Finally, S17 is based on actuators with a smaller spatial support. In this configuration,
we have chosen the same number of elements and same distribution of the controller
L17 along the spanwise direction, i.e. m= p= 17 and ∆z= 10. The aim is to evaluate
how the local shape of the actuators can influence the actual performance of the
controller; for the controller S17, the shape of the actuators is elongated along the
spanwise direction. These choices and the effects on the performance are shown in this
section and thoroughly discussed in § 4 by analysing the flow after the actuation.

Note that effective ROMs with a small number of actuators and sensors, m= p< 10,
were obtained by using only r = 60 modes, while r = 200 and r = 150 modes were
necessary to properly reproduce the input–output dynamics for the cases L17 and S17,
respectively. Convergence tests were performed by varying the sampling parameters of
the outputs extracted from the system; more details are provided in Appendix.

As already mentioned, all of the configurations are characterized by actuators placed
at xφ = 400 and sensors C2 placed at xψ = 300. This choice is based on the knowledge
of the boundary layer instabilities. The actuator location can be chosen without any
restriction along the streamwise direction; indeed, the region of highest sensitivity to
perturbation extends over all of this area as shown by Brandt et al. (2011). Once
the actuators are placed, the location of the sensor can be chosen according to the
control strategy. Here, the row of estimation sensors C2 is upstream of the row
of actuators. This specific configuration dynamically corresponds to a disturbance
feedforward controller, a special case of output feedback control within the framework
formalized by Doyle et al. (1989). Indeed, due to the presence of strong time delays in
the system, induced by the convective nature of the boundary layer, the dynamics from
the actuators to the sensors is negligible; therefore, the action of the controller is not
fed back by the sensors.

This configuration guarantees the best performance in terms of perturbation energy
damping as shown by Belson et al. (2013) for the corresponding two-dimensional
case. An analogous result is presented by Juillet, Schmid & Huerre (2013), where
it is shown that the feedforward approach is equivalent to an optimal LQG for
convective flows and for sensors placed sufficiently far upstream of the actuators. In a
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FIGURE 3. Perturbation amplitude a(t) as a function of time t. The uncontrolled case (solid
black line) is compared with three different controlled systems: L9 (−4−), L17 (−©−) and
S17 (−�−).

feedforward controller the stability of the closed-loop is mostly related to the quality
of the ROM and its ability to reproduce the input–output behaviour of the system.
However, despite the advantages in terms of performance and stability, off-design
conditions are potentially critical due to possible lack of robustness of the resulting
controller to the uncertainties of the system.

The amplitudes of the perturbation a(t), defined in (1.2), are shown in figure 3.
Linear simulations are performed (see table 1); the resolution was deemed sufficient to
resolve the action of the controller on the flow. The three configurations are compared
by choosing the control penalty l giving the best performance in the range l ∈ [1, 400].
In particular, l= 150 for the controllers L9 and L17, while l= 100 for S17.

Not surprisingly, actuators separated with a smaller ∆z improve the performance of
the controller. Indeed, when the controller L9 is applied, an increase of a(t) can be
observed at t > 800. Only later in time, when t > 1200, it is possible to observe a
quick decrease of the amplitudes with respect to the uncontrolled case. Note that the
controller is always active. However, due to the spatial localization of the wavepackets
and the convective nature of the flow, the wavepacket traverses the actuators’ array
at t ∈ [800, 1200]; thus, the amplitude increase is the footprint of the action of the
controller L9. This behaviour is not observed when L17 and S17 are used; indeed, the
action of these controllers is characterized by a smoother damping of the amplitudes.
At a later time, corresponding to locations further downstream of the actuators, we
observe for L17 and S17 a renewed growth of the disturbance amplitude a(t). From
the physical point of view, this behaviour is mainly connected to the action of the
localized elements on the original TS wave structure. When the configuration L9 is
used, the structure is distorted to a fully three-dimensional structure; the resulting
structure propagating downstream is characterized by a quick decay, see figure 3. Only
at the end of the computational domain, corresponding to t > 1800, it is possible to
observe a slow increase of the a(t) also for L9. Indeed, in a longer computational box
a new growth can be observed, due to the recovering of the original two-dimensional
structure of the TS wave (see § 3.3).

In conclusion, configurations with a larger number of actuators (L17 and S17)
quench more efficiently the TS, but are also characterized by a faster recovering of
the two-dimensional coherence of the TS waves structure along the z coordinate. The
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three-dimensional structure of the perturbations modified by the action of the actuators
is further investigated in §§ 3.3 and 4.

3.2. Parametric analysis in the nonlinear regime
We focus our attention on the action of a linear controller when finite-amplitude
disturbances are considered. A parametric analysis has been carried out by
using numerical simulations of the controlled flow in the nonlinear regime. The
computational box and the resolution are reported in table 1. LES were performed
using the ADM-RT subgrid-scale model (SGS) for the simulation of transition. The
model employs the relaxation term (RT) proposed in the context of the approximate
deconvolution model (ADM) by Adams & Stolz (1999). It has been shown by
Schlatter, Stolz & Kleiser (2004) that the ADM-RT model is accurate and robust in
predicting transitional and turbulent flows with spectral methods. The LES resolution
was validate against full DNS checking the location/time of the transition to turbulence.
Note that the SGS term is effectively active only when the flow becomes fully
nonlinear.

We focus on the actuators’ action on the flow and their effects in the nonlinear
regime. To this aim, we concentrate our analysis on the number of actuators m, the
spanwise distribution ∆z, the actuator size (defined with σx, σy and σz in (2.5)), the
control penalty l and the amplitude in (1.2).

Starting from the knowledge of the boundary layer instabilities and assuming that a
strong reduction in energy can lead to an actual delay of the transition to turbulence,
we define a global measure of the controller performance

∆E = log10

(
1
T

∫ T

0

Ec(t)

E(t)
dt

)
. (3.1)

In the above expression, E(t) is the energy (1.1) of the uncontrolled flow and Ec(t)
the same quantity for the controlled flow; in the parameter ∆E, we consider the
ratio between the two quantities. This is averaged in the interval t = [0,T], where
T = 2000; at this time, the wavepacket reaches the end of the physical domain at
x = 800 and leaves the computational box. Note that the value of maximum damping
of the energy perturbation is underestimated, because the averaged value includes
also the interval when the wavepacket is still upstream of the actuators (t < 800).
Negative values ∆E < 0 correspond to damping of the perturbation energy, while for
positive values ∆E > 0 the controller triggers new instabilities that lead to a quick
increase of the energy (see § 4). The quantity ∆E is shown for different values of
the reference amplitude aref and the control penalty l in figure 4(a–c) for the three
different configurations in table 2. We choose the reference amplitude at the actuator
location xφ = 400. The leading edge of the wavepacket approaches this location at
t ≈ 800; thus, the amplitude of the uncontrolled wavepacket aref = a(800) is taken as a
reference value.

The range of values aref ∈ [0.09, 2.40]% is investigated and reported along the
y-axis in figure 4(a–c). The performances achieved in the linear case are reported as
the lowest value along the y-axis of the maps in figure 4(a–c). The x-axis spans the
control penalty range l ∈ [100, 400].

An alternative choice of measure is the energy distortion E(t)c − E(t); we verified
that the resulting map is equivalent with that obtained with ∆E in (3.1). The norm ‖z‖
can be used in replacement of the perturbation energy E(t) in the ratio appearing in
(3.1). Although the quantity in (3.1) does not provide a measure of the delay of the
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FIGURE 4. The performances of the controllers L9 (a), L17 (b) and S17 (c) are compared
for different control penalties l and reference amplitude aref . The maps depict ∆E, given by
(3.1). The value ∆E = 0 marks two regions in each map: in the lower area, where ∆E < 0,
the controllers are effective; when ∆E > 0, controllers do not provide a correct action. The
dashed line indicates the value l corresponding to the best performance for each aref . The red
dots indicate the values (l, aref ) used for the analysis of the transition delay in § 3.3.



300 O. Semeraro, S. Bagheri, L. Brandt and D. S. Henningson

transition to turbulence, we assume that a drastic reduction of the perturbation energy
results in a delay of the transition processes.

As shown in figure 4(a), for the disturbance amplitudes aref ≈ 0.25 % the controller
L9 results in ∆E < 0. Note that in this range, the best performance is achieved for
values of l that are progressively higher (for instance, compare the linear limit l= 150,
with the l at aref ≈ 0.25 %). Thus, the best value for the control penalty l increases
with the amplitudes. This is in contrast to the linear setting, where a smaller control
cost results in a better control performance. The trend can be attributed to the fact that
high actuation amplitudes trigger nonlinear effects more quickly than low amplitudes.

A similar map characterizes the controller L17 (figure 4b), where the spacing among
the elements in the spanwise direction is ∆z = 10. However, considering the contour
level of ∆E(aref , l), it is possible to note an improvement of the overall performance.
Also for this case, we observe that higher values of the control penalty l are needed
when higher amplitudes are considered.

Finally, the performance of the configuration S17 is analysed in figure 4(c). The
different layout of the actuators, characterized now by a smaller spatial distribution,
m = 17 and ∆z = 10, results in a significant improvement of the performance. The
operating region extends up to aref ≈ 1.50 %; in the range 0.40 % < aref < 1.50 % we
can identify an interval of values l > 150 where the controller is still effective; vice
versa, a stronger control action (l < 150) results in a quick decay of the performance
and possibly early transition to turbulence. Note that in this same range of amplitudes
for the controllers L9 and L17 can not lead to an energy damping. The performance
of the configuration S17 gradually decays when increasing the amplitude up to
aref ≈ 1.50 %, until the controller is not effective anymore and secondary instabilities
promote an increase of the perturbation energy.

Note that the performance of the controller S17 is characterized by a good
agreement with the linear prediction up to aref ≈ 0.10 %; this is not the case for the
controllers L9 and L17 (figure 4a–b). This improvement is mainly related to a reduced
effect of the three-dimensional action of the controller S17 on the nonlinearities of the
flow (see § 4).

In conclusion, we observe that the actuation has a strong influence on the achievable
performance of the optimal controllers designed for our configuration. In particular,
what is significant is the role of the spatial distribution of the localized forcing and its
influence when higher amplitudes are considered. A different spatial distribution of the
actuator forcing, characterized by a smaller spatial support, results in a controller more
effective over a wider range of amplitudes.

3.3. Transition delay
In this section, we explore the possibility of using the controllers to delay

the transition to turbulence. We consider long computational box [Lx,Ly,Lz] =
{2000, 30, 256}, to reach turbulence before the outflow, while having a laminar flow
at the actuator location. For a qualitative analysis of the results, we refer to figure 5
where the time evolution of the amplitude of a TS wavepacket with aref = 0.21 %
is shown; the control penalty is chosen by considering the parametric analysis in
figure 4(a–c). The uncontrolled wavepacket is depicted at t = 1000 and t = 1500
in figure 5(e,b), respectively. The wavepacket is still clearly laminar and extends in
the spanwise direction while propagating downstream. This stage of the evolution
is characterized by exponential growth until the disturbance breakdowns to a fully
three-dimensional structure, where higher wavenumbers are quickly triggered; for the
chosen amplitude, a turbulent spot is observed in the computational box at t > 3000.
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FIGURE 5. Spatial and temporal evolution of a TS wavepacket. In (a) the black solid line
depicts the evolution in time of the amplitude a(t) for the uncontrolled case. The lines with
markers show a(t) when the control is active for the cases in table 3: L9 (−4−), L17 (−©−)
and S17 (−�−). Frames (b–g) show instances from the flow field; the isosurface corresponds
to 30 % of the maximum of the streamwise velocity component (grey) and minimum velocity
(black) of the corresponding uncontrolled case. The packets are shown from the top, in the
x–z plane; the direction of the flow is oriented in the upright direction. The uncontrolled
configuration is shown in the leftmost frames (e) and (b), corresponding to t = 1000 and
t = 1500, respectively. For the same time instants, the action of the controller L9 is shown in
the middle frames (f ) and (c), while the rightmost frames (g) and (d) depict the action of the
controller S17.
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Case Penalty Transition delay
l ∆x ∆x/Lx ∆Rex

L9 350 250 15 % 2.5×105

L17 300 200 12 % 2.0×105

S17 150 300 18 % 3.0×105

TABLE 3. Test cases for the analysis of the transition delay. The performance is compared
considering the achieved transition delay in terms of ∆x, the ratio ∆x/Lx and ∆Rex. Here,
Lx = 1700 corresponds to the physical length of the domain along the streamwise direction,
i.e. without considering the fringe region.

The amplitude curves when the control is active are shown in the same figure with
marked solid lines; the three configurations introduced in table 2 are compared. For
each of them, the optimal control penalty l is chosen according to the results of the
parametric analysis in figure 4; these values are reported in table 3.

As already observed in figure 3, the action of controller L9 is characterized by
an initial growth of the amplitude when the actuator is active. This initial increase
combined with the nonlinearities of the flow is responsible of the worsening of
performance; indeed, by comparing figures 3 and 5(a) in the interval t ∈ [0, 2000],
we observe a deviation from the linear behaviour and a less efficient damping of
the perturbation energy. The presence of higher amplitudes in the controlled flow is
observed to be crucial in the nonlinear simulations and represents a limitation for the
performance of the controller.

The best performance is achieved for the configuration S17 in terms of amplitude
damping and transition delay. The disturbance traverses the array of actuators after
approximately 1000 time units. Since the action of the controller is limited only to the
region close to the actuators, where the flow is still locally unstable, the perturbation
begins to grow again further downstream, corresponding to t ≈ 1500 and eventually
triggers transition. In this case, we observe a smoother damping of the amplitude
during the initial phase of the control action. Comparing the spatial structures of the
disturbance with and without control in figure 5(b–g), we observe that the controller
changes the structure of the perturbation. The behaviour of the controllers strongly
differs. When m = 9, the original nearly two-dimensional wavepacket is sliced into a
more complicated three-dimensional structure as it traverses the actuators, as shown
at t = 1000 and t = 1500 in the insets f and c. In a purely linear analysis a
three-dimensional wavepacket is less unstable (i.e. has a smaller growth rate), but
in a nonlinear regime it requires a lower threshold to trigger turbulence (Schmid
& Henningson 2001). To achieve transition delay, it is therefore essential that the
controller L9 acts in the linear regime of the transition process. When a shorter
distance among the actuator is chosen, ∆z = 10 as in S17, the structure of the
wavepacket is not characterized by strong three-dimensionality (compare figure 5f,g);
indeed, the structure preserves the two-dimensional coherence along the spanwise
direction. Within the linear framework, this feature makes the controller less efficient
than the L9 setup, (see § 3.1). However, the controller action is less influenced by
the nonlinear effects and closer to the linear prediction at higher amplitudes. In other
words, shorter spanwise scales are more beneficial to delay transition as they introduce
less dangerous perturbations. This effect is achieved by combining a smaller ∆z with
a smaller width of the distribution of the volume forcing. Further downstream of



Transition delay in a boundary layer flow using active control 303

 

 
No control
L9
L17
S17

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1100 1200 1300 1400 1500 1600
0.2

1.0

cf

x

FIGURE 6. The skin friction coefficient cf versus the streamwise direction x for a TS
wavepacket without control (solid black line) and with control (lines with markers, see the
legend). The parameters of the controlled cases are reported in table 3.

the actuation array, the perturbation gradually recovers its spanwise coherence, which
leads to renewed growth of the TS wavepacket for both the controlled case L9 and
S17.

The skin friction coefficient cf = ∂u/∂y|y=0 as a function of the downstream distance
is shown in figure 6; the cf is quantified by averaging along the spanwise direction
and considering the time-averaged mean along x by following the time propagation of
the perturbation. The sudden increase of cf indicates the onset of transition (Schmid
& Henningson 2001). The TS wavepacket triggers the onset of transition at x ≈ 1400.
For the compensated cases, we observe that transition is delayed by approximately
∆x = 300, corresponding to Rex ≈ 3.0 × 105, when the controller S17 is applied. For
the case L9, ∆x = 250, while for L17, the delay is ∆x = 200. Thus, the higher
disturbance amplitudes observed in figure 5(a) for L17 promote earlier transition to
turbulence than for L9.

4. Analysis of the controlled flow

The three-dimensionality of the localized spanwise arrangement of the actuators
introduces new disturbances in the field. Since we are mainly interested in
understanding the underlying physics of the new structures introduced, we perform
an amplitude expansion of the flow fields at a fixed time. The following expansion is
applied to the perturbation velocity field,

u(t, a0j)
′ =

n∑
k=1

ak
0jũk(t)+ O(an+1

0j ), j= 1, . . . , n. (4.1)

Here, a0j represents the initial amplitudes of the jth perturbation velocity field u(t)′.
The expansion basis is composed by n flow fields ũk(t). The first order n = 1
corresponds to the solution of the linearized system, while n > 1 is related to
perturbations triggered by nonlinear interactions. Neglecting higher-order terms, the
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uncontrolled case (a,d) is compared with the controlled case L9 (b,e) and S17 (c,f ). The
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expansion in (4.1) can be written in matrix form as
(a01)

1 (a01)
2 . . . (a01)

n

(a02)
1 (a02)

2 . . . (a02)
n

. . . . . .
. . . . . .

(a0n)
1 (a0n)

2 . . . (a0n)
n



ũ1(t)
ũ2(t)
. . .

ũn(t)

=

u(t, a01)

′

u(t, a02)
′

. . .

u(t, a0n)
′

 . (4.2)

The flow fields ũk(t) are the unknowns of the linear system and represent the
expansion-basis at a given time t. The column-vector on the right-hand side consists
of n velocity fields u(t, a0j)

′, computed by running several simulations with different
values of a0 (see Henningson, Lundbladh & Johansson 1993, for more details).

We choose n = 4, with amplitudes defined at the initial instant t = 0 in the interval
a0 = {0.20, 5.0} × 10−2 %; the spatial location of the packet corresponds along the
streamwise direction at xw ≈ 50. This range of amplitudes corresponds to the range
aref = {0.05, 0.22}% at the actuator location (for the uncontrolled configuration). In
the following, we analyse the linear part n = 1 and the nonlinear interactions n = 2.
The focus is on the analysis of those interactions that are responsible for the deviation
from the linear behaviour and the worsening of performance of the controller. In
figure 7, the streamwise velocity component is analysed at t = 1000 in the α–β plane
for the first two orders n for the uncontrolled case and the controlled cases based
on the configuration L9 and S17; α = 2πNx/Lx is the streamwise wavenumber and
β = 2πNz/Lz the spanwise wavenumber of the perturbation. The order n = 1 is further
investigated in figure 8, where a map in spectral space of the maximum amplitude over
α is analysed as a function of time t and the wavenumber β.



Transition delay in a boundary layer flow using active control 305

0.8

0.6

0.4

0.2

0

(× 102)
8 10 12 14

t
(× 102)

8 10 12 14

t
(× 102)

8 10 12 14

t

0

–2

–4

–6

0

–2

–4

–6

0

–2

–4

–6

(a) (b) (c)

FIGURE 8. Linear order n = 1 in the t–β plane. The maximum amplitude of the streamwise
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First, the uncontrolled flow is considered at t = 1000 in figure 7(a,d). The first
order n = 1 is dominated by the TS frequency α = 0.2 (figure 7a). The quadratic
nonlinear interaction, n= 2, introduces structures elongated in the streamwise direction
and characterized by β ≈ 0.1 (figure 7d).

The controller L9 is analysed in figures 7(b,e) and 8(b). As discussed in the previous
section, the three-dimensionality of the control action introduces new wavenumber
characteristics of the controller. Indeed, the spectrum of the first-order term (figure 7b)
in the expansion shows a clear damping of the energy at the frequency related to the
TS waves and the appearance of three-dimensional modes due to the localization of
the actuation. The first evidence of the controller footprint appears at t ≈ 800, with
a spanwise wavenumber βact ≈ 0.3 (figure 8b). At this instant of time, the leading
edge of the wavepacket approaches the actuator array at xφ = 400. Note that this
mode is related to the distribution of the actuators along the spanwise direction.
Indeed βact = 2π/∆z ≈ 0.3, where ∆z = 20; the streamwise wavenumber, α ≈ 0.14
(see figure 7b) is related to the streamwise wavelength of the perturbation produced by
the actuators. At a later time, we see the interaction with the wavepacket, producing
a damping of the amplitudes related to the TS wavepacket. The amplitude of three-
dimensional mode increases in the interval t ∈ [800, 1400] until it disappears once the
trailing edge of the wavepacket has propagated downstream of the actuator row B2, as
shown in figure 8(b).

The presence of the three-dimensional mode at the order n = 1 strongly affects
the higher-order terms. Indeed, the quadratic term n = 2 shows two peaks at β ≈ 0.1
(figure 7e); the first is characterized by a lower value of α and is related to the
nonlinearities of the uncontrolled flow. The second peak is related to the interaction
between the action of the controller and the uncontrolled flow. Moreover, it is observed
that in the nonlinear terms n > 1, higher-order spanwise modes β > 0.2 appear. Also
this region can be related to the geometry of the actuator adopted in L9; thus, the
propagation of energy to smaller spanwise scales appears to be due to the interaction
between the controller and the uncontrolled flow. This worsens the performance of the
controller for larger amplitudes of the initial disturbance and reduces the robustness of
the controller when a stronger controller effort is introduced. Also, note that for the
controller L9 the scales at n= 2 is one order of magnitude larger than the uncontrolled
case, see figure 7(e).
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As already argued from the analysis of the instantaneous flow and the behaviour of
the perturbation amplitude a(t) in figure 5, a different set-up can lead to substantial
improvements in the control action. The same analysis is now carried out for the case
S17, characterized by smaller actuators, m = 17 and ∆z = 10. In figures 7(c,f ) and
8(c), the behaviour of the controller S17 is described by following the same steps
undertaken in the previous paragraph. At order n = 1, the controller S17 generates a
three-dimensional mode at βact ≈ 0.6. The mode is depicted in 8(c), where the spectral
analysis is shown by using logarithmic contour levels in the t–β plane. The mode
related to the controller S17 is characterized by smaller amplitude over all the interval
of action, if compared with the controller L9. Indeed, the maximum amplitude for this
mode is attained at t = 1100 and it is around two or three orders of magnitudes weaker
than the maximum amplification of the TS wave.

The interactions appearing now at n = 2 are mostly related to the action of the
controller on the TS wave combined with the nonlinearities of the underlying flow.
The maximum amplitude of the modes at n= 2 for the controller S17 is 75 % less than
the L9 case and closer to the level of the original flow, as clearly shown by the direct
comparison of figure 7(e,f ).

5. Conclusions
We have demonstrated the possibility to delay the transition using an active

controller based on localized sensors/actuators by using numerical simulations. Three-
dimensional TS wavepackets with finite amplitudes have been considered; ROMs
based on balanced realization have been built and used for the design of optimal
controllers. The controller mitigates the disturbances amplitude when the nonlinear
flow is still laminar, resulting in a significant reduction of the perturbation energy and,
later, in a delay of the transition process.

LQG control design has been applied in combination with balanced realizations of
the linearized Navier–Stokes system. Due to the strong time delays characterizing the
system and the placement of the actuators and sensors, from the dynamical point
of view the closed-loop system corresponds to a disturbance feedforward controller,
a special case of output feedback control (see, e.g., Anderson & Liu 1989). This
configuration guarantees the best performance in terms of minimization of the norm
‖z ′‖ and damping of the perturbation energy amplitude (see Belson et al. 2013).

A parametric analysis of the performance has been carried out by varying the
controller effort and the finite amplitude of the perturbation for three different
configurations of actuators. The actuators’ array consist of localized elements,
distributed along the spanwise direction; each element is defined by a solenoidal
Gaussian-like function and different size for the spatial distribution of the forcing
were tested. A significant improvement has been found when actuators with a smaller
spatial distribution and a shorter distance among the elements of the array are used; in
this case, a good agreement with the linear prediction is observed below an amplitude
a < 0.1 % at the actuator location. The controllers designed using this configuration
are effective in delaying the transition to turbulence in presence of perturbation with
amplitudes up to a≈ 1 % at the actuator location.

We have also highlighted limitations related to the set-up. The localized actuation
introduces secondary instability modes that might promote transition to turbulence.
This effect is due to the excitation of higher-order harmonics, related to the three-
dimensionality of the controller action, combined with the nonlinearities of the
uncontrolled flow. This issue becomes particularly relevant when strong controller
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efforts are employed, i.e. for low values of the control penalty; in such conditions,
the behaviour of the controller quickly deviates from the linear prediction when higher
amplitudes are considered.

Based on this knowledge, a further improvement of the device can be achieved
by explicitly accounting for the nonlinear effects during the modelling process.
Modern developments in robust control theory may be used to rigourously incorporate
uncertainties in the design process during the modelling step (see, e.g., Hervé et al.
2012) or by introducing adaptive controllers (see, e.g., Sturzebecher & Nitsche
2003). The parametric analysis proposed in this work clearly suggests that a careful
analysis of the actuation, based on both linear and nonlinear simulations, is helpful
to determine the main parameters characterizing the geometry of a fully three-
dimensional configuration.
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Appendix. Control design

The control design adopted in this work is based on the reduce-then-design scheme.
Following this approach, the first step consists of building a ROM of the system. The
controller is designed using this model and applied in the numerical simulations.

This methodology is particularly convenient for large dynamical systems; indeed,
the system in (2.2) obtained by discretizing the linearized Navier–Stokes equations
is characterized by a number of degree of freedom of order ≈107–108. However,
among all of the possible flow disturbances, only a portion can be excited by
the inputs and observed by the outputs; in literature, these states are referred to
as controllable and observable (see e.g. Skogestad & Postlethwaite 2005). When
m, p� n, most part of the states is scarcely controllable and observable due to the
limited number of inputs and outputs; thus, it is possible to accurately reproduce
the input–output behaviour while disregarding these uncontrollable/unobservable states.
Balanced truncation provides a systematic way for performing such a reduction
(Moore 1981): the state vector of the system is transformed such that each element
is equally controllable and observable. Moreover, we rank the states from the most
controllable/observable to the least controllable/observable; the rank of the states
allows to truncate the states that do not influence strongly the input–output dynamics
of the system.

Balanced realizations can be obtained by using a system identification algorithm
referred to in the literature as ERA, see Juang & Pappa (1985). This algorithm is
an approximation of the balanced truncation; we briefly outline the main steps in
the following. First, we compute the Markov parameters of the system by simulating
the impulse response in each input Bi; by defining the propagator operator T = eA∆t,
we get

[
CB CTB CT 2B . . . CTmc+mo+1B

]
, (A 1)
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where B ∈ Rn×(d+m) and C ∈ R(k+p)×n are defined as

B= [B1 B2], C =
[
C1

C2

]
. (A 2)

The parameter d indicates the number of disturbance, while the quantities m, k and p
were already defined in the § 2. The terms CAjB ∈ R(k+p)×(d+m) are commonly called
Markov parameters; in (A 1), the Markov parameters are stacked at a sampling time
tj =M∆t, where M is an integer number.

The sequence of Markov parameters can be arranged into two Hankel matrices. The
first matrix is indicated as H0 ∈ Rmo×mc and reads

H0 =


CB CTB . . . CTmcB
CTB CT 2B . . . CTmc+1B
...

...
. . .

...

CTmoB CTmo+1B . . . CTmc+moB

 . (A 3)

The second Hankel matrix H1 ∈ Rmo×mc is obtained from H0 by cutting the row r = 1
and adding an extra row of Markov parameters[

CTmo+1B CTmo+2B . . . CTmc+mo+1B
]
, (A 4)

at r = mo. In general, these block matrices are rectangular and characterized by
constant skew-diagonals. A singular value decomposition (SVD) is performed such
that

H0 = UΣVH. (A 5)

The Hankel singular values (HSV) are contained in the diagonal matrix Σ ∈ Rmo×mc ;
the superscript (·)H indicates the transpose matrix. We keep the first r states, by
considering the first r columns of the matrices U ∈ Rmo×mo , the first r rows of
the matrix V ∈ Rmc×mc , and the first r rows and columns of Σ . The resulting
matrices U r ∈ Rmo×r, V r ∈ Rmc×r and Σr ∈ Rr×r are used for finding the ROM of
the system; indeed, the ROM is identified by the matrices Ar ∈ Rr×r, Br ∈ Rr×(d+m) and
Cr ∈ R(k+p)×r defined as

Ar =Σ−1/2
r UH

r H1V rΣ
−1/2
r , (A 6a)

Br = the first (d + m) columns of Σ−1/2
r V r, (A 6b)

Cr = the first (k + p) rows of U rΣ
−1/2
r . (A 6c)

The equivalence of this procedure with balanced truncation can be shown by directly
comparing the relations in A.6 with ROM obtained as projection onto a base of
balanced modes (see, for more details, Ma et al. 2011). The resulting ROM is in
time-discrete form, but it can easily converted in continuous-time form (Glad & Ljung
2001) for running the ROM next to the main DNS simulation.

The size of the models is chosen by considering the HSV. Indeed, using the HSV,
it is possible to evaluate a priori the theoretical error bounds when exact balanced
truncation is performed (see Skogestad & Postlethwaite 2005). By assuming that the
theoretical bounds of the exact balanced truncation are valid also for the approximate
case when the converged modes are considered (see Bagheri et al. 2009b), we kept an
error bound of order O(10−4) for all of the models used in this work.
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The controller is designed using the LQG approach on the low-order model of
dimension r. The design of the controller is split in two steps. For a complete
derivation of the LQG solution, we refer to Lewis & Syrmos (1995), Dullerud &
Paganini (1999) and Bagheri et al. (2009b). First, the controller is computed by
assuming full knowledge of the state and solving the associated algebraic Riccati
equation

0= AH
r X + XAr − XB2rR−1BH

2rX + CH
1rC1r. (A 7)

The Riccati equation results from the optimization problem based on the minimization
of the quadratic cost function in (2.4) applied on the ROM; the underlying hypothesis
is the time invariance of the system, i.e. we assume steady solution for T→∞. The
symmetric matrix X ∈ Rr×r is used for computing the control gain K ∈ Rm×r as

K =−R−1BH
2rX, (A 8)

where the diagonal entries of the matrix R ∈ Rm×m contain the control penalty l2.
The second step is the estimation. A dynamic system referred to as an estimator is

defined

˙̂ur(t)= Arûr(t)+ B1rw(t)+ B2rφ(t)− L(ψ(t)− ψ̂(t)), (A 9a)

ψ(t)= C2u(t)
′ + ηg(t), (A 9b)

ψ̂(t)= C2rûr(t). (A 9c)

The unknown estimation gain L ∈ Rr×p drives the system in (A 9a) such that the error
norm ‖ur− ûr‖2 is minimized. Thus, a second optimization can be cast, whose solution
is provided by a second Riccati equation

0= ArY + YAH
r − YCH

2rG
−1C2rY + B1rWBH

1r. (A 10)

Using the matrix Y ∈ Rr×r, the estimation gain L ∈ Rr×p assumes the form

L=−YCH
2rG
−1. (A 11)

Note that the matrices G ∈ Rp×p and W ∈ Rd×d are related to the covariances of
the input signals g(t) and w(t), respectively. The final output feedback controller
or compensator is obtained by combining the estimator and the controller; for the
separation principle, it can be shown that the two optimal solutions provide an optimal
compensator, guaranteed to be stable.

A final remark is related to the MIMO configuration. We followed the centralized
control approach, where all of the m actuators B2 are connected to all of the p
sensors C2. The centralized control consists of only one control-unit based on the
control gain K ∈ Rm×r and estimation gain L ∈ Rr×p. A second approach is the so-
called decentralized control; in the simplest case, each sensor C2 is connected to only
one actuator B2 (Glad & Ljung 2001; Skogestad & Postlethwaite 2005). Following
this approach, a number of control units that equals the number of sensor/actuator
pairs, m = p, is designed; despite the relative simplicity of the design, particularly
advantageous in practical implementations, the choice is prone to stability problems
that is not guaranteed in the closed loop. This is the case of our configuration;
indeed, the described decentralized approach was found to be unstable for the TS wave
controller (see Semeraro et al. 2011). Similar considerations are presented by Li &
Gaster (2006).
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