Manipulation of Flows

Shervin Bagheri Linné Flow Centre Mechanics, KTH, Stockholm

Docent Lecture, January 14, 2014

What is flow manipulation?

Control of inverted pendulum

Inverted pendulum instability in flows

Flow control is everywhere in technology

- mixing in multiphase systems
- ink-jet printers
- fuel injection in engines
- shape optimization in aerodynamics vortex generator/riblets/LEBUs additive polymers/micro-air bubbles control of thermoacoustic oscillations

and many more...

Most are based on trial and error

Most are suboptimal and not robust

For systematic, efficient, robust control we also need a **good model**

Example: inverted pendulum

Pendulum hinged at A is unstable

By developing systematic/efficient/robust control of this system we can...

also control unicycles, iBots, robots, Segways,...

We can control inverted pendulum actively

by feedback control

or passively

by adding walls yielding zero torque around A

Active and passive control in nature

Can passive appendages undergo an invertedpendulum instability?

Pop-up feathers of birds Schatz et al, AIAA 2004

Swallowtail butterfly Park et al, Exp. Mech. 2010

Marvelous Spatuletail www.bbc.co.uk/nature/life/ Marvellous_Spatuletail

Dandelion plant Burrows, New Phytol, 1975

Model of a body with a passive appendage

Incompressible stream (U) of fluid with viscosity (ν) past a twodimensional fixed cylinder of diameter (D) with a passive elastic filament of length (L) attached to its rear end.

A short/long filament flapping in a cylinder wake

Reynolds number:
$$Re = \frac{UD}{\nu} = 100$$

time = 264.55 L = 3.00

Drag and lift force on cylinder with/without filament

A free-to-rotate cylinder plus plate in a soap film

Observation of turn angle from experiments

Final analytical expression for the turn angle

For an back-flow region in the form of an ellipse we get

$$\theta_{1,2} = \pm \arccos\left(-\frac{q_b}{2q_a} + \frac{\sqrt{q_b^2 - 4q_a q_b}}{2q_a}\right)$$

where

$$q_{a} = \left[0.5 + \hat{B}(\hat{L})\right]^{2} \left(a^{2} - b^{2}\right),$$

$$q_{b} = 2b^{2}y_{0} \left[0.5 + \hat{B}(\hat{L})\right],$$

$$q_{c} = a^{2}b^{2} - b^{2}y_{0}^{2} - a^{2} \left[0.5 + \hat{B}(\hat{L})\right]^{2},$$

and

$$\hat{B}(\hat{L}) = \frac{1}{2} \left[\sqrt{\frac{4}{k+1}(\hat{L}^2 + \hat{L}) + 1} - 1 \right]$$

$$y_0 = 0.5 \cos \theta_0,$$

$$a = 0.5 \sin \theta_0,$$

$$b = 0.5 - y_0 + \hat{B}_{\text{max}}.$$

Determined by three parameters

Model developed by Ugis Lacis at KTH Mechanics

Estimating parameters from experiments

Estimates give the order of magnitude of the three parameters

Summary of today's lecture

- For systematic efficient flow manipulation we need a model for control
- A good model for control is a simple model (not Navier-Stokes) that isolates an underlying mechanism of a more complex phenomenon
- Complex systems can be decomposed to many simple models + interfaces between models
- Inverted pendulum instability is an example of simple mechanism incorporated in a complex nonlinear fluid-structure interaction problem
- How to find a model? Next Lecture!

If you can't come to next lecture you can talk to

Ugis Lacis

- Can model from "physical intuition"

Nicolo Fabbiane

- Can model from signal measurements of a fluid flow

Reza Dadfar

- Can model from huge numerical/experimental data