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factor, Floquet modes, and Koopman spectrum
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Many fluid flows, such as bluff body wakes, exhibit stable self-sustained oscillations
for a wide range of parameters. Here we study the effect of weak noise on such flows.
In the presence of noise, a flow with self-sustained oscillations is characterized not
only by its period, but also by the quality factor. This measure gives an estimation of
the number of oscillations over which periodicity is maintained. Using a recent theory
[P. Gaspard, J. Stat. Phys. 106, 57 (2002)], we report on two observations. First, for
weak noise the quality factor can be approximated using a linear Floquet analysis of
the deterministic system; its size is inversely proportional to the inner-product be-
tween first direct and adjoint Floquet vectors. Second, the quality factor can readily
be observed from the spectrum of evolution operators. This has consequences for
Koopman/Dynamic mode decomposition analyses, which extract coherent structures
associated with different frequencies from numerical or experimental flows. In par-
ticular, the presence of noise induces a damping on the eigenvalues, which increases
quadratically with the frequency and linearly with the noise amplitude. C© 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4895898]

I. INTRODUCTION

Some form of noise is always present in both numerical and laboratory experiments, and it is
important to be able to quantify and control its effects on a physical fluid system. When a flow is
dominated by a periodic event, such as vortex shedding behind a bluff body1 or acoustic oscillations
in an unstable combustor,2 the periodicity of the flow oscillations may be significantly effected by
very weak background noise. In the absence of noise, the state of an oscillator returns exactly to its
starting position after a period T = 2π /ω. However, in presence of noise, the trajectory fluctuates
around the deterministic limit cycle and we may have other periodic solutions because after one
period of oscillation the state does not return exactly to its initial position. As a consequence, the
oscillations will be uncorrelated after some time, a phenomenon called phase diffusion. In particular,
for small-amplitude noise, the time-correlation of the state decays at an exponential rate 1/τ . A noisy
limit cycle is therefore characterized by the two time scales T and τ , which are related to each other
by a measure called the quality factor

Q = 2π
τ

T
. (1)

This quantity estimates of the number of oscillations over which periodicity is maintained. When Q
is very large, the oscillator is able to “keep the time,” i.e., the effects of noise are not very significant.
When Q is small on the other hand, the oscillations will be uncorrelated after some time.

Phase diffusion has been reported before; for example, in the experimental investigation of
the effects of noise on thermoacoustic systems2, 3 (in Lieuwen,3 a phase drift of 45◦ was observed
after hundred cycles when the system was subject to noise). What has not been revealed before
for fluid systems is that this phenomenon depends—besides on the noise amplitude and limit cycle
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period—on the degree of non-normality4 of the linearized and deterministic Floquet system. As we
show herein and first derived in Gaspard,5

Q ≈ T 2

πε

1

|S| , (2)

where S is the “sensitivity” to white Gaussian noise of amplitude ε � 1. It can be shown5 that the
expression for S is given by

S = − fT
1 ũ(T )

fT
1 e1

, (3)

where ũ(T ) is obtained by integrating the linearized equations (presented in Sec. III C). The vectors
f1 and e1 are the first left (i.e., adjoint) and right eigenvectors of the linearized Floquet system.
In particular, if the system is highly non-normal then fT

1 e1 � 1, giving S � 1, e.g., a very large
sensitivity of the limit cycle period to noise. Thus, although phase diffusion is a stochastic effect
observed in the nonlinear system, Q is directly dependent on the local linear stability properties
of the deterministic limit cycle. This suggests that some oscillators may in fact be very sensitive
to external fluctuations, despite the common viewpoint that oscillators are “insensitive” to small
amplitude external forcing (in contrast to noise amplifiers).6

The second objective of this paper is to use the presented theory to show the effects of weak
noise on the spectrum of the Koopman operator.7, 8 This linear operator describes the evolution of
observables and provides a full description of nonlinear dynamics. In Figure 1, the spectrum of the
operator for an oscillator is shown in the absence (square symbols/red ) and presence (circles/black
symbols) of noise. In the former case, the eigenvalues are integer multiples of the fundamental
frequency, i.e.,

λm = imω,

where m = 0, ±1, ±2, . . . . As shown in Bagheri,9 these Koopman eigenvalues10 can be computed
using the dynamic mode decomposition (DMD) algorithm.11 The eigenvalues correspond to global
modes, characterizing the different harmonics of the oscillating flow. In the presence of noise
however, the eigenvalues can be approximated by

λm = imω − ε
|S|
2T

ω2m2 + O(ε2), (4)

where S was defined in (3). For a noisy dynamical system containing a limit cycle, the spectrum
(at the leading order) given by (4) becomes damped, i.e., the eigenvalues have a nonzero real part,
which is proportional to the sensitivity S and increases quadratically with higher harmonics of ω.
Since any experiment—numerical or laboratory—is subject to some level of random perturbations,
we may—in practice—expect damped Koopman eigenvalues more often than eigenvalues on the
imaginary axis (or on the unit circle). Thus, in the presence of noise one should observe parabolic
shapes in the spectrum, which happens to be the form of many DMD spectra in literature.12, 13 The
reason for damped eigenvalues is that the Koopman operator—which in the absence of noise is linear
advection operator—becomes a linear advection-diffusion operator in the presence of noise.

Noisy limit cycle
 Deterministic limit cycle

 

Spectrum of evolution operator

0

0

1 2-1-2

1/τ
Re(λ  )

x iω

Τ

1

m

FIG. 1. Koopman eigenvalues λm of an oscillator with period T = 2π /ω1 in the presence and absence of noise.
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The DMD algorithm has already established itself as a post-processing tool in the fluids com-
munity, but the contributed work on its theoretical basis, mathematical aspects as well as the physical
significance of the output of the algorithm have been few.9, 10, 14–16 The reason for the rapid success
of the method is its many advantages over both discrete Fourier decomposition (DFT) and Proper
orthogonal decomposition (POD); it does not require the self-sustained frequencies to be known by
the user, and it can even provide a growth/decay rate to each mode, i.e., the frequency is complex.
On the other hand, its main disadvantage is that the method is sensitive to noise-contaminated data.17

An understanding of the phase diffusion phenomenon provides a simple explanation for the noise
sensitivity of the algorithm.11 For oscillating flows that are subject to very small noise, discrete
samples of one realization may result in an output of DMD that is not unique, since each realization
has a slightly different period (due to phase diffusion). Instead, by using observables based on a col-
lection of trajectories (e.g., statistics), a unique and robust set of DMD eigenvalues should emerge.
Moreover, for an oscillator, the leading eigenvalue should have a decay rate that can be associated
with the quality factor Q.

The paper is organized as follows. In Sec. II, we provide a general formulation of noisy
oscillators and provide specific examples on the Stuart-Landau equation. In particular, we show that
a noisy limit cycle can be characterized by two time scales and that these times scales are captured
in the spectrum of evolution operators. Using computations, we show how the spectrum pertaining
to the limit cycle depends on the noise amplitude and on the frequency of the limit cycle. Finally,
the resemblance of the computed spectrum with a DMD spectrum from literature is discussed. In
Sec. III, we present the essential theory of Gaspard5 in a simplified form. The spectrum of a limit
cycle in the presence of weak noise is derived analytically and compared to the computed spectrum
in Sec. II. Moreover, this section shows how the sensitivity of the limit cycle to phase diffusion
depends on local linear analysis, and interprets this fact in the context of hydrodynamic stability
theory. Finally in the Appendix, we provide a short note relating the current work to the structural
sensitivity analysis of earlier work.18

II. NOISY OSCILLATORS

A. Evolution of the state

Consider a nonlinear system subject to m stochastic excitations,

∂u
∂t

= f(u) + √
ε

m∑
k=1

gk(u)ξ̂k(t), (5)

where u ∈ Rn is the flow field (or state) and f(u) represents the discretized right-hand side of the
Navier-Stokes equations. We assume that the vector fields f(u) and gk(u) do not depend explicitly
on time. Moreover, ε is the forcing amplitude and ξ̂k(t) is assumed to be a Gaussian white noise,
satisfying

〈ξ̂k(t)〉 = 0, 〈ξ̂k(t)ξ̂l(t
′)〉 = δklδ(t − t ′),

where k, l = 1, . . . , m and the angled brackets denote the mean value. We define the time-forward
mapping 
t by u(t) = 
tu0, which provides the deterministic flow at time t issued from the initial
flow field u0—essentially a Navier-Stokes solver. We assume that the deterministic system (ε = 0)
contains a limit cycle19 of period T, i.e.,

us = 
kT us, k = 0,±1,±2, . . . ,

where us is a point on the limit cycle.
In this paper, we will illustrate the effect of weak noise on a simpler system than the Navier-

Stokes equations. Close to the critical threshold for Hopf bifurcation (e.g., Re ≈ 50 for a cylinder
flow), the state evolves in a slow one-dimensional center manifold and can be described by a complex
amplitude z(t) that satisfies the Stuart-Landau (SL) equation. In the presence of noise, the SL equation
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FIG. 2. In (a) the limit cycle is shown in state-space (z). In (b) and (c), the time evolution of the amplitude (r) and the phase
(θ ) of the state are shown, respectively. The gray line (red) shows the deterministic limit cycle, whereas the black line shows
a noisy limit cycle. Parameters for (6) are μ = 1, β = 0.3, γ = 0.9, and ε = 0.01.

reads

∂z

∂t
= (μ + iγ )z − (1 + iβ)|z|2z + √

εη̂, (6)

where ε � 1 is the amplitude of the Gaussian white stochastic term η̂(t) (with zero mean and unit
variance). In Secs. II B and II C, it will be more convenient to work with the SL equation (6) in polar
coordinates z(t) = r(t)exp (iθ (t)),

∂r

∂t
= μr − r3 + √

ε [cos(θ )η̂r + sin(θ )η̂i ] , (7)

∂θ

∂t
= γ − βr2 +

√
ε

r
[− sin(θ )η̂r + cos(θ )η̂i ] , (8)

where η̂ = η̂r + i η̂r .
For μ > 0 and in the absence of noise (ε = 0), the state evolves on the limit cycle

r = √
μ, θ (t + kT ) = θ (t),

where k = 0, ±1, ±2, . . . , is the repetition number of the prime period T = 2π /ω and ω = γ − μβ.
However, in presence of noise (ε �= 0), we may have other periodic solutions because after one period
of oscillation the state does not return exactly to its initial position. In Figure 2(a), the deterministic
(gray/red) and noisy (black line) limit cycles are compared in state space. One observes that the
noisy trajectory fluctuates around the deterministic limit cycle. These noisy limit cycles represent
periodic solutions with a slightly different period, Tnoise = T + δt. Figures 2(b) and 2(c) compare the
amplitude and the phase of limit cycles in the time domain, where it is evident that the main effect
of noise is a drift of the phase.

Since the trajectory of a noisy cycle fluctuates randomly around the deterministic limit cycle, it
is meaningful to characterize the expected value of the random state. Figure 3 shows the evolution
of the expected value of the state, E[z], for ε = 0.01. The expected value has oscillations of period
T = 2π /0.6 (Figure 3(a)) and shows an exponential decay in time at the rate 1/τ = −0.0054
(Figure 3(b)). In Subsection II B, we show that these two time scales are captured in the spectrum
of a linear operator.

B. Evolution of the expected value of observables

Consider an observable of the state a(u) and define the function v(u0, t) as its expectation value,
i.e.,

v(u0, t) = E [a(u) | u(0) = u0] .
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FIG. 3. Top frame (a) shows the time evolution of the real part of the expected value E[z] for ε = 0.01. Black line bottom
frame (b) shows that absolute value on a logarithmic scale. Gray (red) shows the exponential function with decay rate (σ 1)
given by the leading eigenvalue of A. Parameters of the SL equation are the same as in Figure 2.

Then one may show20 that v(u, t) (dropping the subscript 0 on u) satisfies

∂v(u, t)

∂t
= fi (u)

∂

∂ui
v(u, t) + εQi j (u)

∂2

∂ui∂u j
v(u, t) ≡ Av(u, t), (9)

with v(u, 0) = a(u) and

Qi j (u) = 1

2
gki (u)gk j (u)

is a positive-definite matrix of diffusion. Here, we have the written vector the fields f and g in (5)
with a tensor notation.

Thus, whereas the time evolution of the state u(t) is governed by a nonlinear finite-dimensional
system (5), the time evolution of the expected value of an observable function of the state v(u, t) is
governed by a linear convection-diffusion partial differential equation (9).21 The above PDE induces
the evolution operator

v(u, t) = eAt a(u). (10)

For a deterministic system (ε = 0), the operator becomes hyperbolic with characteristics as the
integral curves of (5), i.e.,

v(u, t) = a(
t u).

Thus, for a noise-free system, v(u0, t) is the observable a(u) evaluated on the point u(t) of the
trajectory starting from u0. This is by definition the Koopman operator.10, 22 As stated earlier, in the
presence of noise, v(u0, t) is the expected value of the observable at the point u(t) of the trajectory
starting from u0. We may thus consider the evolution operator exp(At) as the Koopman operator
with respect to a noisy system.

Next, consider the spectrum of A, which for a noisy limit cycle consists of discrete points only.23

Let the sequence of complex numbers {λm} be the eigenvalues of A and {ψm(u)} the corresponding
eigenfunctions, i.e.,

Aψm = λmψm,
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where m = 0, 1, 2, . . . . The expected value of an observable expanded in {ψm} is then given by,

v(u0, t) =
∞∑

m=0

αmeλm tψm(u0), (11)

where αm are the expansion coefficients.

1. Spectrum of SL equation

Before we derive λm for a general noisy oscillator, let us solve for the eigenvalues {λm}
associated with the SL equation. Equation (9) for the SL equations (7) and (8) takes the form

∂v

∂t
= (μr − r3)

∂v

∂r
+ (γ − βr2)

∂v

∂θ
+ ε

[
Qrr

∂2v

∂r2
+ Qrθ

∂2v

∂θ∂r
+ Qθθ

∂2v

∂θ2

]
, (12)

where Qrr = (cos 2(θ ) + sin 2(θ )r−2)/2, Qrθ = (sin (2θ ) − sin (2θ )r−2)/4, and Qθθ = (cos 2(θ )r−2

+ sin 2(θ ))/2. We discretize24 the right-hand side of (12) and solve an eigenvalue problem of the
discretized operator. The global spectrum of the discretized operator is shown in Figure 4. The
spectrum is global since it characterizes the entire phase-space of the nonlinear system, i.e., it
is not based on a linearization around the periodic orbit. The branches marked in circles (red) are
associated with the limit cycle at r = √

μ, whereas the squares (blue) are associated with the unstable
equilibrium at r = 0.25

In the remaining part of this paper, we focus our attention on the leading eigenvalues inside
the gray region in Figure 4(a) (shown in close-up in Figure 4(b)). The eigenvalues form a distinct
parabolic branch and all are stable except one, which is on the imaginary axis (λ0 = 0). The expected
value of an observable expanded in {ψm} is

v(r0, θ0, t) = α0ψ0 + α1eλ1tψ1 + c.c. + . . . , (13)

where αm are the expansion coefficients and c.c. denotes complex conjugate terms. We thus observe
that the expansion term corresponding to λ0 = 0 is the asymptotic mean value of the observable
and the remaining terms reflect the exponential decay towards this limit. The damped eigenvalues
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1

−6 −4 −2 0 2 4 6
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−0.2

−0.1

0

0.1(a) (b)

FIG. 4. Spectrum of the evolution operator A with respect to the SL equation. Parameters are the same as in Figure 2. Left
figure (a) shows the leading 380 eigenvalues. Circles (red) and squares (blue) correspond to dynamics related to the limit
cycle and the unstable fixed point, respectively. Right figure (b) shows the first branch of spectrum, where the black line is
parabolic fit (Eq. (16)).
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FIG. 5. First parabolic branch of the global spectrum of the SL equation corresponding to the observable dynamics of the
limit cycle. Left figure (a) shows how the damping of eigenvalues increases linearly with the noise amplitude ε (frequencies
are left unmodified). Right figure (b) shows that damping increases quadratically with a shift in limit cycle frequency β.

observed in the presence of noise are caused by the diffusion term in A (second-order derivative in
(9)). This diffusive process is not related to the viscous diffusion of the flowing fluid. The decay is
for long times dominated by the first eigenvalue

λ1 = iω1 + σ1, (14)

which for SL spectrum shown in Figure 4 has the value

λ1 = i0.60 − 0.0054.

These values match the oscillations T = 2π /0.6 and the decay rate 1/τ = −0.0054 reported in
Figure 3. We thus observe that the time scales τ and T are dominated by the real and imaginary parts
of λ1, respectively. In particular, the quality factor (1) can be approximated as

Q = 2π
τ

T
≈ |ω1|

|σ1| . (15)

To investigate the first parabolic branch further, we vary the noise amplitude ε and the fre-
quency ω of the limit cycle. We observe that the eigenvalues increase linearly with ε (Figure 5(a))
and quadratically with ω (Figure 5(b)). Indeed, as ε → 0 the parabolas approach the Koopman
eigenvalues. These observations suggest that we can fit a function to the first branch of eigenvalues
in the form,

s(ω, ε) = imω − ε

2
κm2ω2, (16)

where m = 0, ±1, ±2, . . . and κ is some constant. The black line in Figure 4(b) shows the fit with
a black solid line. Comparing the parabolic fit (16) of the SL equation to the formula of a general
noisy oscillator (4), we observe that κ = |S|/T, where S is given by (3). This relation is derived in
Sec. III.

C. Dynamic mode decomposition

As shown in Bagheri,9 the Koopman eigenvalues of oscillators may be approximated using the
DMD algorithm11 (the algorithm is detailed in Schmid11 and not given here). Thus, as expected,
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FIG. 6. The top frame shows four snapshots of a helium jet; it uses Schlieren techniques to visualize the dynamics of the
fluid structure; thus, only a scalar field—proportional to the density gradient and quantified by its location on a grey-scale
colormap—is being processed. The first snapshot (most left) also contains the size and location (box marked with an arrow)
of the interrogation window for the subsequent DMD-analysis. Note from this snapshots that the flow is turbulent away from
the nozzle, but initially shows very well structured coherent motion, that is also oscillatory in time. The bottom frame in the
figure shows the spectrum extracted using the DMD algorithm. Figure taken from Schmid et al.12 Reprinted with permission
from P. Schmid et al. Copyright 2009 Springer Science and Business Media.

the eigenvalues associated with the deterministic limit cycle obtained from the DMD in Bagheri9

where all located on the imaginary axis. However, in practice and often for experimental data,
the DMD spectrum shows damped eigenvalues. We show in Figure 6 a typical DMD spectrum
found in literature.12 The spectrum shows the trait of an advection-diffusion operator, i.e., parabolic
branches are clearly observed. These parabolic shapes are indeed very similar to the spectrum of
a noisy limit cycle as outlined in Sec. II B. In the context of the theory presented herein, one may
hypothesize that the parabolic branches observed in DMD spectra are due to the presence of noise.
In that case, one would further expect that the decay rate of the first eigenvalue in the spectrum
provides an estimate of the quality factor. However, whereas the parabolic shapes in the spectrum of
A defined by (10) are related to expected values of an observable, classical DMD is often based on
sampling directly the observable (not its statistics). As shown in this paper, for a noisy and nonlinear
oscillator, each realization of a trajectory (even with the same initial condition) is different, and
hence the DMD spectrum will vary for different realizations of the same system. One way to make
the algorithm robust and the spectrum unique is to use statistical observables, such as expectation
values and correlation functions. Using such a probabilistic approach, one is effectively investigating
the evolution of a set of trajectories. One effort to generalize DMD to datasets based on more than
one trajectory is the recent DMD theory presented in Tu et al.,16 which provides Ritz vectors and
values of multiple trajectories.

III. WEAK-NOISE THEORY

This section provides the necessary theory to derive Eqs. (3) and (4). In places where lengthy
but rather straightforward derivations are required, we refer to other papers. This is because the
key points of this paper are the consequences of weak-noise theory linking quality factor, Floquet
analysis and Koopman spectrum. The main theory in a more general and rigorous form can be found
in Gaspard.5 Specifically, the structure of this section is as follows. The first part shows that Q in (1)
may be approximated by the first eigenvalue λ1 of an evolution operator. Moreover, Q depends on
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the noise amplitude ε, the period T, and the sensitivity S. The key step is the derivation of a particular
Hamilton-Jacobi equation. The associated Hamilton’s equation of motion provides a deterministic
nonlinear system of twice the size of the stochastic system (5). These equations describe each noisy
limit cycle as a deterministic cycle in an extended phase space. The second part of this section shows
expression (3), i.e., that S is composed of Floquet vectors of the linearized deterministic dynamics.

A. The Fokker-Planck operator

In this section, we turn our attention to the Fokker-Planck operator that governs the time
evolution of the probability density function ρ(u, t).26 For the (Ito) stochastic equation (5), it takes
the form

∂ρ(u, t)

∂t
= − ∂

∂ui
[ fi (u)ρ(u, t)] + ε

∂2

∂ui∂u j

[
Qi j (u)ρ(u, t)

] ≡ A†ρ(u, t). (17)

Here, A† is the adjoint of A with respect to the inner-product,

〈q, ρ〉 =
∫
Rn

q(u)ρ(u)du.

As a consequence the two operators have the same spectrum and the eigenfunctions (ψ̃n) of A† are
bi-orthogonal to the eigenfunctions of A (ψm),

〈ψm, ψ̃n〉 = δmn.

For a system with a limit cycle, A† is stable (e.g., no eigenvalues with positive real part); this means
that as time goes on, the probability density function ρ(u, t) will reach a stationary distribution
ρ∞(u), which is non-zero only in an neighborhood of the deterministic limit cycle, i.e.,

lim
t→∞ ρ(u, t) = ρ∞(u). (18)

In order to find an analytical value of λ1, we will need to consider the autocorrelation function of
two observables a(u) and b(u) along the noisy trajectory u(t) (see, for example, Ch. 7 in Risken26),

Cab(t) =
∫

a(u)eA
†t b(u)ρ∞(u)du. (19)

Using the left and right eigenfuntions of the evolution operator as well as the invariant density, we
can form a generalized expansion of the autocorrelation function

Cab(t) =
∞∑

m=0

αmeλm tβm = C0 + C1eλ1t + . . . ., (20)

where αm = 〈ψ̃m, a〉,

βm =
∫

ψ∗
m(u)b(u)ρ∞(u)du,

and Cm = αmβm. Any correlation function is thus composed of a steady term (C0) and exponential
terms Cm. In particular, the temporal behavior of the autocorrelation function is, for long times,
dominated by the leading non-zero eigenvalue λ1.

B. Quality factor in terms of first Fokker-Planck eigenvalue

In the weak-noise limit ε → 0, an approximation of the first eigenvalue λ1 (14) can be found
analytically. One may write27 the density in the form

ρ(u, t) = exp

(
−1

ε
φ0(u, t)

)
. (21)
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Inserting the density into (17), we get

∂φ0

∂t
+ H (u,∇φ0) = 0, (22)

with the particular Hamiltonian28

H (u, p) = fi (u)pi + Qi j (u)pi p j . (23)

Here φ0(u, t) can be interpreted as Hamilton’s principal function and p(t) = ∇φ0 as the momenta
canonically conjugated to the state—or as the adjoint variable from an optimization viewpoint. To
obtain the solution to (22), we may solve the associated Hamilton’s equations of motion,

∂ui

∂t
= +∂ H

∂pi
= fi + 2Qi j p j , (24)

∂pi

∂t
= −∂ H

∂ui
= − ∂ f j

∂ui
p j − ∂ Q jk

∂ui
p j pk . (25)

In the weak-noise limit, we may thus approximate the stochastic system (5), with a determinis-
tic dynamical system of twice the size. The first equation is the nonlinear Navier-Stokes equa-
tions but with a deterministic forcing term 2Qij(u)pj(t). The second equation for p(t) is composed
of the linearized adjoint Navier-Stokes equations and a quadratic nonlinear term. When p = 0,
Eqs. (24) and (25) reduce to the deterministic equations,

∂u
∂t

= f(u) for p = 0.

When p �= 0, the pair of equations may be interpreted as extending the original state space to
accommodate for limit cycles of slightly different periods due to the presence of weak noise. Note
that the Hamiltonian form does not arise because of the mechanics of the system, but is an artifact
of the leading approximation of noisy dynamics.

Moreover, H does not explicitly depend on time,

d H

dt
= 0 → H (u, p) = E,

where E is the “pseudo-energy,”5 which is constant along trajectories of (u, p).

1. Approximation of λ1 in the weak noise limit

Consider a point on the limit cycle us that has been reached after time kT. It can be shown (see
Eq. (90) in Gaspard5) that the lowest non-zero term of the Taylor expansion of φ0(u, t) around us

and time kT is

φ0(u, t) ≈ − 1

2k|S| (t − kT )2, (26)

where S is

S = ∂T

∂ E
.

It will be shown in Sec. III C that S is given by expression (3) and has the interpretation of “sensitivity”
of the limit cycle to noise, since its size is determined by the degree of non-normality of the linearized
system.

Inserting (26) into (21), we get an approximation of the probability density function (21) in the
form

ρ(t) ∼ exp

[
− (t − kT )2

2kε|S|
]

. (27)

Note that this Gaussian depends only on time; it captures only the flow direction (longitudinal
direction of the limit cycle). It can be shown (see Eq. 88 in Gaspard5) that this term dominates
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over the Gaussian term in transverse component of the limit cycle time goes on. Expression (27)
suggests that recurrences of the noisy system are distributed randomly around the period T of the
deterministic limit cycle. In particular, we may note from (27) that

mean : 〈t〉 ≈ kT, (28)

variance : 〈(t − kT )2〉 ≈ εk|S|, (29)

which gives the following important insights:

(i): variance is proportional to noise amplitude (ε)
(ii): variance increases with the repetition number k
(iii): variance is proportional to the “sensitivity” |S|.

The first point simply asserts that the Gaussian becomes sharper with smaller noise amplitude.
The second point is phase diffusion: the width of the Gaussian distribution becomes wider for each
repetition. This means that for each repetition, the likelihood increases that the noisy flow returns
to a position far from the point which the deterministic point would return to. The third point states
that the variance—thus phase diffusion—increases with the non-normality of system |S|.

Consider now the auto-correlation function (19), which in the presence of weak noise has a
probability function of Gaussian type according to (27). As t increases, the probability density
function is composed of increasingly wider Gaussian pulses. Using a Fourier transform in time, it
can be shown (see Eqs. (56)–(59) in Ref. 29) that

Cab(t) ≈ C0 + |C1| exp

(
i
2π

T
t

)
exp

(
−ε|S|

2T

(
2π

T

)2

t

)
, (30)

where C0 and C1 are some constant coefficients. Comparing to (20), we can identity

ω1 = 2π

T
and σ1 = −ε|S|

2T

(
2π

T

)2

. (31)

In summary, (31) is the first eigenvalue (m = 1) of the more general expression (4). We observe
that due to the presence of weak noise, we have a negative real part of the first eigenvalue, but the
frequency is left unmodified. The reason is that the leading non-zero Taylor expansion term of φ0

is quadratic, with the effect that phase diffusion results only a damping effect, and not a frequency
shift.

In Table I, the real part of the leading eigenvalue σ 1 is listed for limit cycles of the SL equation
with different periods. The difference between the theoretical estimate of σ 1 and the numerically
approximated (see Figure 4) decay rate is O(ε2).

TABLE I. Comparison between theoretically estimated decay rate σ 1 and numerically computed decay rate for limit cycles
of different periods T. The error between theory and computations is O(ε2). Moreover, the decay rate increases linearly with
the sensitivity S.

T S σ 1 (num) σ 1 (theory)

6.9813 8.6189 −0.0050 −0.0050
7.4406 10.4505 −0.0050 −0.0050
7.9646 12.8765 −0.0051 −0.0050
8.5680 16.1520 −0.0051 −0.0051
9.2703 20.6721 −0.0052 −0.0051
10.0980 27.0697 −0.0054 −0.0052
11.0880 36.3978 −0.0056 −0.0053
12.2932 50.4912 −0.0058 −0.0054
13.7924 72.7303 −0.0060 −0.0055
15.7080 109.6457 −0.0063 −0.0056
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FIG. 7. The deterministic limit cycle (black) lives in the p = 0 subspace and has zero pseudo energy. Noisy limit cycles
(dashed/red) are described by extending the state space using p and a measure of their deviation from the deterministic cycle
is given by E.

C. Quality factor in terms of Floquet eigenvectors

The pseudo energy E is constant on each noisy trajectory; it can be regarded as a measure of
deviation of noisy trajectory from its deterministic prediction (see Figure 7). The derivative ∂ET,
written as

δT = ∂T

∂ E
δE, (32)

shows that if ∂ET is large, then a small perturbation of pseudo energy gives a large deviation of
the deterministic time period. In this section, we linearize the Hamilton equations (24) and (25)
around the noiseless limit cycle followed by a transformation of the system in the basis spanned by
eigenvectors of the linear system. By forming the inner product with the left eigenvector we arrive
at expression (3).

1. Linearized Hamilton-Jacobi equations

In order to find an explicit expression for ∂ET, we consider the linearized Hamilton’s equations
about an arbitrary point (u, p),

∂ ũi

∂t
= Ai j ũ j + 2Qi j p̃ j , (33)

∂ p̃i

∂t
= −A ji p̃ j , (34)

where Aij(u) = ∂fi(u)/∂uj denotes the stability matrix. On the deterministic limit cycle, the stability
matrix is T-periodic, i.e., A(t) = A(u(t)) = A(t + T). The solutions to (33) and (34) are(

ũ(t)

p̃(t)

)
=

(
M(t) N (t)

0 M(t)−T

)(
ũ(0)

p̃(0)

)
, (35)

where the Jacobian matrix M(t) ∈ Rn×n (or the fundamental matrix) is the solution of

Ṁ(t) = A(u)M(t), M(0) = I,
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and N (t) ∈ Rn×n is given by,

N (t) = 2M(t)
∫ t

0
M(τ )−1Q(u)M−T (τ ) dτ.

The above equations provide the evolution of an infinitesimal displacement (ũ, p̃) along the trajectory
(u, p) starting at (u0, p0).

2. Expansion around noiseless limit cycle

The noiseless limit cycle of period T has zero pseudo energy (E = 0) and lives in the p = 0
subspace. For the noisy cycle the following holds (see Figure 7):

u(T + δT ) = u(0), (36)

p(T + δT ) = p(0), (37)

E = δE . (38)

We may describe (36) in terms of perturbations around the deterministic cycle,

us(T + δT ) + ũ(T + δT ) = us(0) + ũ(0), (39)

where us is a point on the deterministic limit cycle. Taylor expanding both sides around T + δT and
using us(T) = us(0), we are left with

u̇s(T )δT + ũ(T ) = ũ(0). (40)

A similar exercise for (37) gives

p̃(T ) = p̃(0), (41)

where we have used that ps = 0 for all times. Moreover, using (23), we have the following expression
of the pseudo-energy in (38) in terms of the perturbed limit cycle:

δE = H (us + ũ, p̃) ≈ f(us) · p̃. (42)

By using solutions (35) and u̇s = f(us) = fs , we may express the three conditions (40), (41), and
(42) as

ũ(0) = fsδT + MT ũ(0) + NT p̃(0), (43)

p̃(0) = (MT )−T p̃(0), (44)

δE = fs · p̃(0), (45)

where MT = M(T) and NT = N(T). Figure 7 shows a sketch of the perturbed limit cycle.

3. Eigenfunction expansion

We now perform a linear transformation of (43)–(45), using the following eigenvalue decom-
position:

MT =
n∑

k=1

ek�kfT
k ,

where {�k}, {ek}, and {fk} are, respectively, the Floquet multipliers, the right Floquet vectors,
and the left Floquet vectors. The eigenvectors are bi-orthogonal, fT

k el = δkl and the eigenvalues are
ordered as |�1| ≥ |�2| ≥ . . . ≥ |�n|. Note that the first Floquet vector is in the direction of the flow,
e1 = fs, and corresponds to the multiplier �1 = 1.
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We may now expand ũ in the right Floquet vectors and p̃ in left vectors, i.e.,

ũ(0) =
n∑

k=1

αkek, p̃(0) =
n∑

k=1

βkfk, (46)

and insert into Eqs. (43)–(45),
n∑

k=1

αkek = e1δT + MT

n∑
k=1

αkek + NT

n∑
k=1

βkfk, (47)

n∑
k=1

βkfk = (MT )−T
n∑

k=1

βkfk, (48)

δE = e1

n∑
k=1

βkfk = β1. (49)

Next, left multiply (47) with fT
l and (48) with eT

l ,

αl = fT
l e1δT + �lαl + fT

l NT

n∑
k=1

βkfk, (50)

βl =
n∑

k=1

eT
l (MT )−T fkβk =

n∑
k=1

(
fT
k M−1

T el
)T

βk = �−1
l βl . (51)

The last expression is satisfied if �l �= 1 and β l = 0, or if β l �= 0 and �l = 1. For a limit cycle,
only the first multiplier l = 1 has a unit value. Therefore, in the space spanned by Floquet vectors,
conditions (44) and (45) combined give

βl =
{

δE for l = 1

0 for l ≥ 1.

As a consequence, the only non-trivial solution of Eq. (50) reads

α1 = fT
1 e1δT + α1 + fT

1 NT f1δE → δT =
[
− fT

1 NT f1

fT
1 e1

]
δE . (52)

Using the initial conditions ũ(0) = 0 and p̃(0) = f1 in (35), we get

ũ(T ) = NT f1,

which gives the final expression (3)

S = ∂T

∂ E
= − fT

1 ũ(T )

fT
1 e1

.

In Table I the real part of the leading eigenvalue σ 1 is listed for limit cycles of the SL equation
with different periods, where it is observed that as S becomes larger, the decay rate (and thus phase
diffusion) increases.

It is interesting to note that the factor fT
1 /fT

1 e1 in S also arises in analysis of the response of
a linear stable system to harmonic forcing,30 where it provides a physical insight into where a
flow is mostly receptive to forcing. In the current approach, when we consider the full nonlinear
stochastic system but with weak noise, we observe that the phase diffusive behavior of an oscillator
is composed of the same components as the noise amplifying behavior of a linear system. Indeed this
is reasonable and intuitive; the assumption of small amplitude disturbances which underlies linear
analysis, and the weak noise assumption which underlies the current analysis, are different means
of studying small fluctuations around an equilibrium solution (e.g., steady or periodic solutions).
Nevertheless, the insight that linear Floquet analysis provides full information of effects of weak
noise of a nonlinear system is an important one.
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Yet, another connection between hydrodynamic stability theory and weak noise analysis that
can be made is the structural sensitivity18 of a deterministic limit cycle to white noise. Although,
such a sensitivity map becomes possible due to the theory presented in Sec. III, it is a sidetrack of
the current work and thus only briefly reported in the Appendix.

IV. CONCLUSIONS

Despite the increased complexity due to infinite-dimensionality, we believe that linear evolution
operators such as Koopman, Perron-Frobenius, Fokker-Planck, and Chapman-Kolmogorov provide
powerful means of analyzing nonlinear systems, since the linearity of the operators enables the
formulation of an eigenvalue problem that captures the complete nonlinear system. For a limit cycle,
in addition to the frequencies which the flow oscillates with, the time scale which determines the
quality factor appears naturally in the spectrum of evolution operators. By assuming the presence
of weak noise and employing the theory developed by Gaspard,5 we elucidated the effects of small
amplitude noise on flows with self-sustained oscillations. The effects can be quantified from a
local stability analysis, for which there are very well-developed matrix-free tools31 in the fluids
community. Also the method of Dynamic mode decomposition, which is taking its rightful place in
the community, may provide information on the effects of noise. However, there is still more work
to be done on this method, in particular to generalize it to datasets based on more than one trajectory.
One such effort is the recent DMD theory presented in Tu et al.,16 which provides Ritz vectors and
values of multiple trajectories.
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APPENDIX: CONSEQUENCES OF STRUCTURAL SENSITIVITY

In Luchini, Giannetti, and Pralits18 the structural sensitivity of a deterministic limit cycle to a
generic perturbation was derived. Specifically, they investigated the effect of a structural perturbation
h(u) on the time period, starting from

∂ũ
∂t

= A(t)ũ + h(u), (A1)

∂p̃
∂t

= −AT (t)p̃. (A2)

Assuming a steady forcing proportional to us, h = Cus, they obtained the following expression:

δω = ω

fT
1 e1

∫
fT h(u)dt = trace(C S̄T ), (A3)

where the sensitivity matrix is given by

S̄ = ω

fT
1 e1

∫
p̃uT

s dt.

Various norms of S̄ may be used to identify where in space a steady forcing induces a variation
of the frequency. We note that if we choose h = 2Q(u)p̃, then Eqs. (A1) and (A2) are Hamilton’s
equations of motion (33)-(34). We get from (A3),

δω = 2ω

fT
1 e1

∫
p̃T Q(u)p̃dt = trace(Q̄ST ),
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FIG. 8. The spectral norm of S̄ for the flow past a circular cylinder at Re = 60 (left) and Re = 100 (right). The numerical
method, resolution, and other parameters are reported in Ref. 18. Figure used with kind permission of Dr. Pralits.

where in the last line we have assumed a constant diffusion matrix Q = Q̄. The sensitivity map reads

S̄ = 2ω

fT
1 e1

∫
p̃p̃T dt.

This sensitivity function defines a spatial map that describes where in space white noise induces a
variation in the frequency. Figure 8 shows S̄ for p̃ = f1 for the flow past a two-dimensional circular
cylinder at Reynolds numbers Re = UD/ν = 60 and Re = 100 (D is diameter, U free-stream velocity,
and ν the kinematic viscosity). We observe that noise sensitivity is localized near the cylinder surface
and the recirculation zone. In particular, near the points on the cylinder where the boundary layer
separates from the surface (angle around θ = 55◦ with respect to the horizontal centerline), noise
has the largest impact on the frequency of the periodic vortex shedding.
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27 P. Cvitanović, “Chapter “Noise”,” in Chaos: Classical and Quantum, edited by P. Cvitanović, R. Artuso, R. Mainieri, G.
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