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A new way of handling, simultaneously, porosity and bending resistance of a massive
filament is proposed. Our strategy extends the previous methods where porosity was
taken into account in the absence of bending resistance of the structure and overcomes
related numerical issues. The new strategy has been exploited to investigate how porosity
affects the stability of slender elastic objects exposed to a uniform stream. To understand
under which conditions porosity becomes important, we propose a simple resonance
mechanism between a properly defined characteristic porous time-scale and the standard
characteristic hydrodynamic time-scale. The resonance condition results in a critical value
for the porosity above which porosity is important for the resulting filament flapping
regime, otherwise its role can be considered of little importance. Our estimation for the
critical value of the porosity is in fairly good agreement with our DNS results. The com-
putations also allow us to quantitatively establish the stabilizing role of porosity in the
flapping regimes.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Motion of deformable, slender structures immersed in an incompressible viscous fluid is common in natural phenomena,
and can be found in many applications such as paper processing (Lundell et al., 2011), energy harvesting (McKinney and
DeLaurier, 1981; Boragno et al., 2012; Orchini et al., 2013) and passive control (Favier et al., 2009; Lācis et al., 2014; Orchini
et al., 2015). In the present paper, we study numerically how porosity – a key factor in a number of both biological and
technological tissues – plays a role in the dynamics of a flapping hinged filament, commonly referred to as the flag-in-the-
wind problem. Similar to previous works (Peskin, 2002; Zhu and Peskin, 2002; Kim and Peskin, 2007), an immersed
boundary (IB) approach has been used in order to efficiently handle elastic interfaces interacting with a viscous incom-
pressible fluid. The IB method is used for a wide range of applications, from blood flow around cardiac valves (Kovacs et al.,
2001) and animal locomotion (Fauci and Peskin, 1988) to flow in deformable tubes (Beyer, 1992).

The flag-in-the-wind – i.e. an elastic one-dimensional boundary tethered at one end in a two-dimensional laminar flow –

has been studied theoretically, numerically and experimentally as the archetype for the instability of an elastic structure
subject to a fluid flow. Under certain conditions a phenomenon, known as flutter, is caused by a positive feedback between
the body's deflection and the forcing exerted by the fluid flow. Often, a number of frequencies are triggered by the uniform
flow affecting the body, which begins to resonate when its own natural frequency has been excited. This paper aims at
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investigating how porosity affects the stability of slender elastic objects exposed to a uniform stream. The long-term motion
of the filament can result in a fixed-point solution, a limit-cycle flapping or a chaotic motion, depending on the governing
parameters of the system (Shelley and Zhang, 2011).

Starting from Rayleigh's first theoretical approach in Rayleigh (1879) involving the evolution of a two-dimensional vortex
sheet, the stability analyses of the flag have been enriched by inertial and structural mechanical properties (Connell and Yue,
2007; Lighthill, 2007; Coene, 1992; Argentina and Mahadevan, 2005; Skotheim and Mahadevan, 2004). More recently,
increasingly accurate numerical studies (most of them using an immersed boundary approach) have come into support of
analytical results (Peskin, 2002; Uhlmann, 2005; Pinelli et al., 2010; Favier et al., 2014). In particular, Zhu and Peskin (2002)
first pointed out the important role of length and mass on the onset of flapping, and described the bistable behavior of the
flapping. Both Kim and Peskin (2007) and Huang et al. (2007) developed methods to handle massive filaments more effi-
ciently. The first numerical study taking into account porosity was by Kim and Peskin (2006), in which the dynamics of a
porous massless 2D parachute not resisting bending was investigated. An overview of the dynamics of slender interacting
body with fluid flows is found in Shelley and Zhang (2011).

In the present work, we propose a way of modeling porosity and bending resistance of a massive filament which
overcomes some of the major drawbacks of the method proposed in Kim and Peskin (2006). The approach proposed here is
based on the method described by Huang et al. (2007), and provides enhanced numerical stability with respect to the
approach suggested in Kim and Peskin (2006) by avoiding the spring-like discretization of the filament and the penetration
velocity given in Eq. (15) of the same paper. The 1D porous filament can be considered as a model for the flow in one plane
perpendicular to a 3D permeable sheet. The porous filament can also be considered as a model for a three dimensional flow
past an impermeable fiber, where the leakage through the porous filament corresponds to the flux past the filament in the
3D problem (see e.g. Wexler et al., 2013).

The paper is organized as follows. Section 2 describes the numerical model, while Section 3 contains a comparison
between our model for porosity and Darcy's law. In Section 4 the numerical scheme is validated using an analytical stability
criterion based on the slender body theory. Numerical and theoretical results are presented in Sections 5 and 6, respectively.
Finally conclusions are drawn in Section 7.
2. Problem formulation

We consider a one-dimensional incompressible elastic filament of length Ln, with mass per unit length ρ�S and bending
rigidity K�

b, exposed to a viscous incompressible fluid of density ρ�F , viscosity ν� with a uniform velocity U�
1. The governing

equations for the fluid are the Navier–Stokes equation (1) considered together with an appropriate volume forcing fðx; tÞ to
enforce the no-slip condition on the filament,

∂u
∂t

þu � ∇u¼ �∇pþ 1
Re

∇2uþf

∇ � u¼ 0

8<
: ; ð1Þ

where uðx; tÞ is the velocity field, pðx; tÞ is the pressure field and Re is the Reynolds number. Here x¼ ðx; yÞAΩ is the
Cartesian physical coordinates, with Ω denoting the physical domain, x and y are the stream-wise and cross-stream
direction, respectively.

The filament dynamics is considered in Eqs. (2) and (3), where the first is d'Alembert elastic string equation and the
second introduces the tension as a Lagrange multiplier in order to enforce incompressibility (Huang et al., 2007),

∂2X
∂t2

¼ ∂
∂s

T
∂X
∂s

� �
� ∂2

∂s2
γ
∂2X
∂s2

� �
þFr

g
g
�F; ð2Þ

∂X
∂s

∂2
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� �
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2
∂2

∂t2
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∂s

∂X
∂s

� �
� ∂2X
∂t∂s
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∂t∂s

�∂X
∂s

∂
∂s

Fb�Fð Þ: ð3Þ

Here, sAΓ is the Lagrangian curvilinear coordinate, with Γ denoting the body surface; Xðs; tÞ ¼ ðX1ðs; tÞ;X2ðs; tÞÞAΓ denotes
the physical position of each material point of curvilinear coordinate s at time t and Tðs; tÞ represents the tension. In par-
ticular, on the right hand side of Eq. (2) the first two terms represent the tensional ðFsÞ and bending terms ðFbÞ. The last term
are the Lagrangian forces exerted by the fluid on the structure, obtained by means of Eqs. (4) and (6), where the first is
Goldstein's feedback law (Goldstein et al., 1993) and the latter is the reduction due to porosity, whose meaning will be
explained in Section 2.4. Notice that the non-slip condition is enforced implicitly by means of

Fimp s; tð Þ ¼ α

Z t

0
Uib�

∂X
∂t

� �
dt0 þβ Uib�

∂X
∂t

� �
; ð4Þ

Uibðs; tÞ ¼
Z
Ω
uðx; tÞδðx�Xðs; tÞÞ dΩ; ð5Þ

F¼ ð1�λÞ � ðFimp � nÞnþðFimp � τÞτ: ð6Þ
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According to Goldstein et al. (1993), α and β are negative constants chosen to enforce the no-slip condition up to arbitrary
small value, λ is an overall permeability dimensionless parameter defined as the ratio between voids and total surface and
Uib is the interpolated velocity at the Lagrangian points location. Eventually, in order to link the structural (Eqs. (2)–(3)) with
the fluid part (Eq. (1)), the forcing fðx; tÞ is evaluated from the Lagrangian forces by

fðx; tÞ ¼ ρ

Z
Γ
Fðs; tÞδðx�Xðs; tÞÞ ds: ð7Þ

Eqs. (7) and (5) link Eulerian and Lagrangian quantities through a convolution with a discretized version of Dirac delta
function δ (Peskin, 2002). Among a wide choice of synthetic delta functions, we make use of the one proposed by Roma et al.
(1999). Note that the difference of density scales in the dimensional version of Eqs. (1) and (2) (ρ�F and ρ�1, respectively) is
taken into account in Eq. (7) through the ratio ρ¼ ρ�1=ðρ�FL�Þ, see Huang et al. (2007).

2.1. Solution procedure

At each time step the numerical algorithm can be summarized as follows:

1. evaluation of hydrodynamical forces F on the filament (Eqs. (4)–(6)) to enforce the no-slip condition up to a given value
(see Section 2.5),

2. spreading of the force F from Lagrangian points on the Eulerian grid (Eq. (7)),
3. solution of fluid flow (Eq. (1)),
4. solution of filament motion (Eqs. (2) and (3)).

2.2. Dimensionless parameters

The solution depends on the following dimensionless parameters; the Reynolds number, i.e. Re¼U�
1L�ρ�F=μ

�, the Froude
number Fr¼ gL�=U�2

1 , the bending stiffness γ ¼ K�
b=ðρ�1U�2

1L�2Þ and the mass ratio ρ¼ ρ�1=ðρ�FL�Þ. As in Huang et al. (2007), we
also make use of the density difference ρ�1 ¼ ρ�S�ρ�FA

�, where An is the filament cross section area (superscript n denotes
dimensional quantities). The governing equations have been made dimensionless using the filament length Ln and the free
stream velocity U�

1. As a consequence time and pressure have been made dimensionless with L�=U�
1 and ρ�FU

�2
1 , respectively.

Furthermore, the momentum forcing f�, the Lagrangian forces F� and the tension Tn have been made dimensionless by
ρ�FU

�2
1=L�, ρ�1U

�2
1=L� and ρ�1U

�2
1 , respectively.

2.3. Boundary conditions

Boundary conditions for Eq. (1), see Fig. 1, are given by a constant velocity u¼ ðU1;0Þ at ∂Ωinlet and a convective condition
∂u=∂tþU1∂u=∂n¼ 0 at ∂Ωoutlet . We impose symmetry conditions fu � n¼ 0 and ∂ðu � τÞ=∂n¼ 0g on ∂Ωtop and ∂Ωbottom, where
n and τ are respectively the unit vectors in the normal and tangential direction. Since the computational grid for the flow is
staggered, no boundary conditions for the pressure are needed.

As already pointed out by the work by Kim and Peskin (2006), pressure redistribution from higher to lower pressure
zones modifies the near-wake region behind bluff bodies, enhancing their stability.

In order to solve Eq. (2) boundary conditions are defined at both the hinged and the free end of the filament:

Xjs ¼ 0 ¼X0;
∂2X
∂2s

����
s ¼ 0

¼ 0;
∂2X
∂2s

����
s ¼ L

¼ 0;
∂3X
∂3s

����
s ¼ L

¼ 0:
Fig. 1. Filament Γ (black curve) described by a set of Lagrangian points Xðs; tÞ (in gray). Initial configuration (gray line) of the filament is a straight line with
a certain angle of attack θ.
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The first and second conditions enforce the filament to be hinged to the pole X0, while the third and the fourth con-
ditions state that the filament trailing edge is unloaded. Moreover, Eq. (3) is solved by imposing

∂
∂s

T
∂X
∂s

� �
s ¼ 0

¼ �Fr
g
g
þF; T js ¼ L ¼ 0;

where the first derives from Eq. (2) in the absence of acceleration and bending moment (hinged condition), and the second
comes from the condition of an unloaded free edge.

2.4. The proposed method vs. the standard forcing approach

In order to show the difference between our proposed method and the one used in Kim and Peskin (2006), we report
here the Lagrangian force calculation (8) and the penetration velocity in both normal (9) and tangential (10) directions
derived in Kim and Peskin (2006) in order to model porosity.

F¼ FsþFb ¼
∂
∂s

T
∂X
∂s

� �
� ∂2

∂s2
γ
∂2X
∂s2

� �
ð8Þ

∂X
∂t

�U
� �

� n¼ λ1 F � nð Þ; ð9Þ

∂X
∂t

�U
� �

� τ ¼ 0; ð10Þ

where λ1 is the porosity coefficient defined in Kim and Peskin (2006) as

λ¼ βγ

j∂Xðs; tÞ=∂sj2; ð11Þ

where β is the number density of pores and γ is the aerodynamic conductance of each pore. Although the Lagrangian force F
is smooth, in practice – due to the IB approach used in Kim and Peskin (2006)– this quantity is usually noisy. A similar lack of
smoothness is then expected in X as a result of Eq. (9). Note that these equations ((8)–(10)) are not used in the this work.

The combination of Eqs. (8) and (9) generates a stiff problem – in particular due to the 4th spatial derivative in Eq. (8) –
which leads to computational difficulties and numerical instabilities.

In order to overcome this limitation we undertake another approach (see Section 2), based on the IB formulation pro-
posed in Huang et al. (2007), whose main difference resides in the filament discretization, seen no more as a collection of
springs but as a 1D structure. By doing so the noise source on the Lagrangian forcing, and thus the numerical stiffness of the
problem, is removed. Similar to Kim and Peskin (2006) we also assign to the boundary an overall porosity, but rather than
modeling porosity by allowing a non-zero wall-normal velocity between the boundary and the local velocity field, we
reduce the normal component of momentum transferred from the fluid to an impermeable filament Fimp to F, the reduced
force due to porosity (Eq. (6)). Eq. (6) is physically motivated by the fact that while tangential stresses on a solid surface arise
from the tangential component of velocity normal derivative ð∂u=∂nÞ � τ, the component in the normal direction derives only
from pressure differences across the surface, thus porosity affects only this component by reducing the pressure drop. We
want to stress the duality of this approach with the one proposed in Kim and Peskin (2006), since a relative penetration
velocity will decrease the momentum transferred to the filament, while the present approach based on the reduction of
momentum will lead to a penetration velocity.

2.5. Numerical approach

The computational domain is an 8�8 square ranging ½�2;6� in the stream-wise direction and ½�4;4� in the cross-stream
direction as in Huang et al. (2007). The computational grid is uniform ðΔx¼ΔyÞ in an inner region close to the hinged point
ð0;0Þ of the filament (½�0:5;3� in the stream-wise direction and ½�1;1� in the cross-stream direction) with grid spacing
Δx¼ 1=75 and stretched outside with a constant stretching ratio equal to 1.1. A convergence study on grid spacing has been
performed with the smallest grid size Δx¼Δy¼ 1=150 in the uniform region, showing a relative error on flapping
amplitude less than 2.5%. The Lagrangian grid is made up of 150 points, so that approximately 2 Lagrangian points appear in
one Eulerian cell as suggested by Kim and Peskin (2007). In order to reach a trade-off between CFL number ð � 10�2Þ and
non-slip enforcement, Goldstein's feedback law coefficients has been set α¼ �10 and β¼ �102. This results in a mean flux
velocity trough the impermeable boundary normalized with the unperturbed velocity of 0.01. The initial configuration of the
filament is a straight line inclined at a certain angle θ, see Fig. 1.

To solve the incompressible Navier–Stokes equations we make use of the fractional step method, a projection method
originally introduced independently by Chorin (1968) and Temam (1968) and later refined by Perot (1993).
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3. Comparison of the porosity model with Darcy's law

It is expected that the proposed model, accounting for porosity through the parameter λ, should capture a behavior
similar to Darcy's law for porous media in the case of laminar flow at low Reynolds numbers. In this section we first derive
an analytical relation between λ and the permeability coefficient kD appearing in Darcy's law, and then we verify the
obtained relation numerically by solving the governing equations outlined in Section 2.
3.1. Derivation of the kD–λ mapping

Darcy's law states a linear dependance between the pressure gradient ∇p and the penetration velocity of the fluid across
the porous medium Uib�∂X=∂t through the permeability coefficient kD,

Uib�
∂X
∂t

¼ �k∇p: ð12Þ

By taking into account only the second term of Goldstein's feedback law (4) as a first approximation and since β⪢α, forces
exerted by the fluid on the filament can be written as Fimp ¼ βðUib�∂X=∂tÞ. Since the drag on a flat plate normal to the flow is
only due to the pressure difference reduced by porosity one can assume that

Fimpð1�λÞ
δ

� ∂p
∂x
; ð13Þ

where δ is the width of the membrane, given by the “effective radius” of the Dirac delta function used by the IB method.
Here, δ has been estimated to be twice the minimum grid spacing, i.e. δ¼ 2Δxmin ¼ 2Δymin. Finally one obtains

kD ¼ � δ

βð1�λÞ: ð14Þ

This analytical model is compared with the numerical solution in Section 3.2.
3.2. Validation with Darcy's law

Several simulations have been performed by considering a porous membrane hinged at both ends perpendicular to an
incoming uniform flow, see Fig. 2. Different values of λ and four different Reynolds number (2.5, 5, 7.5, 10) are considered
ðFr¼ 0Þ. By sampling the pressure immediately upstream and downstream of the membrane along the x -axis we obtain the
pressure gradient across the membrane, see Fig. 2, while flow measurements are computed by interpolating the fluid
velocity on the membrane. The linear relationship between the pressure gradient across the membrane and the fluid flux ϕ

computed as linear integral of the penetration velocity between the fluid and the solid is in good agreement with Darcy's
law at the Reynolds numbers under investigation, see Fig. 3. Darcy's parameter kD for each value of λ is thus obtained
through a linear regression of the simulation results, leading to a numerical mapping curve ðλ–kDÞ. Fig. 3 shows an excellent
agreement between the numerical results and the analytical prediction from Eq. (14).
Fig. 2. An inextensible membrane (left, thick solid line) simply supported at both ends is subject to a uniform flow from left (streamlines with thin solid
lines) and (right) pressure profile along x. Notice the sudden pressure drop around membrane location ðxC0Þ within the space of two grid points.



Fig. 3. Flux ϕ as a function of the pressure gradient ∇p for Re¼ 2:5;5;7:5;10; Fr¼ 0 and different values of λ (left). For each λ a linear regression has been
performed (solid lines) in order to obtain Darcy's porosity coefficient kD , which is given by the slope of each line. Comparison between analytical prediction
for kD , Eq. (14), and numerical results (right).

Fig. 4. Comparison between analytical models and DNS simulations for Re¼200 and different values of ρ and γ.

D. Natali et al. / Journal of Fluids and Structures 61 (2016) 362–375 367
4. Validation of the impermeable filament

Before focusing on porous filaments, we validate our numerical scheme against results available in the literature. In
particular the analytical results in Connell and Yue (2007) have been taken as a reference for all numerical simulations. This
model considers the beam equation with external loads given by the slender body theory (Munk, 1924), resulting in fol-
lowing the dispersion relation

ðρþρaÞð1:3Re�1=2þγk2Þ�ρρaZ0; ð15Þ

where ρa ¼ 2=k from potential theory (Coene, 1992). Here, the following non-dimensional quantities have been introduced,

ρ¼ ρ�s
ρ�f L

�; γ ¼ K�
b

ρ�f U
�2L�3

;

where ρ�s is the structure linear density, ρ�f is the fluid density and k is the wavenumber associated with the flapping. We
would like to point out that the definition of ρ and γ used in Eq. (15) differs from that given in Section 2; Eq. (15) derives
from the dynamical beam equation considering the absolute beam density ρ�s in the inertial term and not the density
difference ρ�1 as required by the immersed boundary approach.

In the numerical results shown from here on the Reynolds number has been set to Re¼200 and the Froude number to
Fr¼0. The bifurcation line between stable and unstable solutions has been investigated numerically for different values of ρ
and γ and the results are presented in Fig. 4. The limit-cycle solutions are indicated with open circles while stable solutions
(straight filament aligned with the main stream) are shown with filled circles. The solution of Eq. (15), as given by Connell
and Yue (2007), is shown with a solid line. The numerical and analytical results are in good agreement when γo2:5 � 10�3,
which coincides with the range of values investigated in Connell and Yue (2007). Above this critical value of the bending
stiffness the agreement deteriorates. In Appendix A, we present a possible explanation based on a change of the flapping
filament shape for γ42:5 � 10�3. This results in a modification of the added mass coefficient (from potential theory).



Fig. 5. Neutral curve on the plane ðγ; ρÞ for Re¼200, Fr¼0 and λ¼ 0 obtained numerically. The analytical curve for λ¼ 0 is taken from Connell and Yue
(2007) and shown with a dotted line, whereas the solid lines with symbols represent neutral curves for different porosity.

Table 1
Values of bending stiffness γ and mass ratio ρ for bullets A, B and C in Fig. 5. A stable configuration (i.e. no flapping) is obtained numerically when λ4λc;n .

Case γ ρ λc;n

A 1:5 � 10�3 1.0 0.975

B1 1:5 � 10�3 0.7 0.95

B2 1:5 � 10�2 0.7 0.85

C 1:5 � 10�3 0.4 0.85
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5. Numerical results

5.1. Porous filament

In order to assess the stabilizing property of porosity, several numerical simulations with different values of the para-
meters (γ,ρ) have been performed at Re¼200, Fr¼0 and for different values of the porosity λ. For the impermeable case
ðλ¼ 0Þ, we compare the numerical results with the analytical curve obtaining a close agreement, which can be seen in Fig. 5.
When porosity is considered ðλa0Þ, the critical density difference ρ increases with λ for a given value of bending stiffness γ.
This means that an increasingly porous filament requires an higher density in order to experience sustained flapping.

We consider three different configurations in the (γ,ρ) plane (marked with bullets A, B and C in Fig. 5). Table 1 reports the
critical values of porosity λc;n for which the flapping behavior changes from unstable to stable. As observed in Figs. 6 and 7,
an increased porosity results in a reduction of both the peak-to-peak amplitude and frequency even for λoλc;n, i.e. in the
sustained flapping regime.

Besides kinematics, the effects of porosity on the time behavior of the forces acting on the flapping filament have also
been assessed (Fig. 8). Both maximum values of lift and drag forces decrease monotonically as porosity increases (Fig. 9, left)
with a weaker effect on the drag than on the lift force. This is in agreement with the role of porosity on the pressure
distribution around the filament. By allowing normal-to-filament velocities to arise, porosity reduces pressure differences
across the filament reducing lift and, consequently, flapping amplitude as clearly observed in Fig. 7. On the other hand,
assuming that pressure drag is the leading contribution, the effect of porosity on the drag force is weaker than on the lift
force. The filament indeed flaps more or less aligned with the unperturbed flow, i.e. normal to the direction along which
pressure gradient reduces. The effects of porosity on lift and drag yield to an optimal value of λC0:6 for which the lift-to-
drag ratio is maximized (Fig. 9, right).
6. Time-scale investigation

In previous sections we have shown quantitative results on the stabilization of elastic filament due to porosity. In this
section we provide a simple physical mechanism at the origin of stabilization and show that the phenomenon can be traced
back to a resonance condition between porous and hydrodynamical time scales.

Physical mechanisms at work may interact stronger when their characteristic time-scales are of the same order of magnitude.
Arguments of this type have been successful, e.g., to explain symmetry breaking mechanism in fluid–structure interaction (Bagheri
et al., 2012) as well as emergence of elastic instabilities (Argentina and Mahadevan, 2005; Orchini et al., 2013), the emergence of



Fig. 6. Peak-to-peak oscillation amplitude and flapping Strouhal number as a function of porosity. Each curve is drawn for different sets of parameters ðγ; ρÞ,
see Fig. 5.

Fig. 7. Snapshots of porous filaments ((a) λ¼0, (b) λ¼0.6, (c) λ¼0.8) during one flapping cycle (case C, Figs. 5 and 6).

Fig. 8. Time evolution of the lift (left) and drag forces (right) for case C (see Fig. 5).
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Fig. 9. Maximum values of lift and drag forces (left) and lift-to-drag ratio (right) for case C (see Fig. 5), all as a function of the porosity.

Table 2
Values of parameters entering in Eq. (19) with the corresponding critical theoretical value of λ and Darcy's parameter kD . ρa has been set equal to 2=k in
accordance with potential theory (Coene, 1992), while δ¼ 2Δxmin . For vertical displacement h the peak-to-peak amplitude at λ¼ 0 has been considered.
Note that, as shown in Appendix A, the oscillation wavenumber k is function of the bending stiffness γ.

Case γ k ρa h δ β λc;t kD

B1 1:5 � 10�3 2 π 1/π 0.73 2/75 �102 0.91 2:96 � 10�3

B2 1:5 � 10�2 π 2/π 0.66 2/75 �102 0.84 1:67 � 10�3

D. Natali et al. / Journal of Fluids and Structures 61 (2016) 362–375370
macroscopic spatial scales at which microscopic polymers cause viscoelastic behavior (Procaccia et al., 2008). In this spirit, we
define the dimensional porous time as the characteristic time needed by mass to cross the membrane of thickness δ. Following
Darcy's empirical law U�

ib�∂X�=∂t� ¼ �k∇p�, we estimate this quantity to be:

τ�por ¼
δ�

JU�
ib�∂X�=∂t� J

¼ δ

k∇p�
¼ δ2

kΔp�
: ð16Þ

In order to give a quantitative value for the pressure difference across the membrane, we resort to the dimensional
version of slender body theory (Lighthill, 2007) already used in (Connell and Yue (2007); Coene (1992))

Δp� ¼m�
a

∂
∂t�

þU�
1

∂
∂s�

� �2

h�Cm�
a

U�
1
L�

� �2

h�; ð17Þ

where m�
a is the added mass, ð∂=∂t�þU�

1∂=∂s�Þ is the convective derivative for a fluid particle near the filament and h� is the
vertical displacement. From potential flow solution m�

a ¼ ð2=kÞρ�aL�, where k is oscillation wavenumber. Inserting (14) and
(17) into (16) one obtains

τ�por ¼ �δ�L�2β�ð1�λÞ
m�

aU
�2
1h� :

Physically, this is the time it takes for the flow to reduce the pressure difference Δp� across the filament.
Our aim here is to compare this characteristic time-scale with the hydrodynamical time-scale, roughly estimated as

τ�hdr ¼ L�=U�
1, in order to assess the critical value of λ in order to have resonance between porosity and hydrodynamics. The

ratio between the two time scale is written

τ�por
τ�hdr

¼ �δ�L�2β�ð1�λÞ
m�

aU
�2
1h�

U�
1
L�

¼ �δ�L�β�ð1�λÞ
m�

aU
�
1h�

C1: ð18Þ

From expression (18) we can derive a theoretical critical value λc;t , that written in dimensionless form reads

λc;tC1þρah
δβ

: ð19Þ

If we use the parameters given in Table 2 we obtain theoretical critical value of λ in good agreement with the direct
numerical simulations. Interestingly, this result shows that the stabilizing effect of porosity occurs whenwe are very close to
λ¼ 1, in qualitative agreement with what one can observe from DNS (see Table 1).



Table 3

Values of experimental parameters obtained using polyethylene ðρ¼ 1100 kg=m3 ; E¼ 7 � 108 N=m2Þ extruded by 1 mm in a water soap film
ðρ¼ 1000 kg=m3Þ having thickness 5 μm.

L� 1 � 10�2 m

ρ�S 2:2 � 10�5 kg/m

ρ�F 5 � 10�3 kg/m2

ρ�1 2:19 � 10�5 kg/m

A�
2 � 10�5 m

K�
b 4:67 � 10�10 N m2

U� 2.92 m/s
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7. Conclusions

We propose a novel way of handling simultaneously porosity and bending resistance of a massive filament which
extends previous methods where porosity was taken into account in the absence of bending resistance of the structure.
Moreover, our numerical strategy overcomes numerical stability issues by avoiding the formulation given in Kim and Peskin
(2006) involving the Lagrangian forces F. The newly designed algorithm has been exploited to investigate how porosity
affects the stability of slender elastic objects exposed to a uniform stream.

First we validate our numerical code by neglecting porosity and comparing numerical results against predictions from an
existing analytical model (Connell and Yue, 2007) where the hydrodynamical forces on the filament are described by the
“slender body theory” (Munk, 1924). As a side result, in Appendix A we find a critical bending stiffness above which the
critical density ratio increases with the bending stiffness at much smaller rate than what predicted in Connell and Yue
(2007). We also propose a simple way to extend the analytical model to account for that. It is left for future research the
detailed analysis of the remaining discrepancies.

In the case of porosity we first derive and verify a relation between our free model parameter λ and the porosity
parameter kD appearing in Darcy's law. From modeling arguments it is found that kDpð1�λÞ�1, in excellent agreement
with the numerical simulations at low Reynolds number.

We also investigate how porosity modifies the stability properties of filaments hinged in uniform flow fields. It is found
that porosity effectively increases the stability zone only when the porosity parameter λ is greater than a critical value λc.
The existence of a critical porosity λc is confirmed also by the numerical simulations of porous filaments undergoing sus-
tained flapping, for which both flapping amplitude and frequency drop for λ4λc. In order to give a physical explanation for
this we propose a simple resonance mechanism between a characteristics porous time-scale and the standard characteristic
hydrodynamic time-scale. The resonance condition fixes a critical value above which porosity affects the resulting filament
flapping regime, while if below its role can be considered of little importance. The estimation for the critical value of the
porosity is in qualitative agreement with our DNS results. Finally, we observed reduction of both lift and drag forces induced
by porosity, ascribing it to the penetration velocity that reduces the pressure difference between the two sides of the
structure, and find an optimum value of λ that maximizes the lift-to-drag ratio.

In Appendix B we present a trivial generalization of the model by Connell and Yue (2007) to account for porosity which
captures the stability effect induced by porosity qualitatively.

We conclude with a suggestion of a possible experimental set-up to realize the same conditions we simulate in our 2-D
case ðρ¼ 0:438; γ ¼ 0:025Þ. In particular we consider the experiment to be carried out in a soap-film facility (see e.g. Kellay,
1995) with soap film thickness and solid extrusion as reported in Table 3. In order to achieve the values of λ used in this
work one needs a grid made up of fibers interspaced by �100 times their characteristic diameter.
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Appendix A. Impermeable filament dynamics for higher bending stiffness

Fig. A1 shows the numerical results of Eq. (15) for γ up to 5 � 10�2. The analytical solution given by Connell and Yue
(2007) is shown with a solid line. The numerical and analytical results are in good agreement when γo2:5 � 10�3, which
coincides with the range of values investigated by Connell and Yue (2007). Above this critical value of the bending stiffness
the agreement deteriorates.



Fig. A1. Comparison between analytical models and DNS simulations for Re¼200, Fr¼0 and different values of ρ and γ. The close-up refers to the rectangle
near the axis origin.

Fig. A3. Y-coordinate of the filament trailing edge in the impermeable cases D (solid line) and E (dashed line) depicted in Fig. A1.

Fig. A2. Snapshots of impermeable filament during one flapping cycle for cases D (a) and E (b) depicted in Fig. A1. While a unique concavity characterizes
the behavior of the right filament, an inflection point is clearly visible in the left filament.
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This discrepancy can partly be explained by a modification of the filament shape as the value of γ exceeds 2:5 � 10�3. In
relation to Fig. A1, Fig. A2 depicts snapshots of the filament during a flapping cycle for two different values of γ, whereas in
Fig. A3 the time evolution of the trailing edge cross-stream coordinate is shown (cases D and E in Fig. A1, respectively).
Vorticity iso-contours for the same parameter sets can be seen in Fig. A4.

By inspection of Fig. A2 it can be noted that the wavenumber of the filament shape is approximately k¼ 2π for
γo2:5 � 10�3, while k is more close to π when γ42:5 � 10�3. Following the derivation of the model, this shape alteration
leads to a variation of the added mass coefficient obtained from potential theory. The new curve drawn for k¼ π matches
qualitatively the DNS simulations, see dotted curve in Fig. A1. An additional discrepancy between analytics and numerics



Fig. A4. Vorticity isocontours ([�15:15]) around impermeable flapping filament (Re¼200, Fr¼0, positive vorticity in black, negative in gray). With
reference to Fig. A1, snapshots (a–c) refers to case D ðρ¼ 1; γ ¼ 2:5 � 10�3Þ whereas (d–f) refers to case B ðρ¼ 1; γ ¼ 15 � 10�3Þ.
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may be due to the rough assumption of approximating the filament tension as the one obtained by a stationary and laminar
boundary layer, Blasius, flow along its whole length.
Appendix B. Straightforward generalization of the analytical model to account for porosity

Let us perform a stability analysis study on a simplified model inspired from the work by Connell and Yue (2007).
Porosity reduces the force exerted in the normal direction by the fluid on the filament by allowing a mass transfer, thus
reducing the pressure difference across the boundary.



Fig. B1. Neutral curves on the plane ðγ; ρÞ for Re¼200, Fr¼0 and different values of the porosity coefficient λ.
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In order to account for the porosity effects we propose to reduce the hydrodynamical forces by a factor ð1�λÞ

L x; tð Þ ¼ �ρa 1�λð Þ ∂
∂t
þU

∂
∂x

� �2

h

from which

ρþ 1�λð Þρa
� �∂2h

∂t2
þ2ρa 1�λð Þ ∂

∂x
∂h
∂t

þ ρa 1�λð Þ�τ
� �∂2h

∂x2
þγ

∂4h
∂x4

¼ 0

by using the same scaling as in Section 4 and where λ represents porosity. Again, λ¼ 0 reduces to the impermeable case and
λ¼ 1 is the limit for an infinitely porous filament. If we now perform a stability analysis, we end up with a slightly different
stability condition

2ð1�λÞ
k

þρ

� �
γk2þ 1:3

ρ
ffiffiffiffiffiffi
Re

p
� �

�2ð1�λÞ
k

Z0; ðB:1Þ

from which it is possible to derive critical values for linear density, flexural stiffness and incoming velocity related to
porosity λ and Reynolds number Re. Results of the analytical neutral stability curves are presented in Fig. B1 for Re¼200 and
Fr¼0 in the plane ðρ; γÞ for different values of λ. For a given value of γ, with respect to impermeable case ðλ¼ 0Þ, a higher
value of ρ (heavier filament) is required for the instability onset. Further, as λ is increased a rapid increase in ρ is found for
the instability onset.
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