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Abstract

Both experimental and numerical investigations of converging shock waves have
been performed. In the experiments, a shock tube was used to create and study
converging shock waves of various geometrical shapes. Two methods were used
to create polygonally shaped shocks. In the first method, the geometry of the
outer boundary of the test section of the shock tube was varied. Four dif-
ferent exchangeable shapes of the outer boundary were considered: a circle,
a smooth pentagon, a heptagon, and an octagon. In the second method, an
initially cylindrical shock wave was perturbed by metal cylinders placed in var-
ious patterns and positions inside the test section. For three or more regularly
spaced cylinders, the resulting diffracted shock fronts formed polygonal shaped
patterns near the point of focus. Regular reflection was observed for the case
with three cylinders and Mach refection was observed for cases with four or
more cylinders. When the shock wave is close to the center of convergence,
light emission is observed. An experimental investigation of the light emission
was conducted and results show that the shape of the shock wave close to the
center of convergence has a large influence on the amount of emitted light. It
was found that a symmetrical polygonal shock front produced more light than
an asymmetrical shape.

The shock wave focusing was also studied numerically using the Euler equa-
tions for a gas obeying the ideal gas law with constant specific heats. Two
problems were analyzed; an axisymmetric model of the shock tube used in
the experiments and a cylindrical shock wave diffracted by cylinders in a two
dimensional test section. The results showed good agreement with the experi-
ments. The temperature field from the numerical simulations was investigated
and shows that the triple points behind the shock front are hot spots that
increase the temperature at the center as they arrive there.

As a practical example of shock wave focusing, converging shocks in an elec-
trohydraulic lithotripter were simulated. The maximum radius of a gas bubble
subjected to the pressure field obtained from the lithotripter was calculated
and compared for various geometrical shapes and materials of the reflector.
Results showed that the shape had a large impact while the material did not
influence the maximum radius of the gas bubble.

Descriptors: converging shock, Euler equations, imploding shock, Mach
reflection, regular reflection, shock focusing, shock tube
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Preface

This doctoral thesis in fluid mechanics is a paper-based thesis of both experi-
mental and numerical character. The thesis is divided into two parts in where
the first part, starting with an introductory essay, is an overview and summary
of the present contribution to the field of shock wave focusing. The second
part consists of six papers. In chapter 9 of the first part in the thesis the
respondent’s contribution to all papers are stated.

September 2007, Stockholm

Veronica Eliasson



Nothing shocks me. I'm a scientist.
Indiana Jones (1984)
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Part 1

Overview and summary






CHAPTER 1

Introduction

The title of this thesis is ’On shock wave focusing’” and this may cause you to
ask yourself what is a shock wave?, where do they occur? and what is meant
by shock wave focusing?

A shock wave is a thin discontinuous region in which quantities like pres-
sure, temperature, and velocity make an abrupt “jump” from one state in front
of the shock to another state behind the shock. Think of the difference in the
two states as the difference in a stretch of a highway with free flow, compared
to the same stretch when it is jammed up with cars, not moving at all. A shock
wave propagates faster than the local speed of sound. Consider a fluid particle
in a flow where a shock wave would pass, it would not know it before the shock
arrives, because no information (except the shock itself) propagates faster than
the local speed of sound. Further, shock waves are dissipative, which means
that the entropy increases as the shock travels and its strength is reduced.

Shock waves are encountered many times during a normal day. Let us
assume you wake up in the morning and go to the bathroom to brush your
teeth. You turn on the water, and as it flows out and hits the sink, you see
a roughly circular region with a very thin water layer centered around the
streaming water. Further out from the center, the depth of this thin layer
abruptly increases. This “jump” is an example of a shock wave. Later, you
might drive your car to work. When the traffic flow is interrupted, say by
red lights or traffic jams during rush hour, the vehicles slow down to a stop.
You brake as soon as the car in front of you brakes and then the car after you
brakes; car after car behind you brakes to a stop. This “braking motion” that
propagates behind you, against the direction of the traffic, can be viewed as
a shock wave. Later, the same evening, you find yourself in the middle of a
thunderstorm. Lightning streaks across the sky, followed by a loud crack and
low rumblings. The noise is caused by a shock wave. The lightning produces
extremely hot air which expands into the cool surrounding air faster than the
speed of sound. The shock wave expands radially for about 10 m and then
becomes an ordinary sound wave called thunder.

Perhaps you played outdoors with a magnifying glass when you were a
child. By focusing the rays of the sun onto a piece of paper with the magnifying
glass, the paper starts to smoke, then turn brown and maybe even catch fire.



2 1. INTRODUCTION

In our work we use the same idea, but instead of the sun, we use a shock wave
and the magnifying glass is replaced by a shock tube.

In addition to the aforementioned examples, shock waves occur in many
more situations, ranging from tiny bubble implosions to supernova explosions.
Shock waves have been the source of many accomplishments, from the medical
treatment of shock wave lithotripsy (i.e. breaking of kidney stones) to the
devastating consequences caused by explosions.

This thesis is a result of both experimental and numerical studies of con-
verging shock waves. The first part of the thesis is organized as follows: the ba-
sic preliminaries for shock wave focusing are discussed in chapter 2. A review of
earlier work on shock wave focusing, both experimental and numerical, is given
in chapter 3. The experimental setup used in the present study is explained in
chapter 4 followed by a summary of the experimental results in chapter 5. The
numerical simulations are discussed and the results are presented in chapter
6. Chapter 7 contains simulations on weak shock wave focusing in shock wave
lithotripsy. Finally, conclusions of the present work and an outlook of the fu-
ture is presented in chapter 8. The contribution of the author to the papers in
section 2 of this thesis is stated in chapter 9.

F1cUurE 1.1. Left: a traffic jam, photograph (©) Miha Skulj.
Upper right: lightning during a thunderstorm, photograph
(© Anna Tunska. Lower right: flowing water in a sink.



CHAPTER 2
Basic concepts

2.1. Governing equations

The analysis of compressible flow is based on three fundamental equations, as
discussed in Anderson (1990). They are the continuity equation, the momen-
tum equation and the energy equation, presented here in integral form:

/V//%”d”é/”v'dha (2.1)
/v//%{pV]dV—l—//(PVdS)V—///pde—/g/pdS, 22)
T3 D)o oo 2
:/v//(iPdV—é/pV-dS-y/v/ o V)V

Here V is a fixed volume, V is the velocity vector V = (u,v,w) in the z, y
and z directions, p is the density, S is the surface area of the volume V), p is
the pressure acting on the surface S, ¢ is the heat rate added per unit mass,
f represents the body forces per unit mass and e is the internal energy. The
system of equations, (2.1)—(2.3), is closed with an equation of state. One of
the simplest equations of state is the ideal gas law, which is valid for moderate
temperatures and low pressures. It is given by

(2.3)

p=pRT, (2.4)

where R is the specific gas constant and 7T is the temperature in kelvin. There
exist a number of more intricate equations of state that model more complex
situations, such as low temperature or high pressure flows where the intramolec-
ular forces become important and cannot be neglected.

Because a shock wave has a width of only a few mean free paths, it can be
described as a discontinuity. A shock wave is an irreversible process, and by the
second law of thermodynamics, the entropy increases across the discontinuity.

3
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This cannot be seen from equations (2.1)—(2.4), so an entropy relation must be
added, as in Courant & Friedrichs (1948) or Zel’dovich & Raizer (1966).

2.2. Shock tube theory

Shock tubes are experimental devices used to study shock waves as well as
thermodynamic and chemical properties. Usually, a shock tube consists of a
long tube closed at both ends and separated into two parts by a thin membrane;
see Figure 2.1. The two parts are the high pressure part, called the driver
section, and the low pressure part, called the driven section. The pressure in
the low pressure part, pp, is usually lower than the atmospheric pressure, often
on the order of a few kPa. The high pressure part, contains the highest possible
pressure, p4, usually on the order of MPa.

To produce a shock wave, the driven section is evacuated from gas to a
given pressure. Then the driver section is filled with gas. At a given pressure
difference between the two sections, the membrane rapidly breaks, and the
compressed gas in the high pressure part flows into the low pressure part. A
shock wave travels forward through the low pressure part and a rarefaction
wave, starting at the broken membrane, travels backwards through the high
pressure part.

The flow conditions in the shock tube are shown in Figure 2.1. The sub-
scripts in the figure indicate various regions: ‘1’ represents the undisturbed low
pressure gas, ‘2’ is the region just behind the shock, and ‘3’ is the gas from the
high pressure part which has passed through the rarefaction wave. Region ‘4’
indicates the high pressure gas not disturbed by the rarefaction wave and ‘5’
is the region behind the reflected shock.

Just before the membrane breaks, the pressure difference reaches its max-
imum value; see Figure 2.1 (a). When the membrane breaks, a shock wave
travels downstream in the low pressure part and a rarefaction wave travels up-
stream in the high pressure part. The pressure and temperature distributions
are shown in Figure. 2.1 (b)—(c). Next, the shock wave reflects from the rear
(provided it is a closed shock tube) and returns. The reflected shock produces
a very high pressure and temperature behind it; see Figure 2.1 (d)—(e). The
dotted line, visible in Figure 2.1 (b)—(e), represents the contact surface between
the high and low pressure gas. Across the contact surface there is no flow of
gas, and the pressure and velocity are continuous.

The shock Mach number, M, depends on the pressure ratio between the
high and low pressure part, ps/p1, the choice of gas used in the different parts
of the tube, and the respective temperatures of the gases. The relation between
the pressures p; and py can be derived from equations (2.1) — (2.3) and is given
by equation (2.5). A derivation can be found in Liepmann & Roshko (1957).
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Ficure 2.1. Conditions in a shock tube; on top is the high
and low pressure parts, separated by a membrane. (a) is the
initial pressure distribution. (b) and (¢) show the pressure
and temperature distribution respectively after the membrane
has broken and the shock has started to travel down stream
in the low pressure part. (d) and (e) show the pressure and
temperature distribution just after the shock has reflected from
the rear wall.
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Here v = ¢, /¢, is the ratio between the specific heats for constant pressure
and constant volume respectively, and a is the speed of sound. The subscripts
denote the region in which the property is valid. Different methods can be used
to create stronger shocks in a shock tube, such as heating the gas in the high
pressure section, increasing the pressure difference between the high and low
pressure part, and choosing a light gas in the low pressure part (so when the
membrane bursts, the high pressure gas flows into a state close to vacuum).

Because a shock induces flow, meaning that the gas behind the shock prop-
agates in the direction of the shock, shock tubes can sometimes be used as wind
tunnels to look at aerodynamic aspects of high enthalpy flow. Using the shock
tube as a wind tunnel has an advantage; it is relatively easy to create high
pressures and high temperature flows that can be studied. A limitation is that
the test time is short, on the order of micro seconds, because the test is run
during the time when the shock has passed until either the contact surface or
the reflected wave arrives.

For a more detailed explanation of shock tubes and the conditions during
operation see Anderson (1990).

2.3. Shock reflection

When a shock wave interacts with a solid surface or another shock, there are
several possible types of shock reflections that can occur. They can be divided
into two groups: regular reflection and Mach reflection. A regular reflection
consists of an incoming shock, i, and a reflected shock, r, and is the simplest
configuration possible; see Figure 2.2 (a). For large angles between the flow and
the solid surface, a single shock cannot turn the flow to a direction parallel to
the wedge, so a three shock system is necessary. This is called a Mach reflection;
see Figure 2.2 (b). A three shock system consists of an incoming shock and a
reflected shock connected to a Mach shock, m, in a point called a triple point.
Between the Mach shock and the reflected shock there is a slip line, denoted
s in Figure 2.2 (b). The velocity of the gas on different sides of the slip line
is in the same direction but not necessarily of the same magnitude. The flow
deflection angle, 6, and the Mach number, M, behind an oblique shock are
functions of the free stream Mach number, M., the gas constant, v, and the
shock angle, a, and are given by

O(Myo, 7y, ) = cot ™! [(2(]%;1)2]\5% - 1) tana}, (2.6)

and
M(Mso,v, ) = \/(7 +1)2M sin? a — A(M3, sin® a — 1)(yMZ, sin® a + )

[2yM2 sin® a — (y — 1)][(y — 1) M2 sin? o + 2]
(2.7)

These equations can be found in NACA Report 1135 (1953).
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(a) (b)

FIGURE 2.2. Shock reflection for a pseudo steady shock. (a)
Regular reflection and (b) Mach reflection. My: free stream
Mach number, M: Mach number after shock, i: incident shock,
r: reflected shock, s: slip stream, m: Mach shock, 6: wedge
angle, a: shock angle.

The type of reflection that occurs is dependent on M., 7, and 0. It is
possible to determine the regions where the various types of reflections occur
by computing lower and upper boundaries for these. The lower boundary, i.e.
the minimum shock angle for a flow with a free stream Mach number M, is
given by the Mach wave angle, a sy :

apw = aresin(1/My). (2.8)

If the incident shock is strong, (the flow behind the incident shock is subsonic),
it is not possible for a reflected shock to exist and there cannot be any shock
reflection. This is the criterion for the upper boundary of the reflection domain.
The boundary is defined by a subsonic flow behind the incident shock and « is
obtained by solving equation (2.7) with the right hand side equal to one. The
solution is called the sonic incident criterion and is given by

-3+ M2 1 [(M2 —3)2 M2 1 1)2
aszarcsin\/7 + M (v + )+\/(74:L'M)2[( % =3+ v(ME +1)?]

(2.9)

The upper boundary for regular reflections is defined as the maximum angle
such that the flow turning angle of the reflected shock equals the flow turning
angle of the incident shock. This criterion is called the detachment criterion
and is found by computing the maximum angle o= from equation (2.6) and
then solving

9(M00777a) = H(MlDavuaemax(MlDa’Y))' (210)
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The solution to equation (2.10) is a fifth-degree polynomial in terms of sin® c:
Do + Dy sin® a + Dy sin* o + D3 sin® a4+ Dy sin® o + Dy sin'® o = 0, (2.11)

where coefficients Dy—Ds are given by

Dy = -—16,

Dy = 32M?% —4AM* — 48 M3y — 16 M*y + 16+2 —
16 M52 + 16 M2~ + AM 44,

Dy = —16M*+4MS — M® 4+ 104M*y 4+ 16M5y —

4MBy — 64M>~* — 32M A% + 8MOy? — 6MB+? —
56 M4y — 16 MO~y — AMB~3 — 12M~* — MBAH*,

Ds = M®—64MS + AM83~y + 96 M*y? + 64M 5~ +
14M8~y2 + 64M 63 + 20 MB~3 + 9MB~*

Dy = 8MB3y —64M°%y? — 3205842 — 2405343,

Ds = 16M%42.

Only one root of equation (2.11) is real and bounded and gives the detachment
criterion. The shock reflection domain is usually plotted for parameters (M, «)
and is shown in Figure 2.3. Here, only the upper and lower boundaries for
the reflection are plotted, along with the detachment criterion, above which
no regular reflection can occur. However, Mach reflection can occur below the
detachment criterion. As mentioned earlier, there are several possible shock
reflection configurations, such as regular reflection with subsonic or supersonic
downstream flow, Mach reflection with subsonic or supersonic flow downstream
of the reflected shock, Mach reflection with a forward reflected shock, inverted
Mach reflection and von Neumann reflection. Detailed descriptions of these
configurations can be found in Mouton (2006) or Hornung (1986).

Several criteria for transition from a regular reflection (RR) to a Mach
reflection (MR) exist. Three of these were proposed in von Neumann (1943)
and since then many more have been suggested; see Ben-Dor (1992, 2006). The
length scale concept was introduced in Hornung et al. (1979) and is the criterion
that agrees best with pseudo steady flow in experimental shock tube facilities.
The ongoing research on transition conditions for RR«<MR is motivated by
difficulties in matching theoretical and experimental results. One problem is
the persistence of regular reflections well past the theoretical maximum limit
and many publications address this problem; see Barbosa & Skews (2002).

2.4. Definition of stable converging shock waves

It is well known that a converging cylindrical shock wave is easily perturbed
from its original shape if there are any disturbances present in the flow. How-
ever, there is a certain measure of stability in these shock waves, because they
do not break up into several individual pieces. Instead, the regions with higher
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FIGURE 2.3. Shock reflection domain for y=1.4. Above the
sonic incident condition, no reflection is possible. Regular re-
flection is only possible in the region between the Mach wave
and the detachment condition.

curvature travel faster than the planar parts, and the shock evolves into an-
other shape. Several measures of stability were proposed by Fong & Ahlborn
(1979):

(i) radial stability: Ar/R, the perturbation radius normalized by the instan-
taneous radius of the converging shock,
(ii) area (or volume) stability: AA/A, perturbation area (or volume) normal-
ized by the instantaneous area A = 7R? (or volume V = 47R3/4),
(iii) form stability: where the angle, d, between the wave normal and the
radius is measured.

The measure of stability is divided into two categories: absolute stability, in
which case Ar/R, AA/A, and ¢ tend to zero before the shock wave has focused
and partial stability, where the parameters converge to a value much less than
unity.

A polygonal converging shock wave is always assumed to be stable. If
a polygonal shock wave undergoes regular reflection, then its shape will be



10 2. BASIC CONCEPTS

preserved and will not change during the focusing process. Alternatively, it may
undergo Mach reflection, thus changing its shape continuously as it focuses, but
in a completely predictable way.

2.5. The schlieren technique

Schlieren techniques are often used when visualizing density gradients, e.g. in
shock waves. The methods are rarely used for quantitative measurements of
density gradients but are very useful for the qualitative understanding of the
flow.

Optical methods for inhomogeneous media have been used for a long time.
In the early 1670’s Robert Hooke (1635-1703) demonstrated a simple version
of what is known today as the shadowgraph method to observe the convective
plume of a candle for several members of the Royal Society. Christiaan Huygens
(1629-1695) invented a version of the schlieren technique to look for striae in
glass blanks prior to making lenses from them. Jean Paul Marat (1743-1793)
published the first shadowgram of thermal plumes from hot objects. Marat
did not connect the thermal plumes with density gradients of a fluid; he in-
terpreted it as a proof of an “igneous fluid”. The invention of the schlieren
imaging technique is usually attributed to August Toepler (1836-1912), who
named the technique after the german word for optical inhomogenities in glass:
‘Schlieren’!. He used a light source, a knife edge, and a telescope, not too
different from today’s most common schlieren setups. Ernst Mach (1838-1916)
confirmed in 1877, by using schlieren optics, that non-linear waves of finite
strength could travel faster than the speed of sound, as earlier predicted by
Riemann (1860). Since then, many gas dynamics phenomena have been visu-
alized by the schlieren image technique. For a historical outlook and a detailed
description of the schlieren optics method, see Settles (2001).

The speed of light, ¢, and the refraction index, n, will vary with the density,
p, of the medium in which it is passing through. This means that light passing
through a region of compressible flow is diffracted due to the density changes
in the gas. The refraction index, n, can be written as a function of the density,

P,
n=—=140—. (2.12)

Here 3 is a dimensionless constant, ¢q is the speed of light in vacuum, and p,,
is the density at the standard state. The idea of the schlieren method is to
cut off part of the deflected light before it reaches the registry device and thus
produce darker (or brighter) regions on the photograph. If the density change
takes place over a distance which is less than the wave length of the light then
the optical method is sufficiently accurate.

L¢Schlieren’ is the plural form of ‘Schliere’ and is capitalized in German but not in English.



2.5. THE SCHLIEREN TECHNIQUE 11

A schematic diagram of the schlieren method is shown in Figure (2.4). A
light source is placed at (A) and the light becomes parallel after passing the
lens L. After passing the test section, the light is focused by the second lens
Ls. The focal plane of Lo is where the image of the light source appears, (4°).
A schlieren edge is placed at (4’) to cut off parts of the light. Depending on
how the light is intercepted, it will appear darker or brighter at the image plane
of the test section. It is important to notice that the point where the light hits
the focal plane of the test section does not change, it is just the amount of light
that changes.

Image of Test Section
Camera Position

Image of Light Source \
i y
i

Test Section

Light Source

® A

Ly

FIGURE 2.4. Schematic diagram of a schlieren system.

Depending on how the schlieren edge is shaped, the inhomogeneous media
under consideration will appear in various ways. The most commonly used
schlieren edge is a straight edge, which shows the density gradient in the flow
normal to the edge. Usually, a knife edge is placed normal or parallel to the
flow direction. It is possible to change the schlieren edge into other shapes
to enhance various properties. For example, a dark-field edge produces bright
higher-order features against a dark background. The dark-field filter can be
set up by a spherical schlieren edge, e.g. a pin-head. The quality and the
properties of the light source are also of importance for the quality of the
final schlieren photograph. Usually, incandescent lamps, flash lamps, or lasers
are used as light sources; see Vasil’ev (1971) and Settles (2001). Lasers are
expensive tools and not necessarily better for schlieren imaging. The typical
schlieren concept deals with a light source composed of individual rays that
do not interact with any other rays. This is not true for a laser because it
produces a parallel, monochromatic, and coherent light. A common problem
is that schlieren systems with coherent laser light sources become schlieren-
interferometers. This problem is further discussed and solutions are suggested
by Oppenheim et al. (1966).

In the present study, we use schlieren optics to study shock waves in a
gas. However, there are many other applications for schlieren optics, even for
phenomena in liquids. This technique can be used to study everything from
air flows in model green houses (see Settles (2000)) to supersonic jets.



CHAPTER 3
Review of earlier work on shock wave focusing

3.1. Previous work on shock wave focusing

Guderley (1942) was first to analytically investigate the convergence of cylin-
drical and spherical shock waves. Guderley derived a self similar solution for
the radius of the converging shock wave as a function of time, which can be

written as
R t\“
— =(1-—= . 3.1
= -(1-1) (3.1)

Here R is the radius of the converging shock wave, R, is the radius of the outer
edge of the test section, ¢ is the time, and ¢, is the time when the shock wave
arrives at the center of convergence. Guderley found the self similar power law
exponent for cylindrical shock waves to be a = 0.834. Since then, many more
investigations of the self similar exponent have been performed, and some of
the results are summarized in Table 1.

Self similar exponent

Guderley (1942) 0.834

Butler (1954) 0.835217
Stanyukovich (1960) 0.834

Welsh (1967) 0.835323
Mishkin & Fujimoto (1978)  0.828

Nakamura (1983) 0.8342, M, =4.0

0.8345, My = 10.0
de Neef & Nechtman* (1978) 0.835+0.003
Kleine* (1985) 0.832 + 0.028, -0.043
Takayama* (1986) 0.831 +0.002

TABLE 1. Self similarity exponents for converging cylindrical
shock waves. *Experiments.

The first experimental study on shock wave focusing was done by Perry &
Kantrowitz (1951). They used a horizontal shock tube with a tear-drop inset
in the test section to create cylindrical shocks. They studied converging and

12



3.1. PREVIOUS WORK ON SHOCK WAVE FOCUSING 13

reflecting shocks, visualized by the schlieren technique, at two different shock
Mach numbers (1.4 and 1.8). They found that creating perfect cylindrical
shocks was more difficult for higher Mach numbers because the shock strength
was increased. Perry & Kantrowitz suggested that this could be explained
by irregular membrane opening times and bad membrane material. Also, a
cylindrical obstacle was placed in the flow, and the result showed that the
center of convergence was displaced toward the disturbed side of the shock
wave. Another interesting observation was the presence of light in the center
of the test section during the focusing process. This was interpreted to be an
indicator of the presence of high temperatures, as the light was believed to be
caused by ionized gas.

Sturtevant & Kulkarny (1976) performed experiments on plane shock waves
which focused in a parabolic reflector mounted at the end of a shock tube.
Different shapes of parabolic reflectors were used. Results showed that weak
shock waves focused with crossed and looped fronts while strong shocks did
not. It was concluded that the shock strength governed the behavior during
the focusing process and that nonlinear phenomena were important near the
focal point.

Plane shocks diffracted by cones, a cylinder and a sphere were experimen-
tally investigated by Bryson & Gross (1961). A plane shock with a Mach
number of 2.82 was diffracted by a cylinder with a diameter of 1.27 cm. The
diffraction was followed through about seven diameter downstream of the cylin-
der and was visualized by a schlieren optics system. Results showed that when
the shock wave impinged upon the cylinder, at first a regular reflection oc-
curred. Between 40° and 50° from the forward stagnation point on the cylin-
der, Mach reflection begins. As the Mach shocks collide behind the cylinder, a
second Mach reflection is created. The experimental results were compared to
Whitham’s theory, Whitham (1957, 1958, 1959) and showed good agreement.

3.1.1. Design of annular shock tubes

In annular shock tubes used to produce and study converging shock waves,
the shock must turn through a 90° bend in order to reach the test section
and begin the convergence process. A simplified sketch of the annular part
of a shock tube is shown in Figure 3.1. Arrows indicate the direction of the
flow, the 90° bend is indicated by a circle and the test section is indicated
by an oval. The design of the 90° bend has a big influence on the resulting
flow after the shock passes it. The reflection and diffraction around 90° bends
were investigated experimentally by Takayama (1978). To find an optimal
shape for the bend, six different bends were tested, from sharp to smooth
corners. Shock Mach numbers ranged from 1.1 — 6.0. Results for the sharp
bend showed that the transmitted shock did not stabilize before it reached the
end of the exit duct. The exit was located at X/L=8.0, where X was the
distance along the duct and L was the height of the shock tube. Also, the flow
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Ficure 3.1. A simplified sketch of an annular shock tube.
The 90° bend is indicated by a circle and the test section is
indicated by an oval.

behind the shock never became uniform. Takayama stated that a sharp bend
“may be useless to obtain stable shock transmission.” A radius of curvature
larger than (R, + R;)/2L, where R, and R; are the outer and inner radius of
curvature of the walls, was enough for stable shock transmission. Converging-
diverging bends with smooth walls were also investigated and results showed
that they produced stable transmitted shocks. The best performance for a
converging-diverging bend was obtained for R, = 120 mm and R; = 20 mm.
Another design consisting of several contraction corners was studied by Wu
et al. (1980). Each contraction made sure that the Mach became an incident
shock in the succeeding element. With this design, the flow separation and the
strong pressure gradients behind the transmitted shock can be avoided. The
method used by Wu et al. was found to be useful even if the Mach reflection
was a double Mach reflection; see Ben-Dor (1981).

Smooth 90° bends were investigated both experimentally and theoretically
by Edwards et al. (1983). They used two bends (rectangular cross-section,
22x47.4 mm) with different radii of curvature, 75 mm and 150 mm. Incident
planar shocks with Mach numbers in the range of 1.2 < M, < 2.8 were in-
vestigated. A multi-spark light source together with a schlieren optics system
enabled five recordings of the shock position during each run. Hence, it was
possible to obtain the velocity of the shock at four times in the bend. As the
shock entered the bend, it suffered Mach reflection at the outer wall, and the
recovery time to a planar profile was faster for the shape with larger radius of
curvature. The velocity of the shock at both the inner and the outer walls was
influenced by the sharpness of the bend. The maximum velocity at the outer
wall and the minimum velocity at the inner wall were both obtained for the
sharper of the two bends. The results were compared to Whitham’s ray theory
and showed adequate agreement of both the enhancement of the shock at the
outer wall and the attenuation at the inner wall.

3.1.2. Stability of cylindrical shocks

An annular shock tube was used by Wu et al. (1981) to investigate the stability
of converging cylindrical shocks. Wu et al. perturbed the converging shock
with two kinds of artificial disturbances. The first disturbance consisted of
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four rectangular webs upstream of the cylindrical test section. Results showed
that a smooth square-shaped shock was formed, which later transformed into
a sharp rectangular shape. As the shock expanded, vortex pairs were observed
behind the shock front, and this was taken as a sign of the instability of the
converging shock. The second type of artificial disturbance utilized a cylindrical
rod with a diameter of 4.4 mm placed inside the test section at a radial distance
of 2.54 cm from the center. As the shock wave was diffracted by the cylindrical
rod, two pairs of Mach shocks and a reflected shock were generated. The shape
of the cylindrical shock was perturbed, and it did not regain its symmetry
during the focusing process. However, there was no observable shift in the
focal point of the converging shock as compared to the case without artificial
disturbances.

Both strong and weak converging shocks were investigated experimentally
and theoretically by Neemeh & Ahmad (1986). An annular shock tube with a
diameter of 152 mm was used to produce converging cylindrical shocks. Per-
turbations were produced by cylindrical rods of various diameters placed in
the path of the converging shock. The results showed that for a strong shock
perturbed by a cylinder, the focal region of the collapse shifted toward the
rod because the undisturbed part of the shock front traveled faster than the
disturbed part. On the contrary, for a weak shock, the focal region was located
outside the geometrical center because the disturbed part traveled faster than
the undisturbed part. For both cases, the size of the focal region was depen-
dent on the rod diameter. Neemeh & Ahmad defined a perturbation factor
for initially strong cylindrical shocks, e = AR/Rg, where AR is the distance
by which the perturbed part of the shock front is displaced from its undis-
turbed position and Rg is the instantaneous radius of the cylindrical shock
wave. The perturbation factor was measured for the experimental results and
then a mathematical equation was fitted to those results:

Rs._
e=[FEl(H") e, (3.2)
0
Here £ = d/ Ry, where d is the diameter of the cylindrical rod, Ry is the radius
at which the rod is placed, and the functions F' and G are given by

F(&) = 0.182(€) — 24.59(¢)% 4 349.19(€)® — 118.6(£)*, (3.3)
G(&) = 0.67 4 3.22(€) — 38.7(6)* + 121.4(¢)*. (3.4)

Takayama et al. (1984) used a horizontal annular shock tube to produce
converging shock waves with initial shock Mach numbers in the range of 1.10
— 2.10. The supports for the inner tube consisted of cylindrical rods with
a diameter of 12 mm and the area contraction due to the supports was less
than 7%. A double exposure holographic interferometer was used to visualize
the converging shock wave and the flow behind it. Close to the center of
convergence, the initially cylindrical shock wave became square-shaped. This
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was referred to as a mode-four instability. No relation was found between
the position of the four supports for the inner tube of the annular shock tube
section and the square shaped shock. Artificial disturbances in the form of 12
cylindrical rods were introduced just after the 90° corner. Close to the focal
point, a square-shaped shock was again observed, and the authors concluded
that an instability of mode four existed near the center. The diverging shock
resumed a stable cylindrical shape.

Takayama et al. (1987) used two different horizontal annular shock tubes
to investigate the stability and behavior of converging cylindrical shock waves.
One shock tube was located in the Stolwellenlabor, RWTH Aachen, and one in
the Institute for High Speed Mechanics, Tohoku University in Sendai. One of
the goals was to find out if a stable converging cylindrical shock wave could be
produced. The results showed that the shape of the shock wave was very sensi-
tive to disturbances in the flow. Both shock tubes were equipped with supports
for the inner body, and these supports caused disturbances that changed the
shape of the shock wave. The Aachen shock tube had three supports, near the
center of convergence, the shock wave was always triangular, showing a mode-
three instability. The Sendai tube had two sets of four supports. Although the
area contraction from these supports was rather small, the converging shock
showed a mode-four instability as a result of their presence. To investigate the
effect of disturbances, cylindrical rods were introduced upstream of the test
section in the Sendai shock tube. It was found that the shock wave was signif-
icantly affected by these rods during the first part of the converging process.
Later, as the shock wave reached the center of convergence, the mode-four in-
stability was again observed. Takayama et al. concluded that the disturbances
caused by the supports could not be suppressed by the cylindrical rods. Also,
the instability, i.e. the deviation from a cylindrical shape, was found to be
more significant for stronger shocks.

To minimize disturbances in the flow, a vertical shock tube with an unsup-
ported inner body was used by Watanabe et al. (1995). Special care was taken
to minimize possible disturbances in the shock tube to enable production of
perfect cylindrical converging shock waves. The results showed that the cylin-
drical shock waves tended to be more uniform than in horizontal shock tubes
with supports. Still, when the shock wave reached the center of convergence, it
was not perfectly cylindrical. This was believed to be caused by small changes
of the area in the co-axial channel between the inner and outer body of the
shock tube. To study the influence of artificial disturbances, a number of cylin-
drical rods were introduced in the flow. Different numbers of rods were used,
and Watanabe et al. concluded that when there was a combination of modes,
the lowest mode was strongest and suppressed the other ones.

3.1.2a. Numerical simulations. A numerical study of initially weak cylindrical
converging shock waves was done by Book & Loéhner (1990). The authors
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simulated the experiments of Takayama et al. (1987) and tried to verify that a
mode-four instability was present in the simulations as well. A finite element
scheme with triangular grid cells and adaptive mesh refinement was used for
the simulations. Results showed that weak shocks with an initial Mach number
of 1.1 became square-shaped close to the focal point, while shocks with an
initial Mach number of 2.1 only vaguely became square-shaped. The authors
explained that this was caused by a mode-four instability growing faster than
other modes. It should be noted that the square is aligned with the principal
directions in the grid, and it should not be ruled out that the shape is due to
discrete effects.

A numerical study by Demmig & Hehmsoth (1990) also compared results
to experiments by Takayama et al. (1984, 1987). The initial conditions of the
numerical simulations were taken from the experiments. The initial shape of the
shock front was not circular, but was given a mode-four deformation to match
the experimental results. As the shock reflected, the shock front approached
a circular shape. The simulation agreed well with the experimental results.
Also, converging shock waves with higher Mach numbers were studied and
electron density profiles were computed. Results showed that ionization took
place behind the incident shock close to the focal point and that it increased
after the reflected shock had passed.

3.1.3. Polygonal shock waves

Schwendeman & Whitham (1987) used the approximate theory of geometri-
cal shock dynamics by Whitham (1957) to study the behavior of converging
cylindrical shocks. They showed that a regular polygon undergoing Mach re-
flection will keep reconfiguring with successive intervals, i.e. transforming from
an n-corner polygon to a 2n-corner polygon and then back again. Further,
Schwendeman & Whitham showed that the shock Mach number for polygonal
converging shock waves, subjected to Mach reflection, will increase exactly as
that for a circular converging shock. They also showed that perturbed polyg-
onal shock waves with smooth corners (without plane sides), first form plane
sides and sharp corners. Then the shock wave oscillates between the two con-
figurations until it reaches the center of convergence and starts to reflect. This
behavior was later confirmed by Apazidis & Lesser (1996) and Apazidis et al.
(2002) for a smooth pentagonal converging shock wave in both experiments
and in numerical simulations. The experiments were performed in a two di-
mensional chamber with a smooth pentagonal shape. A diverging shock wave
was produced in the center of the chamber by an exploding device, either an
exploding wire or an igniting spark. The diverging shock propagated outward
until it was reflected off the walls of the chamber and then started to converge.
It was observed that the shock wave assumed the same shape as the smooth
pentagonal shape of the boundary where the reflection occurred. The curved
sides became planar, but the transforming process (five corners to ten corners
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and back again etc. ) was not observed due to disturbances at the center of the
chamber caused by the initial explosion that created the shock. A detailed ex-
planation and the results obtained in this study are given in Johansson (2000).

The focusing and reflection behavior of initially regular polygon-shaped
shocks were investigated by Aki & Higashino (1990). A finite difference scheme
was used to solve the two dimensional compressible Euler equations. The gas
was assumed to be ideal and inviscid. The initial Mach numbers were constant
along the sides of the polygon, and they ranged from 1.4 to 2.1 in a series of
various tests. An equilateral triangle regular reflection was observed and the
shape of the triangle was preserved during the focusing process. For polygons
with more than three sides, Mach reflection and thus a reconfiguration process
was observed. All of the regular polygons tested in that study focused at the
geometrical center of the initial polygonal shock. As the shock started to reflect,
the shock front became rounded and straight sides were not observed anymore.

A self similar solution for the focusing process of two dimensional equilat-
eral triangular shock waves was investigated in Betelu & Aronson (2001). This
solution shows that the corners of the triangular shock wave undergo regular
reflections and preserve the triangular shape during the whole focusing process
for certain values of Mach numbers and initial conditions. The energy density is
bounded for this solution, which means that the Mach number will approach a
constant value at the focus. This is in contrast to symmetric polygonal shocks
that suffer Mach reflection at the vertices, in which case the Mach number
increases as the shock approaches the focus. However, if the criteria for regu-
lar reflections for the triangular shock wave are violated, then a reconfiguring
process with Mach reflection takes place.

3.1.4. Three dimensional shock wave focusing

All the previously mentioned experiments have been performed for cylindrical
shock waves. Production of spherical, converging, shock waves was studied by
Hosseini & Takayama (2005). A test section with transparent walls and an
inner diameter of 150 mm was used. The diverging shock wave was generated
by small explosives in the center of the test section. The shock wave was not
spherical immediately after the explosion, but as it propagated further out it
quickly approached a spherical shape. Hosseini & Takayama concluded that a
diverging shock wave was always stable. The diverging shock wave reflected off
the wall of the test section and started to converge. The converging shock wave
kept its spherical shape until it started to interact with the detonation products.
Comparisons were made with both Guderley’s similarity law and the Chester-
Chesnell-Whitham method. Both methods showed a reasonable agreement
with the experimental data. However, the methods overestimated the speed of
the shock wave, since neither of them take into account the flow ahead of the
shock wave. The shock wave in the experiments was visualized in two different
ways, both by double-exposure holographic interferometry and by a high-speed
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video camera (100 sequential images with a frequency of 1,000,000 images/s)
with the shadowgraph method. The usage of a high speed camera was a new
method to visualize the entire focusing process for an individual shock wave.
Previously, only one photograph was taken for an individual shock wave. Thus
it was hard to keep exactly the same experimental conditions (Mach number,
pressure, etc. ) for each shock wave.

3.1.5. Imploding detonation waves

Imploding detonation waves were generated and investigated in Knystautas
et al. (1969). The authors produced a two dimensional shock front in the shape
of a regular polygon consisting of 30 sides, see Knystautas & Lee (1967) for
further experimental details. Knystautas et al. followed the wave structure as
the detonation wave converged. It was reported that Mach reflections occurring
between the sides of the polygonal wave induced a smoothing effect on the shape
and that it eventually became cylindrical; the detonation wave was stable. A
spectroscopic analysis suggested that high temperatures, 1.89 - 10° K, were
obtained as the shock reflected from the center, and at the same time, a bright
flash was generated at the center of convergence.

The stability of cylindrical imploding detonation waves was further investi-
gated by Knystautas & Lee (1971). A coaxial tube was used and the detonation
wave was initiated by a high-energy spark plug at the beginning of the tube.
A cylindrical implosion chamber, with a diameter of 80 mm and a thickness
of 10 mm, was mounted at the rear end of the coaxial tube. The implosion
wave entered the cylindrical chamber through a converging-diverging 90° bend
to minimize the attenuation effects. In this work, an artificial disturbance in
the form of a cylindrical rod with a diameter of 3.2 to 9.6 mm was introduced
in the implosion chamber. The authors concluded that cylindrical converging
detonation waves were stable since the bright spot at the focal point appeared
at the same location in every experiment. Also, for the case with a rod of diam-
eter 3.2 mm placed at the rim of the implosion chamber, the disturbances on
the detonation front decreased and the wave regained its cylindrical symmetry
before it collapsed.

Further investigations of imploding shock waves were made by Roig &
Glass (1977) in a hemispherical chamber. A blast wave was produced at the
center of the chamber. It decayed into a detonation wave and travelled out-
ward and reflected from the walls, resulting in a converging detonation wave.
The measured peak temperatures were around 5,000 K. Roig & Glass (1977)
also indicated that the temperatures obtained in Knystautas et al. (1969) were
overestimated due to the invalid use of Wein’s law, and they postulated that
the actual peak temperature probably lay below 10,000 K. A spectroscopic
temperature measurement at an implosion focus in a 20 cm diameter hemi-
spherical cavity was performed by Saito & Glass (1982). They measured the
radiation intensity distributions and fitted these to black-body curves. Results
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showed that temperatures were 10,000-13,000 K for imploding shock waves and
15,000-17,000 K for imploding detonation waves.

A spectroscopical study of the light emission seen during the convergence
process was also performed by Matsuo et al. (1985). Light emission was ob-
served as the shock wave collapsed and the full width at half maximum of the
light pulse was 2.0-2.5 ps. The luminous diameter of the plasma core from the
spectrograph recordings was 5 mm and the corresponding diameter observed
with a camera recording was 5-8 mm. The larger value from the camera record-
ing was due to the longer exposure time, which allowed the shock wave to travel
a distance of up to 3 mm during the recording. Temperature measurements
ranged from 13,000-34,000 K depending on the initiation energy.

Still, after more than six decades of ongoing research in the field of shock
wave focusing, open questions remain and are summarized below.

e Can a stable and repeatable converging shock be created?

How does the shape of the shock wave influence the focusing and reflec-
tion behavior?

What causes the light emission during the focusing process?

What is the spectrum of the emitted light?

What parameters influence the amount of light emission?

What models should be used for numerical simulations of shock wave
focusing?

®e @€ O O

Questions marked e are considered in this thesis.



CHAPTER 4
Experimental setup

The experiments were carried out at the Fluid Physics Laboratory at KTH
Mechanics. The experimental setup consists of a horizontal shock tube, a light
source, and a schlieren optics system. The shock tube has a test section where
shock waves are focused and reflected. The process is visualized by the schlieren
system with a camera. The experimental setup is shown in Figure 4.1.

FIGURE 4.1. Schematic overview of the experimental setup:
1. Shock tube, 2. Pulse laser, 3. Schlieren optics, 4. PCO
CCD camera, 5. Lens, 6. Schlieren edge.

4.1. The shock tube

The shock tube used in the present experimental studies is a typical setup for
analysis of converging shocks. Similar setups have been used by several other
investigators, see for example Perry & Kantrowitz (1951); Takayama et al.
(1984); Neemeh & Ahmad (1986). The new feature with this shock tube is that
the outer boundary of the test section is exchangeable and various geometrical
shapes can be used.

The 2.4 m long circular shock tube consists a high pressure part and a low
pressure channel which are separated by a 0.5 mm thick aluminum membrane.
An illustration of the shock tube and its main elements is shown in Figure 4.2.
To create a shock wave, the low pressure channel is evacuated of gas to a given
pressure. Then the high pressure part is filled with gas, and at a given pres-
sure difference between the two parts, the membrane bursts. The shock wave
becomes planar as it travels downstream in the inlet section of the low pressure

21
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channel. The pressures in the high and low pressure parts are monitored by
sensors, see Figure 4.2.

To control the membrane opening, a knife-cross is placed in the inlet of
the low pressure channel. The knife-cross helps the membrane to open evenly,
shortens the time until a fully developed shock has formed, and prevents un-
necessary disturbances. It helps prevent pieces of the membrane from coming
loose.
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FIGURE 4.2. Schematic overview of the shock tube setup: 1.
High pressure part, 2. Low pressure channel: inlet section, 3.
Low pressure channel: transformation section, 4. Low pressure
channel: test section, 5. High pressure sensor, 6. Low pressure
sensor, 7. Vacuum valve, 8. Vacuum pump, 9. Shock sensors.

When the plane shock wave reaches the transformation section, the shock
wave is forced to become annular by a conically diverging section where the
diameter increases from 80 mm to 160 mm; see Figure 4.3. The cross-sectional
area is held constant from the inlet section through the transformation section.
The annular section is formed by an inner body mounted coaxially inside the
wider diameter outer tube.

The 490 mm long inner body, with a diameter of 140 mm, is held in place
by two sets of four supports. The two sets are placed 30.75 cm apart, and the
supports are shaped as wing profiles to minimize the disturbances on the flow.
Also, the second set of supports is rotated 45° relative to the first set. The
shock speed, Us, is measured by sensors placed in the annular section. The
sensors are triggered by the temperature jump caused by the passage of the
shock wave.

The test section is mounted at the end of the annular part of the shock
tube. After a sharp 90° bend, the annular shock wave enters the test section
and the focusing and reflection process begins. The gap between the two facing
glass windows in the test section is 5 mm, reducing the cross-sectional area to
half of that in the annular part.
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FIGURE 4.3. The annular part of the shock tube: 1. Inner
body with a cone, 2. Supports, 3. Mirror, 4. Lens, 5. Glass
windows for visualization, 6. Test section.

4.2. Method to shape the shock waves

Two different methods are used to create a polygonally shaped converging shock
wave. In the first method, the shape of the shock wave is determined by the
shape of the outer boundary of the test section. Four different outer boundaries
of the test section are been used in the present experiments: a circle, a smooth
pentagon, a heptagon and an octagon. The radius for the circular reflector
boundary is 80 mm. The shape for the smooth pentagonal boundary is given
by the following equation:

7o

"I e cos(50) (4.1)

where r is the radius, € = 0.035 and g = 77 mm. The radius for the circum-
scribed circle is 80 mm, both for the heptagonal and the octagonal reflector
boundaries. The four reflector boundaries are shown in Figure 4.4.

(a) Circular. (b) Pentagonal. (c) Heptagonal. (d) Octagonal.

FIGURE 4.4. The four outer boundaries for the test section
used in the experiments.
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In the second method, an initially cylindrical shock wave produced by
the circular outer boundary is perturbed by metal cylinders placed in various
patterns and positions between the two facing glass windows inside the test
section. The cylinders have three different diameters: 7.5, 10 or 15 mm. The
cylinders are equipped with rubber rings on one end and glue on the other end
and are held in place by the pressure between the two facing glass windows.
The method to place these cylindrical obstacles in the test section is both safe
and adjustable. An example with 16 cylinders (two octagonal patterns of radius
r = 46 mm) where the cylinders alternate between diameters of 10 mm and
15 mm is shown in Figure 4.5.
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FIGURE 4.5. Rear part of the shock tube with 2x8 cylinders,
where every other cylinder has 15 mm and 10 mm diameter,
placed in the test section at r = 46 mm.

It is worth noting that the supports were adjusted to produce a minimal
disturbance for the experiments with the heptagonal reflector boundary; for the
other shapes, two of the supports were not optimally positioned. The optimal
position is where the chord of the wing profile is aligned with the flow, so that
the wing profile is an aerodynamic body. The case with a not optimal position
was obtained when the wing profile was placed so that the chord of the profile
was perpendicular to the direction of the flow, thus creating a bluff body.

4.3. The shock visualization

The facing surfaces in the test section consist of glass windows, and the con-
vergence and reflecting process is visualized by the schlieren optics method.
An air-cooled Nd:Yag (NewWave Orion) laser is used as a light source. The
laser is operated in single shot mode with 5 ns light pulses. The laser is placed
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outside the shock tube, either parallel or normal to the axis of the shock tube.
If the laser is placed parallel to the axis, then a mirror is used to deflect the
light through the laser light entrance on the shock tube.

The laser light entrance is a hole with a diameter of 6 mm through one
of the upstream positioned supports for the inner body. When the laser light
beam has entered the shock tube, it is deflected in the axial direction by a
mirror placed inside the inner body. To simplify the adjustments of the optical
setup, an electric motor is attached to the mirror in order to fine tune it after
the equipment is in place. After hitting the mirror, the laser light enters a
beam expander that produces a parallel light. The beam expander consists of
two lenses. The first lens is biconcave with a diameter of 6 mm and a focal
length of -8 mm. The second lens is plane convex with a diameter of 95 mm
and a focal length of +300 mm. After the beam expander, the parallel light
passes the first glass window, enters the test section, and then leaves the shock
tube via the rear end glass window to enter the schlieren optics system.

4.3.1. The schlieren optics

The receiver part of the schlieren optics system is placed 1150 mm from the
rear glass window of the shock tube. The receiver system consists of a large
lens, 185 mm in diameter, with a focal length of 1310 mm and two mirrors that
deflect the light into the section located at the top of the system.

The schlieren edge is placed in the image plane of the light source to cut
off parts of the deflected light beams. Usually, the schlieren edge is a straight
edge, but in this experiment, a spherical needle-point with a radius of 1 mm
was used. This schlieren edge was chosen to match the shape of the shock wave,
and it also produces a so called dark-field filter, which gives bright higher-order
features against a dark background; see Settles (2001).

After passing the schlieren edge, the light goes through a lens and then
enters the camera. The camera is a CCD PCO SensiCam (12 bits, 1280 x 1024
pixels, pixel size: 6.7 x 6.7 pm) equipped with a Canon lens with a focal length
of 80 mm.

For experiments with the heptagonal reflector boundary and the cylindrical
obstacles, special care was taken to avoid spurious light reflections inside the
inner body by adding a light-absorbing coating to the interior of the inner body.
This was done to obtain higher quality photographs.

4.3.2. The shock speed measuring device and time control

Two units, each containing a sensor and amplifier, are placed in the wall of
the outer tube in the annular part of the shock tube. The sensor element is a
70 mm long glass plug with a diameter of 17 mm and a thin strip of platinum
paint at the end. The glass plug is mounted in a hole so that the end surface
(with the platinum paint) is flush with the inner surface of the tube.
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The resistance of platinum is temperature dependent, so when the shock
wave passes the sensor, the resistance of the platinum is changed due to the
temperature increase caused by the shock wave. This change in resistance is
transformed to a voltage pulse via an electric circuit which can be monitored
on an oscilloscope. The electric circuit consists of an amplifier, an AD845
operational amplifier with a settling time of 350 ns to 0.01%. The glass plug
is shown in Figure 4.6 and the circuit diagram of the electric circuit is shown
in Figure 4.7.

FIGURE 4.6. A sensor for shock speed measurement consisting
of a glass plug with a thin strip of platinum paint at the end
surface.

A time delay unit (Stanford Research System, DG535) is used to control
the laser and the camera to enable exposures of the converging shock wave at
predetermined time instants. This is necessary because it is not possible to
take more than one photograph during each run.

4.4. The light measurements

During the light emission measurements, a photomultiplier (PM) tube is con-
nected to the rear end of the shock tube. The PM tube (RCA 4526) is a light
detector, and the time resolved output signal is proportional to the number
of photons detected at each moment. The PM tube is placed in a light-sealed
plastic cover to ensure that the detected light is originating from the converging
shock wave and not from light sources within the laboratory. It is possible to
mount the PM-tube in two different positions inside the cover, and one of these
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FIGURE 4.7. Circuit diagram for the amplifier. Resistances in
kQ and capacitances in pF.

will allow the use of schlieren optics and the PM-tube simultaneously. The PM
tube is operated at -1,100 V during all experiments.



CHAPTER 5
Experimental results

In this chapter, the results from the experiments on shock wave focusing are
presented briefly. The goals of the experimental study were to find out if we
could create stable and repeatable converging shocks and to analyze how the
shape of the shock wave influenced the focusing behavior. Furthermore, we
continued to investigate the light emission that appeared during the focusing
process. The questions we investigated were ¢) “When does the light appear?”,
it) “What parameters are important for the amount of light emitted?”, and
ii1) “Why is there light?”

The experimental results are divided into two sections. First, results from
the two methods to generate polygonal shock waves are discussed. In the second
section, the results from the light emission experiments are evaluated. Papers
1-5 enclosed in the second part of this thesis provide more details and further
discussions on the results presented in this chapter.

5.1. Generation of polygonal shock waves

Two different methods were used to create polygonal converging shock waves.
The first method consisted of changing the geometrical shape of the outer
boundary of the test section. In the second method, an initially cylindrical
shock wave was perturbed by cylindrical obstacles placed in various patterns
and positions inside the test section.

Figure 5.1 shows schlieren photographs of a converging shock wave, shaped
by the heptagonal outer boundary in Figure 4.4 (c), are shown. At first, the
converging shock assumes the shape of the boundary, a heptagon, as in Fig-
ure 5.1 (a). Next, the heptagon-shaped shock will transform into a double
heptagon because the corners consists of Mach shocks that propagate faster
than the adjacent planar sides; this is shown in Figure 5.1 (b). The double
heptagon transforms back to a heptagon when the faster moving Mach shocks
consume the planar sides. At this configuration, the resulting heptagon is ori-
ented opposite to the original one, see Figure 5.1 (¢). This reconfiguration
process will, according to theoretical and numerical results, continue during
the rest of the convergence process if there are no disturbances present. Fi-
nally, the shock converges, reflects in the center, and starts to diverge. At first,
the reflected shock assumes a circular shape, but it will later be influenced by
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the flow ahead of it and transform into a smoother version of the initial shape.
To see this, compare Figures 5.1 (e) and (a).

The same behavior is observed for all polygonal converging shocks produced
by the four different reflector boundaries. More results can be found in Eliasson
et al. (2006) and Eliasson (2006); these are Papers 1 and 3 in the second part
of the thesis.

A typical series of schlieren photographs of a polygonal converging shock
wave is shown in Figure 5.2. The converging shock wave is perturbed by eight
cylinders with diameters of 15 mm placed in an octagonal pattern centered
about the focal point. The shock wave diffracts over the obstacles, and Mach
shocks and triple points form between the converging shock, the reflected shock,
and the Mach shocks. As the shock wave passes the obstacles, an octagon-
shaped shock with curved sides will form; see Figure 5.2 (a). The curved sides
eventually become planar and the shock reconfigures as mentioned previously:
a double octagon, shown in Figure 5.2 (b), transforms back into an octagonal
shape, in (c), which is oriented opposite to the octagon in (a). After the shock
wave has reflected, it will assume a circular shape; see Figure 5.2 (d). The main
conclusions from the experiments with cylindrical obstacles are the following:
the size of the cylinder determines how much the shock will be perturbed,
and while the shape of the shock is easily perturbed, it is hard to move the
position where the shock wave will focus. More results and further discussions
on experiments with cylindrical obstacles are presented in Eliasson et al. (2007);
see Paper 2 in section two of this thesis.

Schlieren photographs of a heptagonal converging shock are shown in Fig-
ure 5.3. In this figure, it is possible to see that the sides of the polygonal shock
are, at first, rather planar; see Figure 5.3 (a). Then, as the reflected shock
interacts with the converging shock, the plane sides become more curved; see
Figure 5.3 (b). When the reflected shock has passed by the converging shock,
the curved sides become planar, as mentioned earlier. Then, the transformation
process takes place; see Figures 5.3 (c¢)—(d).

5.2. Shape of the shock wave close to the center of focusing

The various geometrical shapes that we investigated and compared to each
other can be divided into three groups: a cylindrical shock, an initially cylin-
drical shock perturbed by cylindrical obstacles, and polygonal shock waves
created by changing the shape of the outer boundary of the test section.
Figure 5.5 shows close-ups of various geometrical shapes from shock waves
in the three groups mentioned above. The geometrical configurations of the
obstacles for the photographs in Figure 5.5 (b)—(j) are shown in Figure 5.4.
The scale used in all photographs in Figure 5.5 is nearly identical, except that
the scale used in (j) is 25% larger than those used in the other photographs. A
cylindrical shock wave is unstable, and hence it will be influenced even by small
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(a) t =10 us (b) t =20 ps

(c) t=22 ps (d) t =35 pus

(e) t="T5 ps

FIGURE 5.1. A polygonal shock wave transforming between a
heptagonal and a double heptagonal shape during the focusing
process. In (a)-(c) the shock is converging and in (d) and (e)
it has reflected and is diverging.
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(b) t =10 us

(c) t =17 ps (d) t =40 ps

FIGURE 5.2. An initially cylindrical converging shock wave
perturbed by eight cylinders placed in an octagon pattern. In
(a)-(c) the shock is converging and in (d) it has reflected and
is out-going.
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(c) t =15 ps (d) t =20 ps

FIGURE 5.3. An initially cylindrical converging shock wave
perturbed by seven cylinders placed in a symmetric heptagon
pattern. The shock is converging.
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disturbances present in the shock tube. Disturbances are generated by the sup-
ports for the inner body of the annular part of the shock tube. Although the
supports are shaped as wing profiles to minimize disturbances, they still affect
the flow. Owing to the inherent instability of converging cylindrical shocks, an
initially cylindrical shock wave becomes square-shaped close to the center of
convergence; see Figure 5.5 (a). The square-like shape becomes visible close to
the focal point. For the case with one 15 mm diameter cylinder, the shape re-
sembles a teardrop; see (b). In Figure 5.5 (¢) and (d), two cylinders are placed
opposite each other; in (c) both of them were 15 mm in diameter, and in (d)
one was 15 mm and one was 7.5 mm in diameter. Here it is possible to see that
the undisturbed parts travel faster than the disturbed parts, resulting in an
elongated diamond-shaped shock. For the case with cylinders of different sizes,
the second Mach shock, (resulting from a collision between the first two Mach
shocks), is more developed. Three cylinders, placed in a triangular pattern,
produced a triangular shock close to the center of convergence; see Figure 5.5
(e). For this case, the shock undergoes regular reflection and thus maintains
the same shape through the convergence process. The cylinders are located op-
posite to the corners of the triangle. In the next example, where four cylinders
are placed in a square formation, a square-shaped shock is created and Mach
reflection takes place; see Figure 5.5 (f). At this instant, the plane sides are lo-
cated opposite the corners, and one full cycle of the reconfiguration process has
taken place. The square in (f) is oriented differently compared to the square
in (a), suggesting that the four cylinders are the reason for the final shape,
rather than the four supports. Seven and eight obstacles placed in symmetric
polygons created heptagonal and octagonal shapes respectively; see Figure 5.5
(g) and (h). A shock wave perturbed by sixteen cylinders, where every other
cylinder has a diameter of 10 mm and 15 mm (see Figure 4.5), is shown in
Figure 5.5 (i). The disturbances from the larger cylinders overtake the distur-
bances from the smaller cylinders and the shock becomes octagon-shaped close
to the center. Five of the cylinders (in a row) from the configuration in (i) are
kept and and three smaller cylinders (7.5 mm diameter) are added at the same
radial position as the larger cylinders, see Figure 5.5 (j). The shock shape close
to the center is elongated, and its center point is hardly moved. The pentagonal
outer boundary is used in Figure 5.5 (k), and a pentagonal shape is observed.
A heptagonal reflector boundary creates a heptagonal shape close to the center
of focusing, while an octagonal reflector boundary creates a square-like shape,
see (1) and (m), respectively. The square-like shape in (m) originates due to the
disturbances from the supports for the inner body, as opposed to the circular
case in (a).

In summary, the results show that converging shock waves with an even
number of sides generated by the reflector boundaries will be influenced by the
four supports and become square-shaped close to the center of convergence.
However, shock waves with an even number of sides generated by cylindrical
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obstacles will not be influenced by the four supports. All shocks with an odd
number of sides will also remain unaffected by the four supports.
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FIGURE 5.4. Obstacle configuration for the schlieren pho-
tographs in Figure 5.5: (a) one cylinder, (b) two cylinders,
(¢) two cylinders, (d) three cylinders, (e) four cylinders, (f)
seven cylinders, (g) eight cylinders, (h) 16 cylinders and (j)
3x15 mm, 2x10 mm and 3x7.5 mm.
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FIGURE 5.5. Schlieren photographs of shock waves close to
the center of convergence for different shapes (a) cylindrical
outer boundary, (b) one cylinder, D=15 mm, (c) two cylinders,
D = 15 mm, (d) two cylinders, D=7.5 mm and 15 mm, (e)
three cylinders D=15 mm, (f) four cylinders, D=15 mm, (g)
seven cylinders D=15 mm, (h) eight cylinders D=15 mm, (i)
16 cylinders, 8x15 mm and 8x10 mm in diameter, (j) 3x15 mm,
2x10 mm and 3x7.5 mm, (k) pentagonal outer boundary, (1)
heptagonal outer boundary and (m) octagonal outer boundary.
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5.3. Light emission from converging shock waves in air and
argon

A series of experiments have been conducted to investigate the light emission
caused by converging shock waves. In particular, we looked at where the shock
was positioned when the light appeared, how long the light was emitted, and
how the shape of the converging shock wave influenced the light emission. Also,
two different gases were tested, air and argon. To study the light emission, we
looked at the light intensity as a function of time by using a photo multiplier
(PM) tube. Also, the spatial appearance of the light emission was studied by
taking photographs of the light spots, with the same CCD camera as used to
obtain the schlieren photographs.

A typical time signal from the PM tube is shown in Figure 5.6. The signal
from the PM tube shows the light intensity level as a function of time. At
first nothing happens; it is dark in the test section of the shock tube. As
soon as light is detected, the signal from the PM tube decreases below zero.
The deviation from the reference voltage level, (the reference level is when
there is no light), is proportional to the intensity of the detected light and also
dependent on the voltage operating the PM tube. The same voltage level (-1100
V) was used for all experiments. The full width at half maximum (FWHM)
of the light emission signal is about 200 ns for this case. This is considerably
longer than the FWHM for a sonoluminescence pulse, which is on the order of
several hundred picoseconds; see experimental results by Gompf et al. (1997)
and simulations by Vuong & Szeri (1996).

A comparison of the amount of emitted light was made for various shapes
of converging shock waves. If we ignore the fact that a different amount of
the shock wave is reflected back due to various shapes of reflectors or numbers
of obstacles, the unperturbed cylindrical converging shock wave is the best at
producing light. The geometrical shapes which are far from cylindrical, i.e. the
triangular and the one-obstacle case, produce the least amount of light. We
believe that this is due to the fact that the various parts of the shock front
arrive at the focal point at different time instants. Also, the triangular case
will undergo regular reflection during the focusing process. This means that
the shape will remain the same and the Mach number remains bounded, which
leads to a bounded energy as the triangular shock converges; see Betelu &
Aronson (2001).

Photographs of the light emission were taken with the CCD camera. The
CCD photographs were saved as 16-bit grayscale data, where only 12 bits
were used for the actual data (because the camera sets the highest four bits
to zero), resulting in 4096 shades of gray. The exposure time for the CCD
camera was set to 1 ms, a long time compared to the actual length of the light
pulse. This means that the shock wave will hit the focal point and reflect back
and disappear outside of the photograph frame before the CCD camera stops
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FIGURE 5.6. A typical signal from the PM-tube in the case
with the cylindrical shock.

recording. An example is shown in Figure 5.7 for argon as test gas and the
octagonal outer boundary. The size of the light spot is approximately 1 mm in
diameter, which is smaller than the results obtained by Matsuo et al. (1985).
In that case, the light spot was about 5-8 mm, taken with an exposure time
of 0.4 pus. The upper right corner of the graph shows the gray level values in a
cut through the center of the photograph.

5.4. Remarks

There is a restriction when using reflector boundaries to change the shape
of the shock: it is not possible to use polygonal shapes with less than seven
planar sides and corners. The boundary would then block parts of the 90°
corner where the shock is propagating when it turns into the test section. The
second method, with obstacles, is more flexible because it allows one to place
the objects in any geometrical pattern.

The various methods to create polygonal shock waves will reflect back a
different amount of the shock front, and hence the wave energy reaching the
focal point will vary for the different cases. It would be desirable to ensure that
the same amount of energy would reach the focal point by varying the initial
conditions from the separate geometrical setups. Also, the reflector boundaries
reflect back parts of the flow before the shock wave has turned around the 90°



38 5. EXPERIMENTAL RESULTS

3500

3000

2500

2000

Gray value

1500

1000

500

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
400 450 500 550 600 650 700 750 800 850
Position in pixels

FIGURE 5.7. Light emission from argon in the low pressure
channel. High gray value - bright pixels, low gray value - dark
pixels. The octagonal outer boundary is used.

corner, so the amount of flow entering the test section is reduced compared to
the case with obstacles.



CHAPTER 6

Numerical simulations

Shock front propagation problems are often solved numerically using geometri-
cal acoustics, geometrical shock dynamics (GSD) or the full set of Euler equa-
tions. Geometrical acoustics is a linear method used to solve shock propagating
problems for weak shocks and is similar to the way light rays are treated in op-
tics. This method cannot be used for problems with stronger shocks for which
the nonlinear effects become important. GSD was introduced by Whitham
(1958) and the method is further described in Whitham (1974). The original
GSD method does not account for the influence of the flow ahead of the shock.
A detailed explanation on how to use GSD for shock propagating problems can
be found in Henshaw et al. (1986), which shows results from different cases of
shock propagation such as shock wave diffraction, shock waves in channels, and
shock wave focusing.

Two numerical methods have been used in the present study to simulate
the flow in the shock tube and the two dimensional test section. The first
method is an Artificially Upstream Flux vector Splitting (AUFS) scheme for the
Euler equations, suggested by Sun & Takayama (2003). This numerical scheme
discretizes the Euler equations according to the direction of wave propagation.
Results obtained with the AUFS scheme are presented in Paper 1 and Paper
2 in the second part of the thesis. In the second method, we use the Overture
suite from Chesshire & Henshaw (1990), which is further described in the next
section.

There are three main reasons for doing numerical simulations of converging
shock waves: 7) It is hard to do quantitative measurements in experiments on
shock wave focusing because you often rely on qualitative visualization methods
and get results in the context of density gradients as functions of time. Hence,
the numerical simulations are a useful complementary tool to get more data.
Quantities like temperature, pressure, velocity, and Mach number are easy to
calculate via numerical simulations for the whole flow field. ) One can save
both time and money by doing numerical simulations, because one can predict
the results and therefore do not need as many experimental results to validate
the hypothesis. i) A validation of the models and the numerical schemes used
for the present problem is important. If the numerical results agree well with
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experimental results, one can expect the model and the numerical scheme to
be valid.

6.1. Simulations in Overture

Numerical simulations of two problems have been performed. The first problem
is an axisymmetric model of the shock tube used in the previously mentioned
experiments; see chapters 4 and 5. The second problem consists of simulations
of converging shock waves diffracted by cylinders in a two dimensional test
section; see Papers 5 and 6 in the second part of this thesis.

For the numerical simulations, we used the two dimensional Euler equations
as a model for both the flow in the shock tube and for the converging shock
wave inside the test section. In conservative form they read

u; + f(u), +g(u), =0, (6.1)
p gu pU
| opu . puc +p . pUU
=l 5 T 08T ey (6.2)
E u(E + p) v(E +p)

Here p is the density, v and v are the velocities in the horizontal and vertical
directions respectively, p is the pressure, and the total energy, F, is given by

p 1 2 2

E—7_1+2p(u +v). (6.3)
In the computations we assume the gas obeys the ideal gas law with con-
stant specific heats. This assumption is valid away from the center of conver-
gence, however near the center the temperature reaches such high values that
it no longer behaves as a calorically perfect gas. The assumption of constant
specific heats is valid up to 1000 K for air; beyond this, the vibrational motion
of Oz and Ny molecules affect the specific heats and they are no longer con-
stant, see Anderson (1990). For argon, the assumption of specific heats is valid

up to temperatures where the gas undergoes ionization.

The complex geometry of the experimental setup requires a sophisticated
numerical flow solver. An intrinsic numerical difficulty of the converging shock
wave problem is the different scales associated with the focusing process. The
change in scales justifies the use of adaptive mesh refinement (AMR). The
Overture suite that we used for the numerical simulations has support for both
geometry (through body fitted overset grids) and AMR, and it includes various
flow solvers. Overture is a free software package available for download at
http://www.1llnl.gov/CASC/Overture/. For the experiments presented here,
we used the OverBlown solver for the Euler equations, based on the second
order accurate Godunov method, discussed in Henshaw & Schwendeman (2003,
2006). Artificial viscosity was added to the numerical scheme to stabilize the
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method and to give sharp shocks without overshoots; this is further explained
in Henshaw (2003).

The numerical ‘schlieren’ plots, i.e. plots of the density gradient, are cal-
culated using:

Isch = anp(—ﬂS(X)), (64)

s(x) = — NS oo (6.5)

po  ~
maxs —Imins

3) = \Jo2 + 02, (6.6)

where o and [ are set to 1 and 15 respectively; see Henshaw & Schwende-
man (2006). These parameters can be adjusted to change the contrast of the
schlieren plot.

6.2. Problem formulation and setup
6.2.1. Shock tube simulations

To simulate the flow in the shock tube, we used an axisymmetric grid. The
initial grid is depicted in Figure 6.1. The whole grid is shown in Figure 6.1 (a),
and detailed views of the front and rear part of the inner body and the test
section are displayed in Figure 6.1 (b)—(d). The proportions for the grid are,
in principle, the same as for the shock tube used in the experiments. The main
difference is that the front of the cone on the inner body and the 90° corner
are not exactly sharp, but have a small curvature. This guarantees that the
normal to the corner is well defined everywhere, which would not be the case
for a sharp corner.

The initial conditions in the low pressure part are set to room temperature,
(294 K) at 13.3 kPa (100 torr), and the density is given by the ideal gas law
p = p/RT, where R is the gas constant (287.06 J/kgK). The initial pressure
in the high pressure part is set to 1450 kPa, the temperature is set to room
temperature, and the density is given by the ideal gas law.

6.2.2. Results

Results show that the 90° corner has a large impact on the flow. For a straight
90° corner, there will be a large amount of reflection and the shock loses
strength as it turns the corner. This is seen in Figures 6.2—6.4 which show
‘schlieren’; pressure, and speed plots of the flow field during the instant when
the shock turns the corner. In Figure 6.2, it is seen that the diffracted shock
never becomes planar again; instead, a Mach shock bounces back and forth
as the shock wave propagates in the test section. The pressure field is shown
in Figure 6.3. As soon as the reflected shock has passed the gap to the test
section, the incoming flow will be more or less stopped and no gas will enter the
test section. The speed of the gas is plotted in Figure 6.4, and it is clear from
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FIGURE 6.1. Grids for the shock tube simulations. The shock
tube (a) and enlargements of the tip of the cone (b), the end
of the cone (c¢) and the 90° corner (d).

Figure 6.4 (g)—(i) that the reflected wave stopped the motion of the incoming
gas, so a large amount of the gas never reached the test section.

The conclusion is that the corner used in the simulations, based on the
experimental setup, is not optimal for a focusing process. Large parts of the
incoming gas never reach the test section, instead the flow becomes stopped by
the reflected shock caused by the corner. A redesign of the corner would lead
to a larger amount of gas reaching the test section and thus the focal point.

6.2.3. Simulations of converging shocks

The two dimensional model of the test section consists of two background grids,
one Cartesian and one annular, and optional cylindrical obstacles described by
individual annular grids. The grid spacing of the annular grids are adjusted to
conform with the grid spacing, h, of the Cartesian grid.

Several cases were simulated: a circular converging shock wave, a circular
converging shock perturbed by one cylinder, three cylinders placed in a equilat-
eral pattern, and four cylinders placed in a square formation; this is described
in Paper 5. The cylinder surfaces are set to be perfectly reflecting, which is
not the case in the experimental setup, but we assume the errors due to this
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choice are small and can be neglected. The boundary condition on the outer
perimeter of the domain is set to a supersonic outflow condition, which is one
of the simplest non-reflecting boundary conditions.

Given the initial conditions in front of the converging shock, the state
behind the shock can be parameterized by the Mach number. Here we set the
initial conditions in front of the shock to be a gas at rest at room temperature.
We then adjust the initial Mach number so that the radius of the converging
and reflecting circular shock, matches the experimental results as a function of
time; see Paper 5.

6.2.4. Results

Schlieren plots of the converging shocks close to the center of convergence
are shown in Figure 6.5. In (a), one cylinder has been used to diffract the
converging shock. The shape of the shock resembles a teardrop. In (b), three
cylinders were used to create a triangular shape undergoing regular reflection,
thus the same shape remains during the focusing process. Figure 6.5 (¢) shows
a square shock created by four cylinders placed in a square formation. In (d),
two symmetric octagons, one with 15 mm diameter cylinders and the other with
10 mm cylinders. Close to the center, the influence of the eight larger cylinders
are dominating, creating an octagon shock. In (e) and (f) two cylinders are
placed opposite each other. In (e) the cylinders are 7.5 mm and 15 mm in
diameter and in (f) they are both 15 mm in diameter. The second Mach shock,
resulting from the collision of the first two Mach shocks, has progressed more
for the part of the shock wave diffracted by the smaller (7.5 mm) cylinder.
Seven cylinders are placed in a heptagonal pattern in Figure 6.5 (g). The
reconfiguration process has gone through one cycle and a heptagon shock is
visible; its corners are located opposite to the location of the cylinders. The
same behavior is observed in (h) for the case with an octagon shock. The last
picture shows a shock wave diffracted by several cylinders placed in a dense
formation. The shape gets elongated and the center of the converging shock
is moved just a small distance. The numerical simulations agree well with the
experimental results discussed earlier; compare figures 5.5 and 6.5. Also, the
locations of triple points and Mach shocks match the experimental results. The
numerical ‘schlieren’ plots are more detailed than the corresponding schlieren
photographs from the experimental studies, and because of this, they are a
useful complement.

A full reconfiguration cycle for the heptagonal case is shown in Figure 6.6.
In the beginning, the sides of the polygonal shock are at first rather planar;
see Figure 6.6 (a). Then, as the reflected shock starts to interact with the
converging shock, Figure 6.6 (b), the plane sides become more curved; see (c).
When the reflected shock has passed by the converging shock, the curved sides
become planar, as mentioned earlier. Then, the transformation process takes
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place (see Figure 6.6 (e)—(i)), resulting in a heptagon shock with plane sides
placed opposite the cylindrical rods.

Diffraction of a cylindrical shock wave hitting a single cylinder is shown in
Figure 6.8. At first, a regular reflection occurs, shown in (a)—(b), and as the
reflection point moves past the cylinder, it transforms into a Mach reflection
containing a triple point at the intersection of the Mach shock, the incoming
shock, and the reflected shock; see (c)—(f). The angle where the transition
from regular to Mach reflection occurs is dependent on the Mach number of
the incoming shock. For plane shock diffraction on cylinders this angle is about
45° for Mach number 1.3 and 40° for Mach number 2.8.

The dimensionless pressure and temperature near the focal point were mea-
sured for a cylindrical converging shock perturbed by 0-16 cylinders. Figure 6.8
shows the maximum pressure and temperature as a function of the number
of cylinders. The maximum pressure is non-dimensionalized with the initial
pressure in the low pressure part, here 13.3 kPa. The temperature is made
dimensionless with respect to the gas constant v and the room temperature, in
this case 294 K. The results show that the undisturbed cylindrical shock gives
the highest pressure and temperature near the focal point. This is expected,
because in all other cases, part of the flow is reflected by the obstacles and
never reaches the focal point. For a low number of cylinders, 1-6, the maxi-
mum values are low. This is most likely caused by the fact that all parts of
the shock front do not reach the focal point at the same time, and hence the
focusing effect is lost. Higher pressures and temperatures are obtained for the
cases with a larger number of obstacles, 7-13.

6.3. Remarks

We have used a simplified model with an ideal gas assumption where the ion-
ization and real gas effects are ignored. This simplification is valid when the
shock wave is away from the convergence center; at the center, the tempera-
tures become so high that real gas effects and ionization must be accounted
for.

An advantage of the numerical simulations is the increased level of detail
and the flexibility to follow the convergence process closely through animations.
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FIGURE 6.2. Schlieren images from simulations in Overture
showing the shock wave as it passes the 90° corner of the test
section.
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FIGURE 6.3. Pressure plots from simulations in Overture

showing the shock wave as it passes the 90° corner of the test
section.
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FIGURE 6.4. Simulations in Overture showing the speed of the
flow as the shock wave passes the 90° corner of the test section.
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FIGURE 6.5. Schlieren images from simulations in Overture
showing shock waves close to the center of convergence for
(a) one cylinder, (b) three cylinders, (¢) four cylinders, (d)
16 cylinders, (e) two cylinders, 7.5 mm and 15 mm diameter,
opposite each other, (f) two cylinders opposite each other, (g)
seven cylinders, (h) eight cylinders, and (i) a dense formation
of cylinders in one radial direction. The diameter of the cylin-
ders is 15 mm unless otherwise specified.
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FIGURE 6.6. Schlieren images from simulations in Overture
showing an initially cylindrical shock wave diffracted by seven
cylinders placed in a symmetric heptagonal pattern. The di-
ameter of the cylinders is 15 mm.
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FIGURE 6.7. Schlieren images from simulations in Overture
showing the development of the diffracted shock from a cylin-
drical shock wave hitting a 15 mm diameter cylinder. Regular
reflection in (a)—(b) and Mach reflection in (¢)—(f).
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CHAPTER 7
An application of shock wave focusing

An application of shock wave focusing is shock wave lithotripsy (SWL), which
is a non-invasive treatment to eliminate kidney stones. SWL was developed in
the early 1980’s and is now the primary treatment for stones in the upper uri-
nary tract. In SWL, shock waves shatter the kidney stones to small fragments
which can be passed naturally. This method of removing kidney stones has
proven to be very attractive over the alternative method, surgical removal, be-
cause it is felt to be safer and more cost-effective. However, SWL is not without
adverse effects, such as hemorrhaging, vasoconstriction, and ischemia, occur-
ring especially in young and elderly patients. These problems have inspired
researchers during the last two decades to improve lithotripsy technology to
minimize tissue injury in SWL.

Three types of lithotripters are in use today: electrohydraulic (EH), piezo-
electric (PE), and electromagnetic (EM). The working principles for current
lithotripters are all fundamentally the same, and they differ from each other
only in terms of overall performance. A lithotripter generates a pressure wave
and repeatedly focuses it onto the kidney stone. The pressure wave that hits
the kidney stone can be characterized by a leading compressive shock front
followed by a long trailing tensile wave. An acoustic wave can be focused to
an ideal focal point by an elliptic reflector. Due to hyperbolic effects, the pres-
sure wave in a lithotripter will not focus at a point; instead, the focal point
will grow to a region increasing in size with shock strength. Approximately
2000 lithotripter shock waves (LSWs) are generated and focused on the stone
during a typical procedure. The frequency is usually 2 Hz. Recent studies, e.g.
Pishchalnikov et al. (2006), have shown that the stones break better when the
shock wave rates are lowered.

The standard lithotripter is an EH reflector called Dornier HM-3. The
reflector-based EH lithotripters consist of an ellipsoidal reflector body where a
spark generates an outgoing weak shock wave at one of the focal points. This
shock wave focuses at the second focal point and is aimed at the kidney stone.
In most cases, the working medium inside the reflector is water in the most
cases, to mimic the impedance in the human body.

There are five potential mechanisms involved in stone breakage: (1) ero-
sion, (2) spallation, (3) dynamic fatigue, (4) shear, and (5) circumferential
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compression. Erosion results from cavitation because impurities in the fluid
serve as nucleation sites for bubbles, and the bubbles subjected to an LSW will
expand quickly and then collapse violently. The stone erodes as the cavitation
clouds collapse against its surface. Spallation is caused by high tensile stresses
due to the internal reflections in the stone from the LSW. Dynamic fatigue
occurs because the material in the stone is not homogenous, and micro cracks
are formed during the repeated cycles of the LSW. Shear forces can be caused
by the pressure gradients that exist in the stone as a result of the focusing
of the shock wave. Circumferential compression is a result of the velocity dif-
ference between the compression pulse in the stone (faster wave speed) and
in the surrounding fluid. For further discussions on mechanisms behind stone
breakage see Bailey et al. (2003) and Lingeman et al. (2003). At first, the stone
is reduced to smaller chunks, which then grind down to sand-sized particles,
which can be passed from the body in a natural way.

The major mechanisms for tissue damage are believed to be cavitation
clouds (pre-exsisting bubbles expand and destroy small capillaries, and when
they collapse, the formation of strong jets can destroy larger vessels) and shear
stresses. To reduce the damage, it is important to understand the mechanisms.

In this chapter, we simulate the wave propagation from a EH reflector. We
tested several shapes of the reflector and various materials. To characterize
the different cases, we looked at the maximum radius of that a gas bubble
would have after being subjected to the resulting pressure field. Furthermore,
we investigated the size, location and shape of the region where the largest
bubbles occur. The idea was to better understand how the low pressure region
could be reduced to a region close to the kidney stone. To remove the low
pressure region completely reduces the success in stone fragmentation.

The nonlinear effects in SWL make this subject into an interesting research
area for anyone fascinated by shock wave focusing. In the earlier chapters of
this thesis, we were mainly interested in the shock front itself but in this chapter
we turn our attention to the rarefaction wave, that both helps to fragment the
kidney stone and causes tissue damage in the kidney through cavitation.

7.1. Reflection between a liquid-liquid and a liquid-solid
interface

The reflection coefficient, R, for an oblique wave hitting an interface between
a liquid-liquid layer can be found in Blackstock (2000), and is given by

p2p p2p
_ Zycosl; — Zycosty p1 o cos i "'\/m

"~ Zycosb; + Zycosl; /Zi Z2 cos ; — ;02 p1 sin2 9

where Z; = pjc; is the impedance of medium j, 6; is the angle of incidence,
and 0; is the angle of transmission. The index 1 refers to the working medium

R =
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and 2 to the reflector. The speed of sound is given by ¢; = /np;/p;, where
n comes from Tait’s equation of state; see chapter 7.4. Snell’s law gives the
relation between the angles of incidence and transmission as

0; = arcsin(C—Q). (7.2)

C1
The reflection coeflicient for a liquid-solid interface is given in Brekhovskikh
(1960):
ro cos? 21 + Z;sin? 2y, — Z
Z1cos2 2y, + Zysin® 2y, + Z
where Z, Z;, and Z; are the impedances of sound waves in the liquid, and
longitudinal and transverse waves in the solid:

b
Z:ﬁ,leﬂ,lepll. (7.4)
cos cos 01 oS Y1

(7.3)

Three different cases will occur depending on how large the angle 6 is. For
0 < sinf < ¢/c1, the angles 1 and 67 are both real; the reflection coefficient is
given by equation (7.3) and only transverse waves are present. For the interval
¢/cp < sinf < ¢/by, 71 is real and 6; is complex, which gives the reflection
coefficient

_ —i|Z1| cos? 2y1 + Zysin® 2y — Z
N i|Z1| cos? 21 + Zssin? 2y + Z
and there are both transverse and longitudinal waves present. Finally, the

interval ¢/c, < sinf gives complex angles 71 and 0; and |R| = 1, which means
that total internal reflection occurs.

(7.5)

Regular reflection for shock waves in water can be analyzed in the same
way as for shock waves in gases, except that the chosen equation of state is
different; see Sommerfeld & Miller (1988). The angle of reflection as a function
of the incident angle is shown in Figure 7.1. Results show that the maximum
value for the angle of reflection decreases when the shock strength is increased.
The pressure jump over the reflected shock is greater than the pressure jump
for the incident shock, and it increases for increasing angles of incidence.

7.2. The maximum bubble radius

The maximum bubble radius is important because it gives a good measure of
how much damage bubbles can potentially do during SWL. The expression for
the maximum radius, 7,,4., of an air bubble immersed in a liquid surrounded
by a pressure field, P(t), is given in Iloreta et al. (2007) and will be summarized
here for the convenience of the reader. The work, W, done on a fluid through
a spherical bubble is defined as

W= / Fdr = / (PA)rdt = 4w / Pr2rdt, (7.6)
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FIGURE 7.1. (a) The reflection angle as a function of the in-
cidence angle, (b) the reflected pressure as a function of in-
cidence pressure for different angles of of incidence: 20°, 25°,
30°, 35°, 40°. The higher the incidence angle, the higher the
reflected pressure.

where r(t) is the radius of the bubble and 7(t) is the bubble wall velocity.
A large range of parameters for typical lithotripters were used to define the
expression for the maximum bubble radius as

Tmaz = 0.0138210-337, (7.7)

An energy balance gives an explanation for this expression. At first, before
the LSW hits the bubble, the bubble has zero energy. The amount of work
done on the liquid, W, by an LSW is the sum of potential, APE, and kinetic
energy, AKE, W = APE + AKE. When the bubble reaches maximum radius,
the kinetic energy is converted to potential energy,

4

W = APE = /(poO —pb)dV = (poo — pv)gwr?nax. (7.8)

The bubble pressure, py, is the sum of the vapor pressure, p, and the gas pres-
sure, py, within the bubble: p, = p,; + p,. For the case of an LSW acting on
a bubble, the vapor pressure is much larger than the gas pressure, so the gas
pressure is neglected in equation (7.8). Now, we see that the exponent 1/3
in equation (7.7) comes from equation (7.8). The coefficient in equation (7.7)
is found by using a theoretical reference room temperature of 18°C in equa-
tion (7.8), and this gives a slightly different value of 0.01331.

7.3. The Rayleigh-Plesset equation

The Rayleigh-Plesset (RP) equation is a reduction of the Navier-Stokes equa-
tions to an ordinary differential equation. It is used to describe bubble dynamics
for spherical gas bubbles surrounded by an incompressible liquid. Rayleigh’s
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theories for bubbles might seem inappropriate at first, because he considered
a bubble in an incompressible fluid subject to a spatially uniform pressure. In
the case of a lithotripter, the flow can be considered incompressible, but the
pressure is changing during the passage of the LSW. However, the bubble ra-
dius (on the order of microns) is much smaller than the focal region (a couple
of millimeters) where the maximum pressures occur; see Howle et al. (1998).
Hence, the Rayleigh theory is widely used for bubble dynamics in lithotripsy.

To describe the bubble dynamics, we use a simplified version of the RP
equation given by Hilgenfeldt et al. (1998):

ol <m'~ + g#) = P(t). (7.9)

This simplified version gives good results and works well for determining the
work done by the bubble on the fluid, and thus it gives the maximum bubble
radius, as explained by Iloreta et al.

7.4. Problem setup

The two dimensional Euler equations with radial symmetry are used to model
the wave propagation inside the lithotripter:

0 0 0

— _F —_ = 1
59T 3 (Q)+82G(q) S(a), (7.10)
where
p pu
_ | pu | it
q - pl) I F(q) - p’U/U I (711)
pe (pe +p)u
pv —Lpu
Ga=| 2 | s@=| "1 (7.12)
q) = pvz—l—p , Q) = —%puv ) .
(pe +p)v —+(pe+plu

and p is the fluid density, u is the axial velocity, v is the radial velocity, and p
is the pressure. As equation of state, we use the Tait equation,

p
Prait =p+ B = (B+1)(p—)". (7.13)
0
This is the isentropic relationship between the density and the pressure for
water. In our numerical experiments, we used B = 3000 and n = 7. The values
for densities and wave speeds in the reflector and the working media, used for
the numerical simulations, are shown in Table 1.
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| Media | density (kg/m?) | ¢ (m/s) | c1 (m/s) | bi(m/s) |
water 1000 1482 - -
brass 8600 4073 2114

TABLE 1. Density and wave speed for the reflector and the
water used in the numerical simulations.

74.1. CLAWPACK

The numerical simulations have been performed with CLAWPACK. CLAW-
PACK (Conservation LAW PACKage) is a free package of FORTRAN77 subrou-
tines suitable for solving hyperbolic partial differential equations numerically.
The software can solve linear and nonlinear problems in one, two, and three
space dimensions; see Leveque (2002). The package can be downloaded from
the CLAWPACK site, http://www.amath.washington.edu/~claw/. A finite
volume method is used where a Riemann problem is solved at each grid cell
interface by the Godunov method.

7.4.2. The reflector

An axisymmetric model is used to represent the lithotripter reflector. The
reflector is modeled by a density jump across the prescribed reflector boundary.
First, the reflection coefficient is calculated as described in section 7.1. The
value of the reflection coefficient is a function of the axial position and the
incident angle, #;, between a ray emanating from F} and the point on the
reflector. The reflection coefficient for the original case is shown in Figure 7.2.
The density ratio across the reflector boundary is given by equation (7.1). If the
density ratio approaches infinity, then R — 1, and to keep the code stable we
set R = 0.993. The shape of the reflector is varied by changing the eccentricity
of the elliptical shape. The material of the reflector was set by changing the
density, longitudinal and transversal wave speeds of the material. A list of all
tested cases are shown in Table 2.

The size of the computational domain in the serial simulations was set to
1025x350 cells corresponding to 32.8x11.2 cm?. The time step was set to a
fixed value of 4.0 - 1078 s. The ‘save domain’, i.e. the domain where pressure
data in every time step was saved to compute the maximum bubble radius,
was a 60x7.5 mm? region, shown in Figure 7.3 as the dark gray region. For
the parallel simulations, the computational domain was set to 3600x2400 cells
corresponding to 36x24 cm?, and the time step was set to 2.5667 - 10~ s. The
save domain in the parallel simulations was a 21.8x7.75 cm? region, and is the
light gray region in Figure 7.3. Five cases of the modified reflector are shown
in Figure 7.4.
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FIGURE 7.2. The reflection coefficient, R, as a function of the
incident angle, 6;, for a water-brass interface, for the original

case.

Case Eccentricity b c P

I 0.81 2114 4073 8600
II 0.82 2114 4073 8600
111 0.83 2114 4073 8600
v 0.84 2114 4073 8600
\% 0.85 2114 4073 8600
VI 0.8274 2114 4073 8600
VII  0.80+ f(x) 2114 4073 8600
VII 0.85— f(x) 2114 4073 8600
IX 0.8274 2236 4237 8800
X 0.8274 2148 4803 8670
XI 0.8274 2165 4842 8530
XII  0.8274 2032 4668 8470
XIII  0.8274 3181 5850 7850
XIV* 0.8274 2114 4073 8600

TABLE 2. A list of all cases in the numerical simulations. Here

f(z) = 0.05 (x—2Zmin)/ (Tmax — Tmin), Where T € [Tmin, Tmax| =
[0.004,0.128]. Case XIV had a reflection coefficient close to

unity, R = 0.993.

7.5. Results

o7

The maximum bubble radius, given by equation (7.7), was calculated for the
various cases shown in Table 2. The initial bubble radius was set to 4.5 pum
and the time interval for the integration of the work W was set to 20 us; see
equation (7.6). The results show that the eccentricity influences both the region
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FIGURE 7.3. The computational domain. The light gray re-
gion is the save domain for the parallel simulations and the
dark gray region is the save domain for the serial simulations.
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FIGURE 7.4. Examples of various reflectors used in the sim-
ulations; (a) e = 0.85 — f(z), (b)e = 0.82, (c)e = 0.8274, (d)
e =0.83, and (e) e = 0.80 + f(x).

where the maximum bubble radius exists and the value of the maximum radius.
Contour plots of the maximum bubble radius from the serial simulations are
shown in Figures 7.5 and 7.6. The results from the cases with different
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FIGURE 7.6. The maximum bubble radius for reflectors with
an eccentricity as a function of z, e(x). Serial simulations.
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(a) Case VI, R = R(0;). (b) Case XIV, R =1.

FIGURE 7.7. The maximum bubble radius for the original re-
flector shape with (a) R = R(f;), and (b) R = 0.993. Parallel
simulations.

materials showed no variation in the maximum bubble radius, as compared to
the original case. Results from the parallel simulations for the original reflector
shape with both a varying reflection coefficient (see Figure 7.2) and a reflection
coefficient close to unity, R = 0.993, are shown in Figure 7.7. The maximum

bubble radius is about 1 mm.

Results from serial simulations of cases IX-XIV showed no difference in the
pressure field as compared to case VI with the original setup. This means that
the value of the material and thus the reflection coefficient of the reflector do

not have a large influence on the maximum bubble radius.

2.9
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The criteria for choosing a reflector with better characteristics are (1) the
size of the low pressure region should be decreased and (2) the focal point
can not be translated towards the first focal point; it should either be at the
same place as for the original case or translated towards increasing z-values. If
the focal point would be translated towards negative z-values, it might not be
possible to fragment kidney stones as far into the human body as in the original
reflector, thus reducing the range of patients were it could be used. The results
from the serial simulations show that the best choice is case VII (see Table 2),
since the maximum bubble radius is minimized and the focal point is moved
slightly towards increasing x-values.

7.6. Remarks

The assumption of a bubble inside the computational domain will cause a
disturbance in the flow field, and we do not take that disturbance into account.
Since the choice of material does not seem to influence the maximum bubble
radius, it is possible that the reflection coefficient does not matter, and we
could use a reflection coefficient equal to unity everywhere on the reflector.

The parallel simulations were run on DataStar at San Diego Supercomputer
Center, USA. A typical simulation used 600 processors during a total run time
of 20 minutes. If the computation time could be reduced, say by using adaptive
mesh refinement, then it would be useful to optimize the shape of the reflector
by some well-known optimization method, such as the adjoint method.



CHAPTER 8

Conclusions and outlook

In this chapter, we summarize the most important conclusions and contribu-
tions from the present study. For more details and further discussions, the
reader is referred to the papers in section 2 of this thesis.

8.1. Experiments on shock wave focusing

e Polygonal converging shock waves can be produced by an appropriate
choice of the shape of the reflector boundary or by introducing cylin-
drical obstacles in a specific pattern in the flow. Polygon-shaped shock
waves are stable in the sense that the evolution of the shape is pre-
dictable and bounded.

e Regular reflection has been observed for an equilateral triangular-shaped
converging shock. This is in agreement with earlier numerical studies
by Aki & Higashino (1990); Betelu & Aronson (2001).

e Mach reflection has been observed for polygonal shapes with more than
three sides: square pentagon, heptagon, octagon and double octagon
formations. The experimental results agree well with earlier analytical
and numerical results from Schwendeman & Whitham (1987); Apazidis
& Lesser (1996); Aki & Higashino (1990).

e The final form of the converging shock, close to the center of conver-
gence, is square-like for the circular and octagonal reflector boundaries.
This is caused by the perturbations in the flow due to the four supports
in the annular part of the shock tube. The square-like shape is not
present when the pentagonal and heptagonal reflector boundaries are
used. A possible explanation is that a disturbance with an even num-
ber of modes cannot overtake a disturbance with an uneven number of
modes if the size of the disturbance is approximately the same in both
cases. Also, the square-like shape is missing in all cases when the cylin-
drical obstacles are present. This means that the disturbances from the
obstacles are stronger than the disturbances from the supports. Distur-
bances from the supports were also observed in experiments performed
in Takayama et al. (1984, 1987); Watanabe et al. (1995).

e The reflected shock initially has a circular symmetry for all four reflec-
tor boundaries. The shock wave retains its circular symmetry in the
case of the circular reflector. For the other reflectors, the shape of the
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outgoing shock is influenced by the flow field created by the converging
shock. The shape of the shock approaches the same shape it had when
it converged but with smooth features. This is in agreement with the
numerical simulations by Aki & Higashino (1990). When the cylindrical
obstacles were present, the reflected shock was circular; no photographs
were taken late enough to show if the shape of the shock front becomes
influenced by the flow ahead of it.

e Light emission is always produced when the shock collapses. Light emis-
sion was also observed in earlier experiments by Perry & Kantrowitz
(1951); Saito & Glass (1982); Matsuo et al. (1985). The full width at
half maximum of the light pulse was longer in the experiments by Mat-
suo et al. A reasonable explanation is that the conditions in the two
experiments were not the same; gas mixtures, pressures, shapes of the
shock wave, etc. were different.

e The amount of light emission depends on three main parameters:

o The shape of the shock close to the center of focusing: a shape as
close as possible to a circle produces more light than for example
an asymmetric shape. For example, an octagonal shaped shock
produces more light than a shock shaped as a tear-drop, as in the
case with one cylinder.

o The test gas: as test gas, argon produces more light during the
focusing than air. This is in agreement with experiments on shock
wave focusing by Perry & Kantrowitz (1951) and correlates with
results of experiments on sonoluminescence by Hiller et al. (1994).

o Number of cylindrical disturbances: the unperturbed circular
shock produces the most light. For all other cases a certain
amount of the flow is reflected back before it reaches the focal
point, and hence the energy density at the focal point is maxi-
mized for the circular case.

8.1.1. Outlook

A big experimental challenge that remains is to produce a converging cylindri-
cal shock in a facility without disturbances. Shock tubes are hard to use to
accomplish this because there will be disturbances from the equipment itself.
A first step would be to use a setup like the one in the present study and then
add lots of tiny cylinders to create a polygonal shape with a large number of
sides. This will create a shape very close to cylindrical. The present experi-
mental setup could be improved by a redesign of the sharp 90° corner of the
shock tube, where the gas enters the test section. Several examples of more
effective corner designs are available in the literature, see for example Wu et al.
(1980); Takayama (1978). An improvement in the corner design would enhance
the performance of the experiment; an increased amount of gas would reach
the test section and the transmitted shock would stabilize faster. We strongly
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suggest performing a numerical study of the flow before finalizing the design
of the new corner. Another improvement would be to increase the sensitivity
of the schlieren optics system to visualize finer details of the converging shock.
It would be interesting to compare the amount of light emission produced by
different shapes of shock waves that focus with the same amount of energy at
the center. For example, a cylindrical shock could be compared to an octagonal
shock with an equal amount of flow reaching the focal point. Also, a spectra
of the light emission that occurs during the focusing should be investigated.
The spectra could then be compared to the spectra from other fluid mechanics
applications where light emission occurs, for example sonoluminescence. Fur-
thermore, an estimation of temperatures during the focusing process could be
obtained via the spectral measurements. The optimal gas mixture for light
emission should be found. In sonoluminescence, a small percentage of the test
gas is argon, compared to our experiments where most of the test gas is argon.

8.2. Simulations of shock wave focusing

e The numerical schlieren plots are in good agreement with experimental
results.

e The shock speeds of the converging and reflecting shocks are in good
agreement with experimental results.

e Regular reflection was observed for the triangular case and Mach reflec-
tion was observed for the cases with 4-16 cylinders.

e The Euler equations with an ideal gas assumption constitutes a good
model, except when the shock is very close to the focal point and real
gas effects are important.

e The self similar stage for the polygonal converging shocks is only reached
during the last stages of the focusing process. For the triangle, the self-
similar exponent depends on the direction in which the location of the
shock front is measured. For the two directions measured here, the
exponents were a = 0.977 and o = 1.155, compared to the expected
value of one. The square-shaped shock undergoes Mach reflection, and
the self-similar exponent was found to be a = 0.835 in agreement with
earlier published results.

e The highest maximum pressure and temperature measured near the
focal point occurred for the case with no obstacles. With a small number
of obstacles, 1-6, the maximum pressure and temperature were lower
than with a large number of obstacles, 7-16.

8.2.1. Outlook

It is still an open question of what model should be used near the vicinity of
the focal point where real gas effects are important and ionization occurs. A
first step would be to change the equation of state from the ideal gas law to
something more appropriate. Studies by Britan et al. (2004) on plane shock
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waves perturbed by various shaped barriers (with the same porosity) showed
no effect on the pressure behind the barrier. It would be interesting to study
the effect of the porosity in this setup to see if the shape and blockage ratio
effect the maximum pressure and temperature obtained at the focal point.

8.3. Simulations of weak shock wave focusing in a lithotriptor

e The Euler equations with Tait’s equation as equation of state serves as
a good model.

e The shape of the reflector has a large impact on the maximum bubble
radius.

e The material of the reflector does not have a large influence on the
maximum bubble radius.

8.3.1. Outlook

There is a need to implement adaptive mesh refinement to reduce the com-
putation time. The same problem will be implemented and simulated by the
Overture suite, where AMR and overlapping grids can be used.
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Abstract Focusing of strong shock waves in a gas-filled
thin convergence chamber with various forms of the
reflector boundary is investigated experimentally and
numerically. The convergence chamber is mounted at
the end of the horizontal co-axial shock tube. The con-
struction of the convergence chamber allows the assem-
bly of the outer chamber boundaries of various shapes.
Boundaries with three different shapes have been used
in the present investigation — a circle, an octagon and
a smooth pentagon. The shock tube in the current study
was able to produce annular shocks with the initial Mach
number in the range M = 2.3 —3.6. The influence of the
shape of the boundary on the shape and properties of
the converging and reflected shock waves in the cham-
ber has then been investigated both experimentally and
numerically. It was found that the form of the converging
shock is initially governed by the shape of the reflector
and the nonlinear interaction between the shape of the
shock and velocity of shock propagation. Very close to
the center of convergence the shock obtains a square-
like form in case of a circular and octagonal reflector
boundary. This is believed to stem from the instability
of the converging shock front triggered by the distur-
bances in the flow field. The outgoing, reflected shocks
were also observed to be influenced by the shape of
the boundary through the flow ahead as created by the
converging shocks.

Communicated by K. Takayama.

V. Eliasson - N. Apazidis (<) - N. Tillmark - M. B. Lesser
Department of Mechanics, Royal Institute of Technology,
100 44 Stockholm, Sweden

e-mail: nap@mech.kth.se

Keywords Shock focusing - Annular shock tube -
Converging shock - Reflected shock - AUFS vector
splitting scheme

PACS 47.40.Nm

1 Introduction

High pressures, temperatures and densities may be
achieved in a region of gas compressed by means of
a converging shock wave. This feature in connection
with various technological applications is one of the
main reasons for continuing interest in the problem of
shock focusing. The highly nonlinear nature of the pro-
cess presents a major challenge to its study. At the same
time it serves as a source of the non-triviality of this
phenomenon.

Two aspects of a converging shock are of special inter-
est. The first one being the connection between the local
strength of the shock and the shape evolution of the con-
verging shockfront. The second issue, which is however
closely related to the first one, is the question of the
stability of converging shocks.

Guderley [1] was first to investigate theoretically
the convergence of an initially cylindrical shock wave.
Guderley used a similarity power law assumption for the
radius of the converging shock as function of time. He
was thus able to transform the governing equations to
an ordinary differential equation which was integrated
numerically. For a cylindrical shock the power law expo-
nent was found to be ¢ = 0.834. Over the years, a large
number of mainly theoretical and numerical investiga-
tions were dedicated to similar problems.
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Perry and Kantrowitz [2] were the first to produce
experimentally a converging cylindrical shock. The cylin-
drical shock in their experiment was generated in a
shock tube with a tear-drop inserted in the test section.
The behavior of the converging cylindrical shock was
studied in detail in this pioneering investigation. It was
observed that for a shock strength exceeding M = 2.4
the cylindrical form of the shock was distorted as the
shockfront approached the center of the cavity. This
was attributed to the instability of the converging shock
resulting from a growth of small perturbations of the
cylindrical shape. Another important observation of this
study was the luminescence observed in the center of the
cavity at the final stages of the shock collapse.

In a later investigation, Sturtevant and Kulkarny [3]
used a parabolic reflector to study the complex behavior
of shock waves in a focal region. In this extensive exper-
imental study, shocks were brought to a focal region
by reflecting an initially plane shock from a surface
of the reflector. One of the important results of this
study was that it showed a tendency of curved shocks
to build planar sections. This tendency to planarity as
a result of the nonlinear interaction between the form
and the local strength of the shock was later investigated
and confirmed in a series of experimental, theoretical
and numerical investigations, see e.g. Schwendeman and
Whitham [4], Apazidis and Lesser [5], Apazidis et al. [6].

Takayama et al. [7,8] and Watanabe and Takayama
[9] studied the convergence of initially cylindrical shock
waves in shock tubes with an annular section. One of
the interesting observations of these studies was the for-
mation of square-formed shocks in the final stages of
the convergence process. This was attributed to four
symmetrical perturbations introduced in the flow by
the supports holding the annular section of the shock
tube. This tendency of the converging shock to build »-
gonal structures corresponding to the same number of
perturbations in the flow was further confirmed by an
introduction of artificial perturbations in the flow field.
Takayma et al. [8] referred to this as the mode-n insta-
bility. An alternative way would be to describe this as an
inherent dynamic stability of the shock in the sense that
the curved sections tend to transform to planar ones. In
other words, the form of the shock may be considered as
unstable since it diverges from the original circular form
and at the same time stable since it tends to build a natu-
ral for the shock dynamics n-gonal form with plane sides
and sharp corners. Once the the n-gonal shape is formed,
it will be periodically transforming, repeating itself dur-
ing the convergence process, see e.g. Schwendeman and
Whitham [4], Apazidis and Lesser [5], Apazidis et al. [6].
The condition for such stable periodic behavior is that
the perturbations in the flow influencing the shock form

@ Springer

are symmetric. This results in a symmetric polygonal
form, periodically repeating itself. If, on the other hand,
the perturbations lack symmetry the formed polygon
will reflect this and the periodicity would therefore be
lost.

The influence of the disturbances on the convergence
of a cylindrical shock was investigated in an experimen-
tal study by Watanabe et al. [10]. This study was per-
formed in a vertical co-axial annular shock tube. Special
care was taken in the design of this shock tube to min-
imize the possible disturbances in the flow. Thus, this
facility lacked the supports for the inner tube known to
introduce disturbances in the flow. The results of this
study showed that the cylindrical shock wave converge
more uniformly towards the center than in a similar co-
axial shock tube with supports.

In the previous paper by Apazidis et al. [6], a 2D
chamber was used to study the convergence of a reflected
shock wave. Shock waves were created in a plane cham-
ber which had a specific geometric boundary, in the form
of a pentagon with “smooth” corners. The shocks were
produced by two different methods, by means of an
igniting spark as well as an exploding wire, placed at
the center of the chamber. Thus an outgoing cylindrical
shock was created. After reflection from the chamber
boundary the shock was transformed to a converging
pentagonal shock. The Mach number range for the con-
verging reflected shock was 1.1-2.0, producing weak
to moderately strong shock waves. The above experi-
mental method was able to produce highly symmetrical
converging pentagonal shock waves. One of the disad-
vantages of the method was the creation of a distur-
bance zone in the center of the chamber due to the
initial spark creation. It was therefore not feasible to
continue the study of the converging shock as it ap-
proached the center of the chamber. This was unsatis-
factory since the main nonlinear focusing effects become
more pronounced as the strength of the shock increases
in the vicinity of the center.

To be able to study this process in full, a new exper-
imental setup was built at KTH Mechanics. This setup
consists of a horizontal annular shock tube similar to
those used in the earlier mentioned experiments. Com-
pared to the chamber used in Apazidis et al. [6] there
are no disturbances ahead of the shock wave and hence
the whole convergence-reflection process is visible.

Another improvement of the new shock tube facility
is that it can produce converging shock waves of var-
ious shapes. The present shock tube differs from the
previous annular shock tubes by the construction of the
thin convergence chamber, perpendicular to the tube.
The construction of the chamber allows the mounting of
the outer boundaries of various shapes. Three different
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shapes of the outer boundary have been tested in the
present experiment including a circular boundary, an
octagonal boundary and a boundary with a smooth pen-
tagonal shape. The purpose of the present work is there-
fore to study the influence of the form of the shock on
the process of shock convergence and reflection. This
influence of the shape of the boundary on the form and
properties of the resulting shocks have been investigated
both experimentally and numerically.

2 Experimental apparatus

The experimental apparatus consists of a 2.4-m-long
shock tube where the shock is generated, focused and
reflected. The focusing and reflection process is visual-
ized by means of a schlieren system with a camera. The
shock speed is measured before the shock converges by
sensors placed on the annular part of the shock tube.
The experimental setup is shown in Fig. 1.

2.1 The shock tube

The horizontal shock tube consists of two main parts,
the high-pressure part or the driver and the driven or
low-pressure part. The low-pressure part is divided into
three sections: the inlet section with a constant cross-sec-
tion area where a plane shock is formed, the shock trans-
forming section where the shock becomes annular and
finally the plane test section in the rear end of the shock
tube. The shock tube has a circular cross-section. In the
experiments, the test gas is air and the pressure in the
low-pressure part ranges from 0.133 to 13.3 kPa, while
the pressure in the high-pressure part is kept almost
constant at 1,500 kPa. This yields shock Mach numbers
between 2.3 and 3.1 in the annular section of the tube.
The high- and low-pressure parts are separated by
an aluminum membrane with a thickness of 0.5 mm.
As the pressure is increased in the high-pressure part,
the membrane is forced against a knife-cross placed in

=3

1k

5

.

Fig. 1 Schematic overview of the experimental setup: / high-
pressure part, 2 low-pressure part: inlet section, 3 low-pressure
part: transformation section, 4 low-pressure part: test section,
5 pulse laser, 6 schlieren optics, 7 PCO CCD camera, 8§ damp-
ing filter, 9 lens, 10 schlieren edge

the inlet of the low-pressure part. When the membrane
bursts, a shock is formed and starts to propagate down
the 80-mm-wide and 1,300-mm-long inlet section. The
inlet section of the low-pressure part is sufficiently long
to establish a plane shock. The plane shock is trans-
formed into an annular shape in the transforming sec-
tion which consists of a conically diverging section where
the inner diameter increases from 80 to 160 mm. A 490-
mm-long cylindrical inner body (¢=140 mm) is mounted
coaxially in the interior of the outer tube thus forming an
annular channel. The cross-sectional area is maintained
constant from the inlet section, through the transforma-
tion section. The inner body is mounted by means of two
sets of four supports. To minimize the disturbance from
the supports, they are shaped as wing profiles. Also, the
second set of supports is rotated in the plane of the shock
45° with respect to the first set, see Fig. 2. The speed of
the shock, Us, that impacts upon the test section is deter-
mined by two sensors mounted in the wall of the outer
tube along the axis of the transforming section. The tem-
perature jump from the shock wave passage triggers the
sensors and gives a measure of the shock speed with an
accuracy within 0.5%.

At the end of the shock tube the flow turns at a sharp
90° bend and enters radially into the plane test section,
see Fig. 3. The inner edge of the reflector plate, marked
by 2 in Fig. 3 is at the same radial distance from the
center point of the test section as the inner wall of the
outer tube, marked by 1 in Fig. 3 for the circular reflector
plate. For the other forms of the reflector plate the radial
distance to the center will vary along the circumference.
The gap between the two facing surfaces is S mm and the
cross-section area is decreased by a factor of 2 as com-
pared to the annular section. The outer boundary of the
test section is exchangeable and three reflector plates
of different shapes are used in the experiments, a cir-
cular, a pentagonal and an octagonal plate, see Fig. 4.
The radius for the circular reflector plate is 80 mm.

laser light entrance

Fig. 2 The annular part of the shock tube: I inner body with a
cone, 2 supports, 3 mirror, 4 lens, 5 glass windows for visualization,
6 convergence chamber with replaceable reflector plates
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Fig.3 A simplified sketch of the 90° corner, showing the position
of the reflector plate: 1 outer tube, 2 reflector plate, 3 inner body
containing optical equipment, 4 glass windows

(a) Cicular (b) Octaonal

(c¢) Pentagonal

Fig. 4 The three reflector plates used in the experiments

The shape for the pentagonal boundary is given by

ro

=1 + e cos(56)’ @

where ¢ = 0.035 and 9 = 77 mm and r is the radius.
Focusing of pentagonal shock waves, given by (1), has
previously been studied by Apazidis et al. [6]. The octag-
onal plate has R = 80 mm, which is the radius of the
outer circumscribed circle.

2.2 The shock visualization

The facing surfaces in the test section have glass win-
dows and the flow is visualized by schlieren technique.
The inner body contains an adjustable beam expander
to provide axial parallel light through the test section.
An Nd:Yag (NewWave Orion) laser that provides single
shot operation, with 5-ns-long light pulses, is used as light
source for the schlieren optics. It is mounted outside the
shock tube and the light beam from the laser is reflected
by a mirror before entering the shock tube. As the laser
beam enters the tube through an orifice in one of the
inner body supports, it is deflected in the axial direction,
see Fig. 1. The parallel light obtained by means of the
beam expander passes the test section and leaves the
shock tube via the rear end glass window. The light is
then focused by schlieren optics. A schlieren edge, a pin-
head with r = 1 mm, is placed in the focal plane of the
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source and intercepts parts of the light before it reaches
the camera. The camera, (PCO SensiCam, 12 bits, 1280
x 1024 pixels, pixel size: 6.7 x 6.7 pm, CCD) is placed
in the focal plane of the test section. The camera is trig-
gered by the same signal as the laser. A time delay unit
(Stanford Research System, DG 535) is used to control
the laser and the camera to enable exposure of the shock
wave at predetermined positions in the test section.

3 Experimental Results

The present light source system allows one exposure at
each run. To resolve the process of shock focusing and
reflection in time, single exposures are taken with differ-
ent time delays. For each run the time instants #; and 7
when the shock wave passes the sensors are recorded.
From these, the shock speed, Us, can be determined.
These measurements have a high repeatability giving
low error level. For a typical shock speed around 800
m/s the average of the passage time #, — ¢; and the rms-
value are 312 ps and 1.32 ps respectively, i.e. the error is
less than 0.5%. In Fig. 5 a typical time history of signals
recorded by the two sensors is shown. The upper curve
is the signal from the first sensor. The first peak corre-
sponds to the time #; and the second peak is the reflected
shock wave. The lower curve is the signal from the sec-
ond sensor. The resolution used in the measurements of
the time signals is 2 p.s.

Typical sets of pictures are shown in Figs. 6, 7 and 8.
The size of the visualized area is 70 mm in diameter, that
is ca 50% of the test section. In Fig. 6, where the circular
reflector plate is used, the shock wave is seen to main-
tain a slightly perturbed circular form during the main

2.665

2.66

2.655

2.65

> 2.645

2.64

2.635

2.63

2625 . . . . . . . . .
0 05 1 15 2 25 3 35 4 45 5

t [ms]

Fig. 5 The signal from the two sensors showing the shock wave
passage and reflection, Mg = 2.3, octagonal reflector
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(a) At = 185us

(c) At=205us

(d) At=212pus

gl

(f) At = 245us

(e) At=213us

(h) At = 265us

(g) At =255us

Fig. 6 The shock wave for the annular Mach number M = 2.3 at
different instants for the circular reflector plate

part of the focusing process. Very close to the center the
shock wave loses its circular shape and becomes square-
shaped, see Fig. 6d. The reflected shock propagates into
a flow field created by the converging shock. Although
the final form of the converging shock is square-like the
reflected shock wave regains its circular symmetry after
focusing. The circular symmetry of the outgoing shock is
then maintained through the rest of the reflection pro-
cess, see Fig. 6e-h.

In Fig. 7 the shock focusing and reflection using an
octagonal reflector plate is shown. Initially the shape of
the shock wave is octagonal and has the same orientation

(a) At = 185us (b) At = 190us

(¢) At =202us (d) Ar=210us

(e) At =215us (f) Ar =230us

(g) Ar =250us

(h) At =265us

Fig.7 The shock wave for the annular Mach number Mg = 2.3 at
different instants for the octagonal reflector plate

as the reflector boundary, see Fig. 7a. During the focusing
process the octagonal-shaped shock wave transforms
first into a double octagon and then obtains again an
octagonal form, see Fig. 7c. This time, however the
orientation of the shock front differs from that of the
boundary in the sense that corners of the shock are
now positioned against the plane sides of the reflec-
tor and vice versa. That is the octagonal shape is now
reoriented as compared to the initial shape, compare
Fig. 7b and 7c. This behavior was predicted earlier in
the numerical studies of polygonal shock convergence,
see e.g. Schwendeman and Whitham [4] and Apazidis
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(a) At = 190us

(c) At =200us (d) At =210us

(f) At = 235us

(h) A t=270us

(g) At =255us

Fig. 8 The shock wave for the annular Mach number Ms = 2.3 at
different instants for the pentagonal reflector plate

and Lesser [5]. The above phenomenon originates from
the nonlinear coupling between the shape of the shock
and the velocity of the shock propagation. Due to the
high curvature in the vicinity of the corner areas, these
propagate with higher velocities than the plane parts
of the shock front. This leads to a transformation and
reorientation of the shock front shape with new plane
portions replacing the corners and new corners being
built at the middle positions of the previous plane sides.
To our knowledge this feature has not been observed
experimentally earlier. Numerical studies indicate that
this process would repeat itself through several cycles.
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The present experimental observations show how-
ever that close to the center of convergence the shock
obtains a square-like form, see Fig. 7d. We believe that
this is attributed to the disturbances in the flow intro-
duced by the supports holding the inner body of the
shock tube. It seems that the 4-mode instability men-
tioned earlier in Takayama et al. [7,8] plays an important
role here.

Although the final form of the converging shock is
square-like just before the focusing the reflected shock
obtains a circular form in the beginning of the reflec-
tion process just as in the case of a circular reflector, see
Figs. 7f, g. The difference as compared to the circular
case is a more complicated structure of the flow field
created by the converging shock seen in these figures.
In the later stages of the reflection process, the outgoing
shock transforms from a circular to an octagonal form,
now as the result of the interaction with the flow ahead
of the shock, see Fig. 7h.

Finally, Fig. 8 shows the focusing and reflection pro-
cess for the pentagonal reflector plate. The shock behav-
ior in this case is similar to that of the octagonal case.
The shape of the converging shock initially resembles
the form of the reflector boundary, see Fig. 8a. As the
converging shock approaches the center of the test sec-
tion, its form is transformed to that of an reoriented
smooth pentagon as in Fig. 8c. The reflected shock is
influenced by the flow ahead of it, as created by the
converging shock. This influence transforms the shock
from a more circular-like form at the beginning of the
reflection to a pentagon-like form at the later stages of
the process, as seen in Fig. 8h. The orientation here is
the same as in Fig. 8c, that is opposite to the orientation
of the reflector boundary.

Near the center of convergence the shock wave is
observed to attain a square shape, for the circular and
octagonal reflector case. It is likely that this is caused
by the disturbances in the flow introduced by the sec-
ond set of supports to the inner body. The corners of
the square-shaped shock wave correspond to the loca-
tion of the second set of supports. As mentioned earlier
this phenomenon was observed in the experiments per-
formed by Takayama et al. [7,8].

The present experimental study shows that the flow
field behind the shock influences not only the converg-
ing shock but is equally important for the shape of the
the reflected shock.

Figure 9 shows a blow up of the center of conver-
gence for different reflector forms and Mach numbers,
all showing the square shape of the shock wave. In
Fig. 9d the initial Mach number was increased to
M = 3.68 by using helium as the driver gas instead of
air.
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(a) My =2.51, circular
reflector

(b) M =2.35, octagonal
reflector

% ‘ ol ':.._
(d) M, = 3.68, octagonal
reflector

(¢) M, =2.35, circular
reflector

Fig. 9 Square-shaped shock waves near the center of conver-
gence for circular and octagonal reflectors for various values of
the annular Mach number M

To be able to make comparisons of the shock speed
of the three different shaped shock waves, a concept of
equivalent radius is introduced. This radius is defined
as the mean value of the smallest circle surrounding the
shock and largest contained inside the shock wave. The
equivalent radius for four different pressure ratios cor-
responding to Mach numbers (measured in the annu-
lar section), Mgy = 3.10, My, = 2.71, M3 = 2.51 and
Mgy = 2.36 are plotted in Fig. 10. The visualization tech-
nique is not satisfactory when using low-pressures in the
low-pressure part, (< 4 kPa), which explains the reduc-
tion of points for the converging shock with Ms = 3.10
in Fig. 10.

In Fig. 11 the radius of the shock wave is plotted ver-
sus the delay time for the three reflector plates at the
same annular Mach number, My = 2.3.

In Figs. 12, 13 and 14 the radius of the shock wave is
plotted versus the time delay for the circular, pentagonal
and octagonal reflectors, respectively.

To estimate the error in the shock wave position the
time delay was set to At = 200 ps and a series of 5-9
runs were performed for the three different reflectors.
The rms values and the equivalent radius are presented
in Table 1. As seen from Table 1, the errors are about
10% for the pentagonal and the octagonal reflectors and
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Fig. 10 Radius as function of the delay time for the circular
reflector plate and four various values of the annular Mach
number
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Fig. 11 Comparison between octagonal, pentagonal and circular
reflector plates for the annular Mach number Mg = 2.3

about 5% for the circular reflector. Possible sources of er-
rors are fluctuations in temperature and variations in the
light pulse emission in the laser. These errors could be
effectively reduced if equipment allowing several expo-
sures per run were used, as in Takayama et al. [7].

An attempt was made to compare the experimental
data for the converging shock wave radius with the sim-
ilarity solution obtained by Guderley [1],

() ®

where R, is the outer radius of the test section and .
is the time when the converging shock wave arrives
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Fig. 12 Radius of the converging and reflected shock wave for Fig.14 Radius of the converging and reflected wave for the octag-

the circular reflector for the annular Mach number Mg = 2.3

40 T T

35¢ b
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Fig. 13 Radius of the converging and reflected shock wave for
the pentagonal reflector for the annular Mach number M = 2.3

at the center. By a nonlinear least square fit to the
experimental data, R, t; and « are found. The single-run
procedure used in the estimation of the shock position
makes the determination of the R., t. and « difficult.
Despite the low level of variation of the Mach number
value between various runs it was not possible to deter-
mine an accurate value based on the present experimen-
tal results. This is due to the sensitivity of the a-value
on even small variations in the experimental data be-
tween the runs, especially in the vicinity of the conver-
gence center. In the next section we give a comparison of
the present numerical results with the similarity power
law assumption (2) for both numerical and experimental
data obtained by previous investigators.
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onal reflector for the annular Mach number Mg = 2.3

Table 1 Error estimation for At = 200us for all three reflectors,

p1 =133kPa

Reflector rms mean radius (mm)
Circle o =120 R=1229
Pentagon o=212 R=194

Octagon o =1.89 R=18.6

4 Numerical simulation and comparison
with the experimental results

The numerical calculations were based on the artificially
upstream flux vector splitting scheme (AUFS) for Euler
equations, introduced by Sun and Takayama [11]. The
scheme proved to be highly accurate, stable and robust
in the considered configurations. In the following, we
describe the initial and boundary value problem inves-
tigated in the present numerical study.

We will consider propagation of strong shocks in a
gas-filled thin chamber with various shapes of the outer
boundary. The shock is assumed to be initiated by an
impulsive high pressure in a thin annular zone adjacent
to the outer boundary of the test section. The outer
boundary of this zone is the reflector plate and the inner
boundary is a circle defined by the inner body of the
shock tube. The inner of the chamber is initially kept
at lower pressure. The complete two-dimensional flow
in the chamber is then computed. This is certainly an
approximation which disregards the details of the com-
plex flow situation in the shock tube as the flow turns
90° from the annular section and enters test section. The
validity of this approach was tested by comparison of the
computational results with the experimental observa-
tions in the present study which proved to be good. The



Focusing of Strong Shocks in an annular shock tube

213

(a)

Fig. 15 Initial high-pressure zone adjacent to the chamber boundary. a circular boundary, b octagonal boundary ¢ smooth pentagon

defined by r = ry/ (1 + & cos (59)) where rgp = 77 mm and ¢ = 0.035

numerical model correlates well with the major features
of the flow in various investigated configurations.

The process of convergence of the initial shock to-
ward the center of the boundary as well as the following
propagation of the outgoing reflected shock from the
center of the chamber was studied in detail
and the results compared to the experimental observa-
tions. The shape of the chamber together with the thin
high-pressure zone adjacent to the chamber boundary
are shown schematically in Fig. 15.

The comparison with the experimental results has
been carried out for the three cases shown in Fig. 15.
In the first case (Fig. 15a) the shock is generated by
means of an initially high pressure between the inner and
outer circular boundary, corresponding to the annular
end of the inner body. In the second case (Fig. 15b) the
outer boundary of the test section is formed as an
octagon and in the third case (Fig. 15¢) as a “smooth”
pentagon.

In all three cases the pressure in the inner cylindri-
cal part of the chamber was set to p; = 13.3 kPa. This
value was chosen to be the same as the one used in
the experiment. The pressure in the driver section in the
experiment was ps = 112 py. In our case the losses in the
straight portion of the tube are minimized, however we
should expect greater losses due to the sharp 90° bend.
The flow in the sharp 90° has been simulated numerically
and the results indicate a significant drop on the Mach
number after the turn. Calculations of the converging
shock for various values of the initial pressure ratio in
the chamber have been performed. One of the mea-
sured and calculated parameters of the complete flow
is the average radius of the converging and reflected
shock in the chamber as function of time. These curves
were calculated for various initial pressure ratios at the
boundary of the chamber starting from the maximum
theoretical ratio ps4/p; = 112 and gradually decreasing
this value in order to account for the pressure losses in

the tube. The pressure ratio value that compared best
with the experimental curves turned out to be about
30% of the maximum value, giving ps/p; = 33.6. This
value was used in the calculations. Comparison of the
calculated and experimental curves showing the shock
radius as function of time for various initial configura-
tions are shown in Fig. 16.

In case of a pentagonal and octagonal boundary the
value of the radius in the experimental measurements
as well as in calculations is chosen as the average shock
radius at each time instant, that is 7 = (Fmax + 7min) /2.
Shock positions of the converging shock at different
locations in the chamber with an octagonal boundary
are displayed in Fig. 17a. Figure 17b shows the corre-
sponding density profiles in the chamber at a certain
instant of the process.

Figure 18 shows comparison of the calculated shock
profiles with the schlieren images at the corresponding
time instants in the test section.

The calculated density contours for the outgoing shock
in the case of an octagonal reflector are compared with
the schlieren image in Fig. 19. The complicated flow sit-
uation with a circular shock front and an eight-point
star-like profile is seen to be clearly reproduced in the
numerical simulation.

As we can see from Fig. 16 the calculated and exper-
imentally obtained values of the radii of the converg-
ing and diverging shock fronts compare well in all three
geometrical configurations. It was mentioned in
Sect. 3 that values of the radius as function of time
for the converging shock have been compared with the
similarity power law assumption both for the calculated
and experimental values. Due to the single-run proce-
dure for each shock position it was not possible to make
an accurate estimate of the power law exponent from the
experimental data. The o value was however obtained
from the numerical computations. The results are given
in Table 2.
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Fig. 16 Calculated and measured values of the average shock radius in the chamber for p4/p; = 33.6. a Circular boundary, b octagonal

boundary ¢ smooth pentagon
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Fig. 17 Calculated converging shock in an octagonal chamber for p4/p; = 33.6

(a) At = 130us (b) At = 135us
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(d) Ar =152us
Fig. 18 Comparison of the calculated shockwave profiles with the

experimental schlieren images in the chamber with an octagonal
boundary for ps/p; = 33.6
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Table 2 Numerical computation of «-values

Shape Pressure ratio o

Circle no counter pressure 0.832
Circle pa/p1 =33.6 0.857
Smooth pentagon pa/p1 =33.6 0.879
Octagon pa/p1 =33.6 0.883

The o value for the case of a circular reflector with no
counter pressure compares well with previous numerical
results, see e.g. Takayama et al. [7], Mishkin and Fujium-
oto [12] and experimental results of Takayma et al. [7].
The lower values of the similarity exponent give higher
values of the shock acceleration and thus higher veloc-
ity as the shock approaches the center of convergence.
The calculated values indicate that the most favorable
shape in terms of shock velocity and acceleration is the
circular one.

There is however another parameter here which influ-
ences the converging shock velocity and thus the value
of the similarity constant. This parameter is the distance
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(a) Schlieren photograph of the flow for an outgoing shock
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Fig. 19 Comparison of the experimental and calculated density gradient profiles for an outgoing shock for p4/p; = 33.6 in an octagonal

chamber at At = 230 us

from the inner circular end of the shock tube to the
outer boundary of the chamber. For the pentagonal and
octagonal case this distance will of course vary around
the perimeter. If the distance is small the expansion
wave, reflected from the chamber boundary will catch
up with the converging shock and decrease its strength.
This property is investigated numerically for the case of
a circular boundary and the results are shown in Fig. 20.

This figure shows the Mach number of the cylindrical
shock as it is approaches the center of the chamber and
then transforms to a reflected wave expanding from the
center of convergence. The inner circular boundary of
the high-pressure zone has a fixed radius rj; = 0.07 m
corresponding to the present experimental setup. The
Mach number distribution is then calculated for vari-

Mach number

0 20 40 60 80 100 120 140 160
time [us]

Fig.20 Influence of the high-pressure zone thickness on the Mach
number. The inner radius of the the high-pressure zone is iy =
0.07 m and the value of the outer radius is marked on each curve

ous outer radii starting from 7oy = 0.072 m and up to
rout = 0.2 m. As we can see from the figure, in case of a
thinnest zone the strength of the converging shock wave
is severely decreased by the reflected expansion wave.
This influence, however, decreases rapidly as the thick-
ness of the zone is increased. For royt = 0.09 m there
is no influence of the reflected expansion wave on the
converging shock.

In order to exclude the influence of the reflected
expansion wave we have conducted calculations for a
configuration with various outer boundaries but the
same circular inner boundary and the same area of the
high-pressure zone for all cases. The results are dis-
played in Fig. 21. As we can see the maximum Mach

»
(4]
\N
B

[FR-N-C

maximum Mach number

15 L L L L L L L L L

0 20 40 60 80 100 120 140 160 180 200
time [us]

Fig. 21 Influence of the form of the chamber boundary on the
Mach number. Each curve is marked by a corresponding number
of the polygon sides of the outer boundary. n = 0 corresponds to
a circular boundary
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number is obtained for a circular form, marked by n = 0
in the figure. This maximum is followed by an octagon,
hexagon, pentagon and finally a square. As seen the
deviation from the rest of the curves is largest for a
square reflector form giving a maximum mach number
of Mmax = 3.35 as compared with Mpy,x = 4.24 for a
circular form.

5 Conclusions

A new type of a a horizontal co-axial shock tube was
used to investigate the properties of converging and
reflected shocks with various initial shapes. The shape
of the converging shock was generated by means of
the reflector boundary in a thin cylindrical test section
mounted at the rear part of the co-axial shock tube.
Three various shapes of boundaries have been used in
the present study—a circle, an octagon and a smooth
pentagon. Numerical calculations have been performed
to simulate the three described experimental configu-
rations and the predictions of calculations have been
compared with the experimental observations.

We summarize the major results of the present inves-
tigation.

(1) The initial form of the converging shock can be
tailored by an appropriate choice of the form of
the reflector boundary.

(2) The nonlinear dynamics of the shock convergence
is observed in the present experimental study. The
form of the shock undergoes a transformation from
an original octagonal form through a double octa-
gon back to a new octagon with an opposite
orientation. This is due to the nonlinear coupling
between the form of the shock and the velocity of
shock propagation. The above feature, previously
shown only in the numerical simulations is thus
confirmed experimentally in the present study. The
same type of behavior is observed in the case of a
pentagonal reflector boundary.

(3) The final form of the converging shock in the
immediate vicinity of the convergence center is
square-like for circular and octagonal reflector
boundaries. This is believed to stem from the per-
turbations in the flow due to the set of four sup-
ports in the annular portion of the shock tube.
The shock strength is increasing as it approaches
the center of the cavity and the disturbances in the
initial flow are amplified. In the immediate vicin-
ity of the center of convergence the form of the
shock is mainly determined by the disturbances in
the flow field. In the present case the shock was
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observed to obtain a square-like form very close
to the convergence center. This is in agreement
with the previous experimental studies.

(4) The reflected shock initially has a circular sym-
metry for all three reflectors. It retains its circular
symmetry in the case of the circular reflector. In
the case of the octagonal and pentagonal reflec-
tor the form of the outgoing shock is influenced
by the flow field created by the converging shock.
In the octagonal case the shock is transformed to
an octagon-like form while in the case of a pen-
tagon it attains a pentagon-like shape. This shows
the influence of the flow ahead of the shock on the
shape of the reflected shock.

(5) The numerical simulation of the flow in the con-
vergence chamber was performed by the numeri-
cal solution of the full set of Euler equations. The
numerical calculations were based on the AUFS,
introduced by Sun and Takayama [11]. Several
flow parameters obtained from the numerical com-
putations have been compared with the experi-
mental data. The first one is the average radius
of the converging and reflected shocks as func-
tion of time. The experimental data was obtained
from the schlieren images of the shocks. Also the
shape of the shock fronts in the test section at
various instants of the convergence and reflection
processes as well as the density profiles obtained
by means of the numerical calculations were com-
pared with the schlieren images. The numerical
results were found to be in good agreement with
the experimental data and were also able to repro-
duce the major features of the flow in the chamber.
Numerical results indicate further that the maxi-
mum Mach number at the center of the chamber
is obtained for the circular reflector and is lower
for a reflector with a polygonal form, decreasing
with the number of sides of a polygon.
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Abstract  The influence of artificial disturbances on the
behavior of strong converging cylindrical shocks is investi-
gated experimentally and numerically. Ring-shaped shocks,
generated in an annular cross sectional shock tube are trans-
formed to converging cylindrical shocks in a thin cylindrical
test section, mounted at the rear end of the shock tube. The
converging cylindrical shocks are perturbed by small cylin-
ders placed at different locations and in various patterns in
the test section. Their influence on the shock convergence
and reflection process is investigated. It is found that dis-
turbances arranged in a symmetrical pattern will produce a
symmetrical deformation of the converging shockfront. For
example, a square formation produces a square-like shock
and an octagon formation a shock with an octagonal front.
This introduces an alternative way of tailoring the form of
a converging shock, instead of using a specific form of a
reflector boundary. The influence of disturbances arranged
in non-symmetric patterns on the shape of the shockfront is
also investigated.

Keywords Shock focusing - Annular shock tube -
Imploding shock

PACS 47.10.ab - 47.40.Nm

1 Introduction

Focusing of shock waves can be used to generate high temper-
atures and pressures. This, together with many technological
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applications is one of the main reasons for continuing research
in this area. A challenging problem is to generate imploding
cylindrical shock waves preserving their original shape. It is
known, however, that a converging cylindrical shock wave
is very sensitive to perturbations and will change its form
when encountering a disturbance. Itis, therefore, important to
clarify the influence of disturbances on the process of shock
convergence and reflection. The influence of obstacles on
the flow is closely related to two interesting problems. The
first one being the relation between the shape and the local
strength and thus speed of the shockfront propagation. This
means that a highly curved part of the shock wave propagates
faster than the adjacent planar part, which leads to a trans-
formation and reorientation of the shock shape. The second
problem concerns with the stability of the converging shock.

Shock diffraction is a classic example of shock wave prop-
agation over obstacles. Bryson and Gross [4] investigated
plane strong shock diffractions over cones, a cylinder and
a sphere. Detailed schlieren photographs of the diffraction
show the regular reflection, Mach reflections generating vor-
texes, triple points and their interaction. Their results were
shown to be in good agreement with Whitham’s theory
[12-14].

A study of shock wave focusing, by Takayama et al. [10],
was conducted in a horizontal coaxial annular shock tube.
They introduced disturbances in the flow by thin cylindri-
cal rods with three different diameters. Experiments showed
that the disturbance behind the shockfront was more signif-
icant for rods with larger diameter. The inner body of the
shock tube was suspended by four pieces of relatively large
diameter cylindrical rods and hence a mode-4 instability was
observed, even when larger diameter disturbances were intro-
duced in the flow.

In 1987, Takayama et al. [9] used two different annular
horizontal shock tubes, both of which were equipped with n
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supports for the inner body, and observed an n-mode insta-
bility. To test the influence of an initial disturbance on the
shock convergence, 12 cylindrical rods were placed in the
test section of the shock tube having four supports. At first,
the shock wave was deformed by the 12 rods, but when it
approached the center of convergence the mode-4 pattern
appeared again. It was concluded that it was not possible to
completely suppress the disturbances caused by the presence
of supports.

Watanabe et al. [11] studied converging cylindrical shocks
in a vertical annular shock tube having a self-sustained struc-
ture, lacking supports. They were able to produce converging
shock waves more uniformly than in a similar horizontal
coaxial shock tube with supports. Even in the absence of sup-
ports, small disturbances were observed in the flow, presum-
ably caused by small area variations in the coaxial channel.
Watanabe et al. [3] distributed cylindrical rods at a certain
distance upstream of the test section. Using both 2, 12 and
combinations of 4 and 6 rods, they observed that disturbances
created by a smaller mode number were stronger than those
with higher mode number.

There is a close connection between the original shock
shape and its preservation of symmetry during the focus-
ing process. Schwendeman and Whitham [7] showed ana-
lytically that for shocks with regular polygonal shape the
original shape was periodically repeated during convergence.
Apazidis and Lesser [2] showed this feature numerically in
the case of a smooth pentagonal converging shock wave. In an
experimental study of a reflection and convergence process
in a chamber with a smooth pentagonal reflector, Apazidis
et al. [1], confirmed the previous analytical and numerical
results in this area. Due to limitations in the experimental
setup it was not possible to see the complete cycle of the
shock reorientation during the focusing procedure.

The complete shock reorientation cycle was first observed
experimentally in Eliasson et al. [5]. In this study, strong
shock waves of various forms were produced by changing
the shape of the outer boundary of the test section placed at the
rear end of the horizontal shock tube. It was verified, for the
first time, that octagonal and pentagonal converging shocks
successively reorient and repeat the original shape during the
focusing process. This is caused by the nonlinear dynamics
of the shock propagation and stems from the fact that corners
of the shock with high curvature move faster than the adja-
cent plane sides. The shock wave changes its shape as corners
undergo Mach reflection and transform to plane sides. Unlike
predictions provided by linear perturbation theories, slightly
perturbed shock shapes never grow to catastrophic deforma-
tion but will obey the nonlinear deterministic system, which
simply means the onset of Mach reflection.

In the present paper, we show a new way of producing
converging shock waves of various shapes. Using the same
shock tube as in [5] but instead of changing the shape of the
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Fig. 1 Schematic overview of the experimental setup: / shock tube,
2 pulse laser, 3 schlieren optics, 4 PCO CCD camera, 5 lens and 6
schlieren edge

outer boundary of the test section, we distribute cylindrical
rods inside the test section. The rods are arranged in various
positions and patterns and hence can create any disturbance
shapes as desired. In the present experiment we study how
the shock focusing and reflection is influenced by artificial
disturbances. The present numerical work is based on the arti-
ficially upstream vector splitting scheme (AUFS) for solving
the Euler equations introduced by Sun and Takayama [8].
Good agreement is found between the numerical simulations
and the experimental results.

In Sect. 2 we describe the experimental setup in detail:
the shock tube, the visualization technique and artificial dis-
turbances. Section 3 presents experimental results. In Sect. 4
the numerical results are showed and compared with exper-
iments. In Sect. 5, we conclude and summarize the present
study.

2 Experimental setup

The experimental setup is shown in Fig. 1 and consists of a
horizontal shock tube, schlieren optics and a laser as light
source. The shock tube has a test section consisting of a
thin cylindrical chamber, in which cylindrical shock waves
converge and reflect. The shock wave is visualized using
schlieren optics. Schlieren images are recorded by a CCD
camera.

2.1 The shock tube

Figure 2 shows the 2.4 m long and 80 mm diameter shock
tube, which consists of a high pressure chamber and a low-
pressure channel separated by a 0.5 mm thick aluminum
diaphragm. To create a shock wave, first the low pressure
driven section is evacuated and then the driver section is
filled with high pressure gas. The pressure difference across
the diaphragm causes it to rupture, driving a shock wave.
To achieve a controlled diaphragm opening, we use a cross-
arranged knife at the low pressure channel entrance. The
knife helps to evenly burst the diaphragm. The shock wave
becomes planar while propagating along the low pressure
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Fig. 2 Schematic overview of the shock tube setup: / high pressure
part, 2 low pressure part: inlet section, 3 low pressure part: transforma-
tion section, 4 low pressure part: test section, 5 low pressure sensor, 6
vacuum valve, 7 vacuum pump, and 8 shock sensors

Laser light entrance

Fig. 3 The annular part of the shock tube:/ inner body with a cone, 2
supports, 3 mirror, 4 lens, 5 glass windows for visualization, and 6 test
section where the obstacles are positioned

channel, then enters the transformation section where it
obtains annular cylindrical shape.

The transformation section consists of a conically diverg-
ing section, along which the diameter increases from 80 to
160 mm as seen in Fig. 3. The cross-section area is kept
constant from the inlet section through the transformation
section. An inner body is mounted coaxially in the outer
larger diameter tube, which forms the annular section. The
490 mm long and 140 mm diameter inner body is suspended
by two sets of four supports. The supports are shaped as wing
profiles in order to minimize the disturbances in the flow. The
second set of supports is angularly displaced by 45° relative
to the first set. The plane test section is mounted directly at
the end of the annular section. Hence, the shock wave can
enter into the test section via a sharp 90° bend eventually to
focus and reflect. The gap width of the cylindrical parallel
test section between the two facing glass windows is 5 mm
and, therefore, the cross section area is one half of that of the
annular part. The outer boundary of the test section is circu-
lar. The test gas in the present experiments is air at 13.3 kPa
at room temperature and the driver gas is also air at about
1,500 kPa at room temperature. This pressure ratio produces
strong shock waves at Mach number 2.3.

The shock speed, Us, is measured by thin-film heat trans-
fer gauges placed along the annular section, with which the
temperature jump across the shock waves is detected and the
shock speed estimated within the accuracy of 0.5%.

2.2 The shock visualization

AnNd:Yaglaser (NewWave Orion) emitting a5 nslight pulse
is used as light source for the schlieren optics. As shown in
Fig. 3, the light beam is introduced into the shock tube per-
pendicularly to the tube axis and then deflected in the axial
direction by a mirror placed inside the inner tube. To mini-
mize spurious reflections from the inner side of the inner tube
the walls are coated with non-reflective material. To form
a parallel light beam for the schlieren optics, an adjustable
beam expander is mounted inside the inner tube. The parallel
light beam passing through the test section is then forming
the schlieren images in the receiving optics. A 1.0 mm diam-
eter pin head is placed at the focal plane of the image lens
as schlieren knife-edge. It intercepts parts of the light beam
to exhibit schlieren effects before reaching an image plane
of a CCD camera (SensiCam, 12 bits, 1,280 x 1,024 pix-
els, pixel size 6.7 x 6.7 um, CCD). The CCD camera and
the light source laser are triggered by an output signal from
the shock sensors via a properly adjusted time-delay unit.
The delay unit (Stanford Research System, DG535) retards
the output signal with a properly preset value to synchronize
schlieren images at expected positions in the test section.

2.3 Artificial disturbances

Artificial disturbances are introduced in the flow by 1-16
cylinders with three different diameters (7.5, 10 and 15 mm).
The cylinders are placed at two radial positions,
r1 = 46.25 mm and r, = 66.25 mm, in both regular and
irregular patterns using a template with holes as shown in
Fig. 4 a. Figure. 4b shows an example of 16 cylinders of 10
and 15 mm diameters placed at r = ry.

3 Experimental results

Gas temperature is an important parameter in determining
the speed of sound and thus the Mach number. We there-
fore checked, using a cold wire, the temperature variation
during the pressure adjustment in the low pressure section
of the shock tube. We found that the temperature reached a
constant value 1 min after final adjustment of the pressure.
Figure 5 shows the temperature variation during the pressure
adjustment. Before time instant (I), the gas is at low pressure
and in thermal equilibrium with its confinement. Between
() and (II) the gas is supplied to the driven section and the
temperature rises. Between (II) and (III) the gas is cooled by
the surrounding walls. The vacuum pump is started at (III) to
decrease the pressure to 13.33 kPa and stopped at (IV). The
temperature first falls due to the gas expansion and then rises
to ambient value within approximately 1 min.

@ Springer



32

V. Eliasson et al.

Fig. 4 a Template for cylinder
positioning, r; = 46.25 mm and
ry = 66.25 mm. b Rear part of
the shock tube with 2 x 8
cylinders placed in the test
section at r = ry

T [deg C]

10 L L L L ! L L L L L L
0 05 1 15 2 25 3 35 4 45 5 55 6

Time [min]

Fig. 5 The temperature in the low pressure part during evacuation

An initially cylindrical shock wave is disturbed by
interacting with cylindrical obstacles placed in the test sec-
tion. The shock wave diffracted over the cylindrical obsta-
cles eventually produces series of Mach reflections which
move toward the center of convergence. Present results show
that a symmetric pattern of obstacles eventually produces
a regular shock wave with plane sides and corners which
will repeat its shape in successive intervals. It is thus pos-
sible to create shock waves of various polygonal shapes,
for example octagons, by introducing corresponding polygo-
nally distributed obstacles. The present study agrees with ear-
lier analytical, numerical and experimental results obtained
by Schwendeman and Whitham [7], Apazidis and Lesser [1]
and Eliasson et al. [5], which also show that polygonal shock
shapes are successively repeated. Unlike our previous exper-
iment, in this case the polygonal shock shape is obtained
not by the reflection from the polygonal reflector, but by the
interaction with distributed cylindrical obstacles placed in
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the test section. Their influence on the shock form depends
on the diameter of obstacles. Cylinders with larger diameters
generate more significant disturbances. This agrees with the
results of Takayama et al. [9].

First, a single 15 mm diameter cylinder was placed at
r1 = 46.25 mm in the test section. In Fig. 6, a schlieren
photograph shows the converging shock shape after passing
over the cylinder. A reflected shock wave (RC) is created
upon the converging shock’s impingement on the cylinder.
After diffraction over the rear side of the cylinder, a three-
shock system consisting of a Mach shock (MS), a converging
or incident shock (CS), and a reflected shock (RS) forms a

Fig. 6 Schlieren photograph of a shock wave passing a single 15 mm
diameter cylinder. Mg = 3.2. CS converging cylindrical shock, RS
reflected shock from the cylinder, M S Mach shock and TP triple point.
The grey filled circle shows the position of the cylindrical obstacle
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triple point (TP) as seen in Fig. 6. Photographs taken at dif-
ferent time instants are displayed in superposition in Fig. 7.
We can readily compare the evolution of shock shapes and
wave interactions. Comparing our results with Bryson and
Gross [4], we can see similar behavior in planar shock dif-
fraction over a cylinder. The difference is in the shape of the
incoming, reflected and converging shocks.

Second, two 15 mm diameter cylindrical obstacles were
placed at r1 = 46.25 mm opposite each other. Sequential
images are shown in Fig. 8 which is similar to Fig. 7. Here it
is clearly observed that parts of the shock wave are delayed
when passing over an obstacle.

To compare the effect of the diameter size on the shock
shape, we replaced one of the two cylinders by a smaller
one with a diameter of 7.5 mm. Four sequential images are
presented in Fig. 9. It is now possible to see the influence of
the diameter on the shock shape and propagation. We can see
a clear asymmetry in the shock shape due to the difference
in the diameters. On the rear side of the smaller cylinder,
a second Mach shock and a triple point are visible. This
was also observed in schlieren photographs of planar shock
diffraction over a cylinder [4] when the incident shock wave
passed about 0.5— 1.0 diameter past the rear stagnation point
of the cylinder. The secondary Mach shock appears due to
collision of the two initial Mach shocks.

Third, we performed a series of experiments with three 15
mm diameter cylinders placed at 7; = 46.25 mm in a right
isosceles triangle formation. The result of sequential visual-
ization of converging shocks is shown in Fig. 10 in a similar

Fig. 7 Schlieren photograph of four shock waves at different time
instants passing a single 15 mm diameter cylinder. Ms = 3.2. The grey
filled circle shows the position of the cylindrical obstacle

Fig. 8 Schlieren photograph of converging shock waves at five dif-
ferent instants. Two 15 mm diameter cylindrical obstacles are placed
opposite each other. The grey filled circles show the positions of the
cylindrical obstacles

Fig. 9 Schlieren photograph of four shock waves at different time
instants passing a 15 and 7.5 mm diameter cylinders. Ms = 3.2. CS
converging cylindrical shock, RS reflected shock from the cylinder,
M S, Mach shock and T P, triple point. The grey filled circles show the
positions of the cylindrical obstacles

way as in the previous displays. Plane Mach shocks develop
after the shock diffraction over the cylindrical obstacles. The
original circular shock shape tends to build plane sides with
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Fig. 10 Schlieren photographs of five shock waves at different time
instants passing three 15 mm diameter cylinders. The grey filled circles
show the positions of the cylindrical obstacles

sharp corners even in the undisturbed part of the shock as
the shock approaches the center. The undisturbed part also
travels faster than the disturbed part of the shock.

To create a square-like shock shape, we placed four 15 mm
diameter cylinders at ; = 46.25 mm in a square forma-
tion. Corresponding sequential schlieren images are shown in
Fig. 11. At first, eight sides, which are convex, form an octa-
gon with square-like shape. As the shock wave approaches
the center the sides become plane and the octagon is replaced
by a square.

Figure 12 shows the deviation of shock wave radii nor-
malized by the mean radius at At = 200 us, At =205 us,
At =210 us and At = 215 ps in the case of four cylindri-
cal obstacles. The time delay, At, is defined to be the time
interval between the instant when the shock passes the sec-
ond sensor and that when the photograph is taken. In the first
frame, At = 200 us, a slightly perturbed octagonal shape is
observable. At later time, the Mach shock parts forming the
sides, become more planar.

Next we placed eight 15 mm diameter cylinders at r| =
46.25 mm in an octagonal formation. After interaction with
the obstacles, the shock shape becomes that of an octagon
with curved concave sides as seen in Fig. 13a and b and then
transforms into a polygon with 16 sides as shown in Fig. 13c.
At a later instant, the shock wave transforms to an octago-
nal shape again as seen in Fig. 13d. The second octagonal
shock shape is rotated by 45° with respect to the initial shape.
This is an experimental confirmation of the polygonal shock
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Fig. 11 Schlieren photographs of a shock wave at five different time
instants passing four 15 mm diameter cylinders. The grey filled circles
represent the cylindrical obstacles
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Fig. 12 The deviation from the mean radius normalized with the mean
radius for the case with four cylinders placed at the corners of a square.
The time delay, At, for the individual shock waves are 200, 205, 210
and 215 pus, respectively

dynamics predicted earlier analytically [7], and numerically
[2]. Eliasson et al. [5] confirmed experimentally this trend
by using a different approach for shock formation.

The reflected shock wave displayed in Fig. 13f and g shows
that a circular shape is obtained at the early stage of shock
reflection. Eliasson et al. [5] found that the shock was later



Controlling the form of strong converging shocks

35

Fig. 13 Schlieren photographs
of shock waves at different time
instants passing eight 15 mm
diameter cylinders. The grey
circles represent the cylindrical
obstacles

(e) At =217.5 ps.

(g) At = 260 ps.

(d) At = 216.5 ps.

(f) At = 240 ps.
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Fig. 14 Schlieren photographs
of shock waves at three different
time instants passing sixteen

15 and 10 mm diameter
cylinders. The grey filled circles
show the positions of the
cylindrical obstacles

(a) At =200 ps.

(b) At =205 ps.

affected by waves and flow behind the converging shock,
which eventually resulted in an octagonal shape.

To further investigate the effect of the size of cylindri-
cal objects, we studied shock interaction with more com-
plex obstacle formations. The first formation we looked at
was a combination of eight 15 mm diameter cylinders and
eight 10 mm diameter cylinders distributed in two symmetric
octagonal formations as shown in Fig. 14. Initially the influ-
ence of all 16 cylinders is present. The shock shape appears
to contain 16 concave fronts but has still an octagon form.
Disturbances generated by the interaction with larger diam-
eter cylinders overtake those created by the smaller ones as
the shock wave is approaching the center of convergence,
and again a shock with an octagonal shape is formed.

To examine the effect of asymmetrical blockage, we placed
several cylindrical objects in a dense formation at a certain
angular position leaving the rest of the chamber free. Three
15 mm diameter and two 10 mm diameter cylinders where
placed at 1 = 46.25 mm while three 7.5 mm diameter cylin-
ders atr, = 66.25 mm, at the same angular position as 15 mm
diameter cylinders, as shown in Fig. 15. At such high block-
age ratio, the disturbed part of the shock was attenuated and
delayed.

From the schlieren images in Fig. 16, we observed that
the center of individual shockfronts shifted as a result
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(c) At =210 ps.

of the asymmetrical blockage. The schlieren images of the
shockfronts are used to calculate the radial distance and the
center point. The calculated curves are then centered at a
common origin and displayed together with the schlieren
images in Fig. 16. If the center of the individual shock waves
did not shift, the calculated and the visualized shockfronts
would overlap exactly. The calculated fronts of the largest
two shock waves at 200 and 210 s overlap with the schlieren
images. However, the calculated front of the third shock wave
at 215 pus does not overlap. Hence, we can conclude that
the center of the shockfront is shifted toward the obstacles.
This agrees with previous observations made by Perry and
Kantrowitz [6]. However, the influence of the disturbances on
the shock shape is more significant than that on the deviation
of its center. Thus the deviation of the convergence center is
small as compared to the shockfront deformation.

4 Numerical results

In our previous work [5], we used the artificially upstream
flux vector splitting scheme (AUFS) for solving the two-
dimensional Euler equations, introduced by Sun and
Takayama [8]. In the present work this scheme once again
was able to accurately predict and reproduce the major fea-
tures of the shock propagation process.
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Fig. 15 The shock wave at
different instants, M = 2.3. The
grey filled circles show the
positions of the cylindrical
obstacles. Three additional

7.5 mm diameter cylinders are
not seen in the figure, placed
outside the 15 mm diameter
cylinders

(a) At = 200 ps.

(b) At =210 ps.

(c) At = 215 ps.

(d) At =217 ps.

Fig. 16 Schlieren photographs of three converging shock waves, (same
as the first three photographs in Fig. 15), a calculated front of the shock
wave and a calculated center point

We consider the propagation of a strong shock in the
computational domain representing the shock tube test sec-
tion. As explained earlier, the test section is a thin cylindrical

Fig. 17 The outer cylindrical computational domain boundary with the
thin adjacent initial high pressure zone and four cylindrical obstacles

chamber mounted at the rear end of the shock tube. Shocks
are created upon the release of a high pressure in a thin annu-
lar outer boundary and propagate into the inner part of the test
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Fig. 18 Density gradient profiles at various positions for the case of four cylindrical disturbances

section, initially kept at lower pressure. Cylindrical obstacles
of various radii are placed in various formation patterns in
this domain.

The pressure in the inner of the test section is set to
13.3kPa, in all considered cases, the same value as in the
experiment.

The pressure loss for a shock propagating along the
straight shock tube is small; however, it may be significant
at the sharp 90° bend. Eliasson et al. [5] numerically sim-
ulated shock attenuation and losses at the sharp 90° bend
and indicated a significant decrease in Mach number after
the bend. One of the measured and calculated parameters of
the complete flow was the average radius of the converging
and reflected shock in the computational domain as a func-
tion of time. These curves were calculated for various ini-
tial pressure ratios starting from the maximum theoretical
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ratio of 112 and gradually decreasing this value in order
to account for the pressure losses in the tube. The pressure
ratio value that compared best with the experimental curves
was found to be about 30% of the maximum value, giving
pa/p1 = 33.6. This value was used in the present calcula-
tions as well.

The convergence of the initial cylindrical shock, its inter-
action with cylindrical obstacles placed in various formation
patterns, and the following reflection process from the center
are studied in detail and results are compared with the exper-
imental observations. The computational domain including a
thin high-pressure zone adjacent to the domain boundary and
a typical configuration of cylindrical obstacles are schemat-
ically shown in Fig. 17.

The density gradient profile at various positions is shown
in Fig. 18 for the four cylindrical obstacles in a square
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Fig. 19 Comparison of the
calculated shockwave profiles
with the experimental schlieren
images with one cylindrical
disturbance for ps/p; = 33.6

Fig. 20 Comparison of the
calculated shockwave profiles
with the experimental schlieren
images at various positions with
two cylindrical disturbances for
p4/ p1 =33.6

formation. In the beginning, the diffracted shock wave  vations, the sides of the shockfront become plane as shown in
appears to be convex similar to experimental observations. A Fig. 11.

square-like shock shape is formed at a later stage as the shock A comparison of the numerical and experimental results
propagates toward the center. Similar to experimental obser-  for one, two, four and eight cylindrical obstacle cases are
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Fig. 21 Comparison of the
calculated shockwave profiles
with the experimental schlieren
images at various positions with
four cylindrical disturbances for
P4,/ p1 =336

shown in Figs. 19, 20, 21 and 22. As we can see the AUSF
scheme reproduces the main features of the shock propaga-
tion. The simulated converging shock shapes agree well with
experimental ones. The numerical shockfronts are displayed
as black curves overlapping the white experimental shock
shapes.

Figures 21 and 22 show that it is possible to obtain con-
verging shocks with polygonal form by means of cylindrical
obstacles placed in the computational domain. In Fig. 21
four cylindrical obstacles are placed symmetrically resulting
in a square shock shape, while in Fig. 22 an octagonal shock
shape is produced with eight cylindrical obstacles. Alterna-
tively, various converging shock shapes may be produced
by adopting an appropriate form of the reflector boundary
as reported earlier in [5]. The present method is simpler in
terms of practical applications. However, losses due to distur-
bances in the flow is one of the topics for further discussion.
In other words, one would like to compare numerically the
development of the maximum shock Mach number during
the convergence process in both cases. Figure 23 shows that
the maximum Mach number (at a certain time over the whole
computational domain) is higher in the case of an octagonal
reflector as compared to eight 15 mm diameter cylindrical
obstacles. The dashed line represents the maximum shock
Mach number for the eight cylindrical obstacles. The first
sharp increase in shock Mach number at # = 20 us is due to
the area contraction in the flow introduced by the obstacles.
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The second sharp increase is created at the center of conver-
gence and a gradual decrease of the shock strength follows
during the reflection.

5 Conclusions

A horizontal coaxial shock tube was used to study the conver-
gence and reflection of strong shock waves. The interaction of
converging shock waves with cylindrical obstacles with three
different cylinder diameters was visualized. The cylindrical
obstacles were distributed in various patterns. A numerical
study was performed and the results were compared with the
visualization. The main results are summarized as follows:

(1) We succeeded in generating various polygonal shock
shapes by introducing cylindrical obstacles in polygo-
nal formation patterns. The method proposed herein is
easier to implement than the one in which the shock is
formed by the test section boundary [5]. Since a con-
verging cylindrical shock wave is unstable, it is easy to
disturb it and transform the shape of the shock.

(2) The nonlinear, shock-dynamic effect of the evolution of
converging polygonally shaped shocks is well demon-
strated in the present experiments. An octagonal shock-
front transforms into a double octagon and then
reconfigures to an octagonal shape although the phase
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Fig. 22 Comparison of the
calculated shockwave profiles
with the experimental schlieren
images at various positions with
eight cylindrical disturbances
for ps/ p1 =33.6

3)

“4)

(&)

(6)

of its orientation is shifted. We thus confirmed exper-
imentally the coupling between the local form of the
shock and its local propagation velocity.

Artificial disturbances placed in the test section are
more prominent than the disturbances inherited from
four supports of the shock tube inner body. The later
are suppressed and not observable here as the supports
were shaped to minimize initial disturbances.

The diverging reflected shock propagating from the
center of convergence is stable and initially of circu-
lar shape regardless of the degree of converging shock
wave deformation. The form of the shock at farther
distances from the center was not visualized here. It is
known however that the shock form will be affected by
the non-uniform flow created by the converging shock
as reported by Eliasson et al. [5].

Diffracted shock waves over cylindrical obstacles are
delayed. The center of the converging shock wave is
slightly deviated toward the disturbed side. However,
the presence of the cylindrical obstacles more signifi-
cantly affects the shock shape than the shift of the shock
center.

Numerical simulations based on the AUFS scheme suc-
cessfully reproduced the major features of the shock
propagation process. The numerical shock motion and
flow patterns agreed well with experimental observa-
tions. This numerical scheme may therefore serve for
a future extension of experimental works.
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4 \/ Center of convergence
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Fig. 23 Comparison of the maximum Mach number in the computa-
tional domain for a shock produced by an octagonal boundary, solid
line, Versus eight cylindrical disturbances, dashed line
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The Production of Converging Polygonal Shock Waves by
Means of Reflectors and Cylindrical Obstacles

Veronica Eliasson
KTH Mechanics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Abstract. Converging and reflecting strong shock waves are investigated experimentally in a horizontal co-axial shock tube.
The shock tube has a test section mounted at the end of the tube. Two different methods to produce various geometrical shapes
of shock waves are tested. In the first method the reflector boundary of the test section is exchangeable and four different
reflectors are used: a circle, a smooth pentagon, a heptagon and an octagon. It is shown that the form of the converging shock
wave is influenced both by the shape of the reflector boundary and by the nonlinear dynamics between the shape of the shock
and the velocity of the shock front. Further, the reflected outgoing shock wave is affected by the shape of the reflector through
the flow ahead of the shock front. In the second method we use cylindrical obstacles, placed in the test section at various
positions and patterns, to create disturbances in the flow that will shape the shock wave. It is shown that it is possible to shape
the shock wave in a desired way with these obstacles. The influence of the supports of the inner body of the co-axial shock
tube is also investigated. A square shaped shock wave is observed close to the center of convergence for the circular and
octagonal reflectors but not in any other setups. This square-like shape is believed to be caused by the supports for the inner

body.

INTRODUCTION annular part of the shock tube. To create shock waves
without disturbances [4] used a vertical co-axial shock
Shock wave focusing has been investigated experimertube without supports. The results showed that cylindri-
tally since the beginning of the 1950’s. Still, it's an inter- cal shocks converged more uniformly than in horizontal
esting research area with unsolved questions. High preshock tubes, used in previous studies.
sures and temperatures may be achieved in a region of Analytical and numerical results from [5] showed that
gas compressed by a converging shock wave. This fedf an n-gonal shaped shock wave is formed it will repeat
ture in connection with various technological applica- itself during the focusing process. This was confirmed
tions, ranging from investigation of cavitation damagenumerically by [6] and [7] for a smooth pentagonal con-
near material surfaces to applications in medicine andrerging shock wave.
drug industry, is one of the main reasons for continu- In the present study we investigate experimentally the
ing interest in the problem of shock focusing. The highly focusing and reflection of strong shocks. The experi-
nonlinear nature of the process presents a major chalments were performed in a new shock tube facility at
lenge to its study. At the same time it serves as a sourcthe department of Mechanics, KTH. The shock tube is a
of the non-triviality of this phenomenon. Two aspects of horizontal co-axial tube. A plane shock wave transforms
a converging shock are of special interest. The first onénto an annular shape and is then focused and reflected in
being the connection between the local strength of thehe test section mounted at the end of the tube. The outer
shock and the shape evolution of the converging shockoundary of the test section is exchangeable and various
front. The second issue, which is however closely relatedjeometrical shapes of the reflector can be chosen.
to the first one is the question of the stability of converg- We apply two different methods to create various ge-
ing shocks. ometrical shapes of shock waves. In the first method we
Further, a cylindrical shock wave is very sensitive to choose a specific shape of the outer boundary of the test
disturbances and will change its form when encountersection. Four boundaries with various shapes have been
ing a disturbance. [1], [2] and [3] studied cylindrical tested in these experiments: a circular, a smooth pentago-
shock wave focusing in horizontal annular shock tubesnal, a heptagonal and an octagonal boundary. In the sec-
An interesting discovery was the formation of triangular ond method cylindrical obstacles are placed in the test
or square formed shocks when the shock reached the feection. We use cylinders of different sizes, placed at var-
nal stage of focusing. This disturbance was found to beous positions and patterns. These cylinders create dis-
introduced by the number of supports (3 or 4) for theturbances in the flow and make it possible to shape the
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shock wave in a desired way. area is constant from the inlet section through the trans-
formation section. An inner body is mounted coaxially
in the interior of the outer tube, forming the annular sec-
EXPERIMENTAL SETUP tion. The 490 mm long inner body with a diameter of
140 mm is mounted with two sets of four supports. The
The experimental setup consists of a laser (the lighgupports are shaped as wing profiles in order to minimize
source), a horizontal shock tube and a schlieren optic§e disturbances in the flow. The second set of supports
system. The shock tube has a test section where shodk rotated45” relative to the first set. The plane test sec-
waves are focused and reflected. The process is visuallon is mounted directly at the end of the annular section.
ized by the schlieren system with a camera. The experitience, the shock wave enters the test section via a sharp

mental setup is shown in Fig. 1. 90° bend and the focusing and reflection process begins.

. . s The outer boundary of the test section is exchangeable

’ and various geometrical shapes of the reflector can be

( M m fffffffff chosen. In the present study four reflectors have been
| e | S R | E— used: a circle, a pentagon, a heptagon and an octagon.

FIGURE 1. Schematic overview of the experimental setup:
1. Shock tube, 2. Pulse laser, 3. Schlieren optics, 4. PCO CCIl
camera, 5. Lens, 6. Schlieren edge.

The shock tube

The 2.4 m long circular shock tube with a diameter of
80 mm consists of a high pressure part and a low pres
sure part separated by a 0.5 mm thick aluminum mem
brane. A schematic illustration of the shock tube and itg
main parts is shown in Fig. 2. The first step to create g '
shock wave is to evacuate the low pressure part of gas
Then the high pressure part is filled with gas and at a ce
tain pressure difference between the two parts the me
brane bursts and a shock wave is formed. To control the
membrane opening, a knife cross is placed at the inlefIGURE 3. The four reflectors used in the present experi-
of the low pressure part. The knife-cross helps the memment.
brane to open evenly. The shock wave becomes planar The present experiments uses air as gas in both the
in the inlet section of the low pressure part, then entergyigh and low pressure part of the tube. The pressure in
the transformation section and becomes annular. This ighe Jow pressure parpy, is 13.3 kPa and in the high
pressure partps, about 1500 kPa. This produces strong
shocks at Mach number 2.3.

EXPERIMENTAL RESULTS

The present experimental setup allows only one photo-
FIGURE 2. Schematic overview of the shock tube setup: 1. graph per run in the shock tube. The visualization pro-
High pressure part, 2. Low pressure part: inlet section, 3. Lowcess is made by a schlieren system with a CCD cam-
pressure part: transformation section, 4. Low pressure part: tegf,o (SensiCam, 12 bits, 1280 x 1024 pixels, pixel size
section, 5. Pressure sensor, 6. Vacuum valve, 7. Vacuum PUMI 2 6.7.10-6 ’ ccb 'Th liaht . ts of
8. Shock speed sensors. .7 X 6. m, ) e light source consists of an

Nd:Yag (NewWave Orion) laser with single shot opera-
done by a conically diverging section where the diame-ion. The focusing and reflection process is resolved in
ter increases from 80 mm to 160 mm. The cross-sectiotime by single exposures taken at different time delays.
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The camera and the light source are triggered by sensoen octagon. This time it is oriented opposite to the ini-
placed at the annular part of the shock tube and a timéial shape, see Fig. 5(b). This was earlier predicted by [6]
delay unit (Stanford Research System, DG 535) is usednd [5] using numerical analysis. It is due to the nonlin-

to take the photo at the predetermined position. ear coupling between the shape of the shock wave and
Typical sets of images of the converging and reflectionthe velocity of the shock propagation that causes this be-
process are seen in Fig. 4 and Fig. 5. havior. Regions with high curvature travel faster than the

plane parts of the shock which leads to the reconfiguring
and reorientation process. The reflected shock wave is at
first circular, Fig. 5(c), but after some time it is influenced
by the flow ahead of it and transforms into an octagonal
shape again.

FIGURES. Shock waves created with the octagonal reflector
boundary, (a)-(b) are converging and (c)-(d) are diverging. The
time difference between (a) and (d) is 89 °s.

The second method to shape the shock wave is to
FIGURE 4. Shock waves created with the heptagonal reflec-plaCe cy_IindricaI ob_stacles in a specific patte_rn in the
tor boundary. The time difference between the first and the Ias%eSt Sectlon._The cylln.ders create disturbances in the ].CIOW
schlieren photograph i&5- 10-6s. and_ hence it is pOSSIble to shape the sh_ock wave in a

desired way. A circular reflector boundary is used in this

A series of schlieren photographs with the heptagorase. In Fig. 6 we show the result when 8 cylinders, with
nal reflector boundary is shown in Fig. 4. At first a hep- diameters of 15 mm, are placed in an octagonal pattern
tagonal shock wave, oriented in the same direction agt radial positionr = 46 mm. At first the shock wave
the reflector boundary, is created, see Fig. 4(a). Then ipptains an octagonal shape with sides that are convex
transforms into a double-heptagon and back to a heptagorward, Fig. 6(a). Then the sides get plane and the shock
onal shock wave but oriented OppOSIte to the former Oneﬁransforms into a doub'e_octagon F|g 6(b) and back to
i.e. the corners have deVeIoped into plane sides and t% Octagona| Shape which is reoriented, F|g 6(C) In
plane sides into corners, see Fig. 4(b). This procedurgig. 6(d) the shape of the reflected shock wave is circular.
continues during the whole convergence process. When The influence of the supports for the inner body is
the shock wave starts to reflect it first has a circular shapgnyestigated. At first two of the downstream supports
After a while it transforms into a heptagonal shape sinceyhere tilted so that they occupied a larger cross-section
itis influenced by the flow ahead of the shock front. area. This resulted in a non-symmetrical square shaped

In Flg 5 the OCtagonaI reflector is used. At first an OC-shock wave close to the V|C|n|ty of the center of con-
tagonal shaped shock wave is created, Fig. 5(a). It thegergence. Then the supports where tilted back in their
transforms into a double-octagon and then back again tgriginal position to minimize the disturbances in the
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FIGURE 6. Schlieren photographs of shock waves at dif- FIGURE 7. Square shaped shock waves close to the vicinity
ferent time instants passing eight cylinders, with diameters ofof the center of convergence. The square shaped shock is due
15 mm. The grey circles show the positions for the cylindrical to the supports for the inner body. The circular reflector is used
obstacles. (a)-(b) are converging and (c)-(dﬁ) are diverging. Thdor (a) and (b) and an octagonal reflector for (c) and (d).

time difference between (a) and (d)aé - 10~ °s.

ner boundary corresponded to the inner circular end of
flow field. The square shaped shock was still present bughe inner body of the shock tube. In all simulations the
this time its form was more symmetrical than before.pressure in the inner circular part was chosen to the same
Schlieren photographs of the square shaped shock wavggessure as in the experimengs,= 13.3 kPa. In the nu-
are shown in Fig. 7. In Fig. 7(a) and (b) the circular re- merical study the high pressuney, was reduced to 30%
flector boundary is used and in Fig. 7(c) and (d) the ocof that in the experiment, givings,~p: = 33.6. This
tagonal reflector boundary is used. In (a) and (c) the supreduction can be motivated by pressure losses in to the
ports are tilted and in (b) and (d) they are in original posi-sharp90° bend just before the shock wave enters the test
tion. The square shaped shock wave is only observed fogection.
the circular and octagonal reflectors and not for the pen- |n Fig. 8 a comparison between the experiments and
tagonal and the heptagonal reflectors. For the pentagonglimerical results are shown for the case with eight cylin-
and the heptagonal reflectors the shock wave follows th@rical obstacles and the circular reflector. As seen from
procedure of transforming and reconfiguring as long ashis figure the form of converging shocks compares well
we can see It. with the calculated shock fronts.

NUMERICAL RESULTS

An artificially upstream flux vector splitting scheme
(AUFS) for the Euler equations, introduced by [8], was
used to conduct a numerical study of the focusing pro
cess. In the numerical study most of the features of the
shock focusing process could be predicted and repro
duced.
In a two-dimensional numerical study of the shock fo- .

cusing, the iniial conditions were chosen as an annufIGURE &, Compansen oL e campiion ok weve bo,
gnglgghgrgﬁfgrr%ozuonn dear(;/u;?’?hee zi;;:cr:‘rgsrsll?l\’g Egises\?v;'%ositions in the tgst section with eight Eylindﬁcarl)disturbances
placed at the outer boundary of the test section. The in- " Pa/P1 =336,
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CONCLUSIONS

We summarize the major results as follows:

(1) The initial form of the converging shock can be
tailored by an appropriate choice of the form of the re-
flector boundary or by introducing obstacles in a specifici.
pattern in the flow.

(2) The nonlinear dynamics of the shock convergence?:
is observed in the present experimental study. The for
of the shock undergoes a transformation from an origi-~"
nal heptagonal form through a double-heptagon back tg_
a new heptagon with an opposite orientation. This behav-
ior is also observed when the outer boundary is octagonal
and pentagonal and also for the case when 8 cylmdrlcal
obstacles are introduced in the flow.

(3) The final form of the converging shock is square-
like for the case when a circular and octagonal reflector
is used. The square like shape is believed to be caused by
the supports for the inner body of the co-axial shock tube.
Itis not observed for the pentagonal or heptagonal reflec8.
tors. The artificially introduced disturbances are stronger
than the disturbances caused by the four supports for
the inner body since the previously observed square-like
shape no longer exists, i.e. the octagonal shaped shock
wave, created by the eight obstacles, is visible until the
shock wave converges.

(4) The reflected shock initially has a circular symme-
try for all four reflectors. It retains its circular symmetry
in the case of the circular reflector. For the three other re-
flectors (pentagonal, heptagonal and octagonal) the form
of the outgoing shock is influenced by the flow field cre-
ated by the converging shock. This shows the influence
of the flow ahead of the shock on the shape of the re-
flected shock. This behavior is observed when different
reflector boundaries are used and not when obstacles are
present in the flow. The reason for this is that no pho-
tographs where taken with a large time delay for the case
with obstacles.

(5) In a numerical study the major features of the
shock wave focusing process in the test section were re-
produced. The flow patterns obtained in the numerical
computations compare well with the experimental obser-
vations.
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Abstract  The onset of Mach reflection or regular reflec-
tion at the vertices of a converging polygonal shock wave
was investigated experimentally in a horizontal annular shock
tube. The converging shock waves were visualized by schlie-
ren optics. Two different types of polygonal shock conver-
gence patterns were observed. We compared the behavior
during the focusing process for triangular and square-shaped
shocks. It is shown that once a triangular shaped shock is
formed, the corners in the converging shock will undergo reg-
ular reflection and consequently the shape will remain unal-
tered during the focusing process. A square-shaped shock
suffers Mach reflections at the corners and hence a reconfig-
uring process takes place; the converging shock wave alter-
nates between a square and an octagon formation during the
focusing process.

Keywords Shock focusing - Annular shock tube -
Imploding shock - Shock reflection

PACS 47.10.ab - 47.40.Nm

1 Introduction

Shock wave focusing has been studied in several research
communities since the beginning of the 1940s when a sim-
ilarity solution was presented for a converging cylindrical
shock wave in [9]. Analytical, numerical and experimental
investigations have been performed since then; for exam-
ple, see [13] and [15]. It is well known that a converging

Communicated by B.W. Skews.

V. Eliasson (<) - M. Kjellander - N. Apazidis
KTH Mechanics, Royal Institute of Technology,
100 44 Stockholm, Sweden

e-mail: veronica@mech.kth.se

cylindrical shock wave is unstable. It is unstable in the sense
that it loses its original shape if it is perturbed by distur-
bances in the flow. The disturbed shape tends to produce a
polygonal structure with plane sides and sharp corners. The
polygonal shape will lack symmetry if the perturbations in
the flow are not symmetric or strong enough. It is, however,
possible to generate converging shocks with polygonal sym-
metric shapes that are stable, i.e. shapes that evolve during
the focusing process in a predictable way. Such stable shapes
were generated analytically and numerically in [13], numeri-
cally in [1], experimentally and numerically in [2,8] and [7].
Depending on the type of reflection that occurs at the vertices
of the polygonal shapes, some of these shapes will transform
continuously during the focusing process, changing from an
n-corner shape into a 2n-corner shape and then back again;
see an example in Fig. 1. The new plane segments emerging
from corners as a result of Mach reflection have higher Mach
number than the adjacent sides. Hence they travel faster and
absorb the adjacent sides. When such two segments meet,
they build a new corner. The new polygon has the same num-
ber of sides at the end of each cycle but is rotated with respect
to the old polygon so that the corners are opposite to the mid-
points of the old sides. This reorientation process is due to
the nonlinear interaction between the local velocity and the
shape of the shock front. For example, a square shaped shock
wave will transform into an octagon and then back to a square
again, with the second square oriented opposite to the first
square. The above reconfiguration process stems from the
Mach reflection at the corners and constitutes, in fact, the
basis for the Mach number increase on the shock front; each
time the reconfiguration cycle is completed, the Mach num-
ber over the shock front is increased stepwise; see [13] and
[1]. Some elements of this 2D process (i.e. the tendency to
form planar pieces) is also visible for converging spherical
shocks; see [12].
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Fig. 1 An example of a polygonal converging shock wave with eight
sides that suffers Mach reflection. It will continuously transform from
a an octagon to b a double octagon and then back to ¢ an octagon again,
oriented opposite to the one in a

There exists, however, another mechanism of symmetric
polygonal shock focusing in which the Mach number remains
bounded. A self similar solution for the focusing process of
2D equilateral triangular shock waves was investigated in [6].
This solution shows that the corners of the triangular shock
wave undergo regular reflections and preserve the triangular
shape during the whole focusing process for certain values
of Mach numbers and initial conditions. The energy den-
sity is bounded for this solution which means that the Mach
number will approach a constant value at the focus. This is
in contrast to symmetric polygonal shocks (with number of
sides greater than three) that suffer Mach reflection at the
vertices, and where the Mach number increases as the shock
approaches the focus. However, if the stability criteria for
the triangular shock wave are violated, then a reconfiguring
process takes place in which the corners develop into plane
sides and the plane sides into corners as mentioned earlier.

There are several criteria for transition from a regular
reflection (RR) to a Mach reflection (MR). Three of these
were proposed in [11] and since then many more have been
suggested; see [4,5]. The length scale concept was intro-
duced in [10] and is the criterion that agrees best with pseudo
steady flow in experimental shock tube facilities. The ongo-
ing research on transition conditions for RR<>MR is moti-
vated by difficulties in matching theoretical and experimental
results. One problem is the persistence of regular reflections
well past the theoretical maximum limit and many publica-
tions address this problem; see [3].

Following the ideas in [6], we investigated two different
types of reflection, RR or MR, that can occur at the vertices
of a converging polygonal shock wave. The polygonal shock
waves were generated in the same shock tube and with the
same method as in [7]. In the present study we generated
triangular and square shaped shocks. Their focusing behav-
ior was compared and it was found that while the triangular
shock preserves its form and orientation, the square shock
transforms to an octagon and then back to a square shape
which is rotated 45° with respect to the initial configuration.
According to the previous numerical work in [13] and [1],
this reconfiguration process continues until the shock wave

@ Springer

reaches the focusing center. The long term objective for this
research is to gain knowledge of how to create a stable con-
verging shock wave that will produce the highest tempera-
tures and pressures possible at the center of convergence. At
first glance the circular shock would be the most obvious and
suitable form to achieve this objective, but, since it is unstable
the focusing process is not repeatable. A polygonal shock is
stable and as the shock converges the Mach number increases
according to exactly the same formula as for a cylindrical
shock, [13]. Thus, we have investigated experimentally how
to create various geometrical shapes of converging shocks
that undergo either Mach reflection or regular reflection.

We start by describing the experimental setup and the
method used to create the polygonal shock waves. This is
followed by the experimental results. Finally we conclude
and summarize the results.

2 Experimental setup

The experimental setup consists of a 2.4m long horizontal
annular shock tube where the shock wave is generated and
focused. A laser (an air-cooled Nd:Yag, NewWave Orion)
is used as a light source for the visualization equipment that
consists of a schlieren system with a CCD camera (PCO Sen-
siCam, 12 bits, 1,280 1,024 pixels, pixel size: 6.7 x6.7 um).
See Fig. 2 for a schematic overview of the experimental setup.
The shock tube consists of two main parts, a high pressure
chamber and a low pressure channel. The two parts are sep-
arated by a 0.5mm thick aluminum membrane. The exper-
iment is initiated by filling the high pressure chamber with
gas. Atacertain pressure difference the membrane will break.
After the membrane breaks, a plane shock wave is formed
and starts to travel downstream in the shock tube through the
low pressure channel. The low pressure channel is divided
into three sections; an inlet section where the plane shock
wave is formed, a transformation section where the plane
shock wave becomes annular and the test section which is
located at the rear end of the shock tube where the shock

p m i/ .«
[ I e @
o ] [—
T = - 3
2 3 4 5

Fig. 2 Schematic overview of the experimental setup: / shock tube,
2 high pressure chamber, 3 low pressure channel: inlet section, 4 low
pressure channel: transformation section, 5 low pressure channel: test
section, 6 shock speed sensors, 7 laser, 8 schlieren system, 9 CCD
camera, /0 lens, /1 schlieren edge
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Fig. 3 Schematic overview of the rear part of the shock tube: / the
inner body consisting of a cone followed by a cylindrical tube, 2 laser
light entrance through one of the supports, 3 mirror to deflect the laser
light in the axial direction, 4-5 beam expander, 6 glass windows. The
shock wave travels in the black region between the outer tube and the
inner body

wave is focused and reflected. The annular part of the shock
tube is composed of an inner body mounted coaxially inside
the wider diameter outer tube. The inner body is represented
by the dotted line in the low pressure channel shown in Fig. 2
and a simplified drawing of its various parts is shown in Fig. 3.
The inner body consists of a cone followed by a cylindrical
tube and is suspended by two sets of four supports. The two
sets are placed 30.75 cm apart and the supports are shaped
as wing profiles to minimize the disturbances on the flow.
The second set of supports is rotated 45° relative to the first
set. The cross-section area of the shock tube is held constant
through the inlet section and into the transformation section
and is then reduced by 50% in the test section.

The shock wave enters the test section radially through
a sharp 90° bend. It is after the bend that the focusing and
reflection process takes place. The test section has glass win-
dows to enable visualization of the focusing and reflection
process. The outer boundary of the test section is circular
with a radius of 80 mm. The width of the air gap in the test
section, between the two facing glass windows, is 5 mm.

The present experimental study uses air as gas in both the
high and low pressure part of the tube. The pressure in the
low pressure channel is 13.3 kPa and in the high pressure
chamber about 1,500 kPa. This pressure difference produces

strong shocks at Mach number My = 2.3, measured in the
annular part of the shock tube before the shock wave enters
the test section. Further details of the experimental setup can
be found in [8].

2.1 Method to create polygonally shaped converging shock
waves

A polygonally shaped converging shock wave was created
by disturbing the shape of the initially cylindrical converging
shock wave. The disturbances were produced by small metal
cylinders placed inside the test section. Depending on the
size and the positions of the cylindrical obstacles, it was pos-
sible to tailor the shape of the cylindrical converging shock
wave into a desirable polygonal shape, as shown in [7]. Two
different diameters of cylinders, 10 and 15 mm, were used in
this experiment; see Fig. 4a. They were placed at two radial
positions, r; = 46.5 mm and r, = 61.5 mm. Two different
geometrical setups were used, an equilateral triangular and a
square pattern; see Fig. 4b and c.

3 Experimental results

Two different geometrical shapes of shock waves were gen-
erated: triangular and square shaped shocks. To visualize the
focusing process, the schlieren system together with the CCD
camera was used to take single exposures at various time
delays for each run in the shock tube. The reason for taking
only one exposure during each run in the shock tube was
due to limitations in the light source equipment and the CCD
camera. The time delay unit, a Stanford Research System
DG535, enabled schlieren exposures of the converging and
reflecting shock at different time instants inside the test sec-
tion. The size of the visualized area was 75 mm in diameter.
The repeatability was good and the error in the shock speed,
Uy, between consequent runs in the shock tube was about
0.5%. The results from the various setups are presented and
discussed in the following two sections.

Fig. 4 a Two sizes of cylinders were used, 10 and 15 mm in diameter. b The equilateral triangular pattern and in ¢ the square pattern of cylindrical

obstacles
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(b)t=5us

() r=10us (d)r=13 us

(e)r=14 us ®)t=15us

(@r=15pus

Fig. 5 Schlieren photographs at different time instants. Each photo-
graph is from an individual run in the shock tube. The cylindrical shock
wave is diffracted over three cylinders with diameters of 15 mm placed
atr = 46.5 mm from the convergence center. The grey circles represent
the cylinders

3.1 Diffraction of a cylindrical shock wave from three
cylinders

Three cylinders with diameters of 15 mm were placed inside
the test section in an equilateral triangular pattern (Fig. 4b),
at a radial position of 7| = 46.5 mm. Schlieren photographs
showing the convergence process of the diffracted shock
wave are shown in Fig. 5. Each photograph is from an individ-
ual run in the shock tube and M was 2.3. In the beginning, the
shock wave has a hexagonal shape (Fig. Sa—c), consisting of
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Fig. 6 Enlargements of schlieren photographs in Fig. 5d—g

the disturbed plane parts and undisturbed convex parts. The
plane parts are Mach shocks, formed after the shock is dif-
fracted over the cylindrical obstacle. The undisturbed parts
will decrease and finally disappear as the focusing process
continues. Hence the shape of the shock wave becomes tri-
angular; see Fig. 5d. In this frame the sides of the triangle are
not planar but slightly curved. As the shock wave approaches
the center of convergence, the sides eventually become pla-
nar; see Fig. 5d—f, or enlargements in Fig. 6a—c. Due to the
angle between the reflected sides, the incident angle, and the
shock Mach number, a regular reflection occurs at the cor-
ners of the triangle and the triangular shape remains unaltered
until it has focused completely; see Fig. 5g and a blow up
in Fig. 6d. There is one pair of photographs, Fig. 5f and g,
that are taken at the same time instant but are slightly dif-
ferent in position. This is due to the fact that each shock is
from an individual run in the shock tube and that will pro-
duce small variations in the conditions. Thus, the shocks are
at slightly different positions at the same time instant. This
is more pronounced closer to the center of focusing since the
shock waves move faster there.

In the next experimental setup, the three cylinders were
moved to the second radial position, r, = 61.5 mm, outside
the frame of the visualized area. Then the above described
experiment was repeated. Schlieren images are shown in
Figs. 7 and 8. The converging shock wave behavior is simi-
lar to the previous case. In addition, two photographs of the
reflected shock wave are shown in Fig. 7h and i. In Fig. 7h,
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Fig. 7 Schlieren photographs at different time instants. Each photo-
graph is from an individual run in the shock tube. The cylindrical shock
wave is diffracted over three cylinders with diameters of 15 mm placed
atr = 61.5 mm from the convergence center

the outgoing shock wave has a somewhat disturbed triangular
shape. Later, the reflected shock wave becomes influenced by
the still incoming flow, and the shape changes into a shape

—

(c) Blow up of 7 (g) ] d) Bow up of 7 (h)

Fig. 8 Enlargements of schlieren photographs in Fig. 7e-h

that resembles the shape of the in-going shock wave in an
early stage, as the one shown in Fig. 7a. The shock shape
in Fig. 7i is less hexagonal and more cylindrical than the
shock wave in Fig. 7a. This was also seen in [8], in wich the
reflected shock wave first had a cylindrical shape that later
became influenced by the incoming flow and changed into a
shape that was similar to the shape of the converging shock
wave in an early stage.

In the third experiment, the 15-mm diameter cylinders
in the previously mentioned setup were replaced by 10-mm
diameter cylinders. Schlieren photographs are shown in
Figs. 9 and 10. Compared to the previous case, it is seen that
the Mach stem is more pronounced in an earlier stage for this
setup. The overall shape of the shock wave is less disturbed
than in the previous case; it is more cylindrical than hexago-
nal. Still, as the shock wave converges it attains a triangular
shape and when that shape is reached, it does not change.
Rather, it decreases until it has reached the center of focus.

3.2 Diffraction of a cylindrical shock wave from four
cylinders

For a square-shaped shock in air, the angle of incidence is
/4 and according to the detachment criterion, see [6], a
regular reflection will be possible only for My < 1.24. An
increase in Mach number will always end with Mach reflec-
tion at the corners of the polygonal shock wave and hence the
previously mentioned reconfiguring process will take place.
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(c) 1= 12 s (d) r=21 ps

(e) =122 s

Fig. 9 Schlieren photographs at different time instants. Each photo-

graph is from an individual run in the shock tube. The cylindrical shock
wave is diffracted over three cylinders with diameters of 10 mm placed

at r = 61.5 mm from the convergence center

(a) w up of 9 (d) (b) Bow up of 9 (e)

Fig. 10 Enlargements of schlieren photographs in Fig. 9d and e

Four cylinders were positioned as the corners in a square,
ataradial position of r, = 61.5 mm, and then the above men-
tioned experiments were repeated. The Mach number used
in the present study, My = 2.3, is higher than the limiting
value for a regular reflection, resulting in a Mach reflection
at the corners of the square shaped shock wave during the
focusing process. Earlier results ([7]), also using Mach num-
bers higher than the limiting value for a regular reflection,
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Fig. 11 Schlieren photographs at different time instants. Each photo-
graph is from an individual run in the shock tube. The cylindrical shock
wave is diffracted over four cylinders with diameters of 15 mm placed
atr = 61.5 mm from the convergence center

show that when a converging shock wave obtains a square-
like shape it will reconfigure between a square and an octagon
during the focusing process. In Fig. 11, schlieren photographs
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(c) Blow up of 11 (i)

Fig. 12 Enlargements of schlieren photographs in Fig. 11g—i

are shown for the setup with 15mm diameter cylinders. In
Fig. 11a, the shock wave has just reached the visualization
area and the undisturbed parts still remain cylindrical. There-
after the shock wave approaches a square-like shape, shown
in Fig. 11b,c. The sides of the square are divided into sev-
eral shorter pieces, that together produce an almost planar
side, see Fig. 11c. The individual pieces constructing one
side originate from the undisturbed part of the shock wave in
between two Mach stems emanating from the diffraction over
the cylindrical obstacle. As the convergence process contin-
ues, the sides of the square blend into one slightly curved
smooth part. Later, the slightly curved sides become planar
and Mach stems are formed at the corners. At this time the
reconfiguring process starts. The Mach stems at the corners
can be seen in Fig. 11g and an octagonal shape is seen in
Fig. 11h. The first cycle of the reconfiguration process is
ended when a square shaped shock wave with an orienta-
tion opposite to Fig. 11d—g is formed as shown in Fig. 11i.
Enlargements of Figs. 11g—i are shown in Figs. 12a—c.

InFig. 13 three images from the case with 10 mm diameter
cylinders are shown. The behavior is similar to the previous
case in a sense that the shock wave will first develop planar
sides and then start to reconfigure and change orientation.
The last image, Fig. 13c, shows the first reoriented shock
wave, enlarged in Fig. 13d.

Finally, we investigated whether the last visible shock
wave originates from the disturbance caused by the four cyl-
inders or by the four supports located at the rear part of the
annular part in the shock tube. To do so the square formation

(©)t=20us (d) low up of (¢)

Fig. 13 Schlieren photographs at different time instants. Each photo-
graph is from an individual run in the shock tube. The cylindrical shock
wave is diffracted over four cylinders with diameters of 10 mm placed
at r = 61.5 mm from the convergence center

of cylinders was rotated angularly compared to the four sup-
ports in order to determine which one was acting as distur-
bance generator. The orientation of the square-shaped shock
wave, visible in the last stage of the focusing process, told
us that it was the disturbance from the four cylinders that
was responsible for the shape of the shock wave. It has been
shown earlier that the supports for the annular parts of hori-
zontal shock tubes cause disturbances that are visible when
the shock wave is close to the center of convergence, see
[14—16]. In the present setup, the lack of visible disturbances
from the supports on the triangular shocks are most likely
due to the fact that it would require a larger perturbation
to change the shape from a converging shock with an odd
number of sides to a converging shock with an even num-
ber of sides. For the square-shaped shocks, the disturbances
from the supports can not overtake those from the cylindrical
obstacles and because of that, the shape of the shock is not
influenced by the supports. The conclusion is that the distur-
bances from the cylindrical obstacles are larger than those
from the supports for the inner body.

4 Conclusions

An experimental investigation of converging triangular and
square-shaped shock waves was performed in an annular
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horizontal shock tube. A schlieren system combined with
a CCD camera was used to visualize the focusing process.
The system took snapshots of the converging shock wave
at different time instants. An initially cylindrical converging
shock wave was perturbed by cylindrical obstacles inside the
test section. The obstacles were configured in an equilateral
triangular or a square formation. As a result two different
types of shock convergence behavior were observed. In a tri-
angular case, a triangle-shaped shock was formed and con-
verged with unaltered form and orientation during the rest of
the focusing process, thus indicating that the vertices of the
triangle undergo regular reflection. A square formation pro-
duced a square-like shock. The corners of the shock suffered
Mach reflection and a reconfiguring process took place. After
one cycle a new square, oriented opposite to the old one was
formed. The present experimental results complement previ-
ous results, both analytical and numerical; see [6,13] and [1].
An improvement of the present experimental setup would be
to use a visualization system that allows several photographs
during the same run, e.g. a pulse laser with a high speed cam-
era or a rotating prism camera. It would then be possible to
monitor the motion of the shock front which would allow us
to investigate the Mach number increase during the focusing
process.
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Light emission during shock wave focusing in air and argon

Veronica Eliasson, Nils Tillmark, Andrew J. Szeri & Nicholas Apazidis.

The light emission from a converging shock wave was investigated experimentally. Results show
that the shape of the shock wave close to the center of convergence has a large influence on the
amount of emitted light. It was found that a symmetrical polygonal shock front produced more
light than an asymmetrical shape. The light emission appears as the shock wave collapses. The
full width at half maximum of the light pulse is about 200 ns for all geometrical shapes. It was also
found that argon as a test gas produces more light than air. Numerical simulations showed good
agreement with experimental results regarding the shape of the shock and the flow field behind
the shock. The temperature field from the numerical simulations was investigated and shows that
the triple points behind the shock front are hot spots that increase the temperature at the center
as they arrive there.

1 Introduction

Shock wave focusing appears in a wide range of situations, from supernovae collapse, [1], to shock
wave lithotripsy, [7]. A converging shock wave can be used as a method to focus energy because
it produces high pressures and temperatures at the center of convergence. As we explore in the
present work, a gas compressed at the center of convergence can be hot enough to emit light.

In the first published experimental investigation of converging shock waves [23] cylindrical shock
waves were focused in a horizontal shock tube. Plane shock waves were transformed into cylindrical
shock waves through a teardrop insert in the rear part of the shock tube. Moderately strong
shocks of Mach number M=1.7 were created and focused. The results showed that a cylindrical
shock wave is unstable in the sense that it deviated from its original shape while focusing. The
authors reported that converging shocks in air produced light emission visible to the naked eye but
difficult to photograph, while shocks of the same strength in argon ”produced easily photographable
luminosity”. A rough examination of the electrical conductivity of the argon in the vicinity of the
center of convergence indicated ionization.

Imploding detonation waves were generated and investigated in [19]. The authors produced a 2D
shock front in the shape of a regular polygon, consisting of 30 sides, and followed the wave structure
as the detonation wave converged. It was reported that Mach reflections occurring between the
sides of the polygonal wave induced a smoothing effect on the shape and that it finally became
cylindrical. A spectroscopic analysis suggested that high temperatures, 1.89 - 10° K, were obtained
as the shock reflected from the center, and at the same time, a bright flash was generated at the
center of convergence. Imploding shock waves were produced in [24], in a hemispherical chamber.
A Dblast wave was produced at the center of the chamber. It decayed into a detonation wave
and travelled outwards and reflected from the walls, resulting in a converging detonation wave.
The measured peak temperatures were around 5,000 K. The authors of [24], also indicated that



the temperatures obtained in [19], were overestimated due to the invalid use of Wein’s law, and
that the actual peak temperature probably lay below 10,000 K. Later works [25, 21] indicated
peak temperatures of 10,000-13,000 K and 13,000-34,000 K respectively. The variation in peak
temperatures depended on the initiation energy.

Other examples of phenomena where light emission occur include sonoluminescene, mechano-
luminescence and shrimpoluminescence. A short explanation of each phenomenon follows.

Sonoluminescence occurs when energy is focused so strongly by imploding bubbles that light
is emitted. It is divided into two types, multi and single-bubble sonoluminescence. Single-bubble
sonoluminescence (SBSL) was discovered by Felipe Gaitan in 1989, [12]. He found a regime where
a single bubble was trapped in an acoustical field, stable in position but oscillating in a radial
mode in a stable, repeatable manner. Once, during each period, the bubble collapses violently
and a luminous spot appears briefly. The emitted light can be visible to the naked eye, depending
on materials and conditions. The width of the light pulse was measured to be of the order of
a few hundreds of picoseconds, [13], as suggested by earlier simulations [26], and the spectrum
increases toward the ultraviolet, [18]. The light emission is thought to be caused by near-adiabatic
compression of the bubble during the collapse. The cavitation collapse is so fast that the heat
generated within the bubble is trapped within and can not escape, see [13] and [26]. The light
intensity depends on a range of parameters; the amplitude of the forcing pressure, the concentration
of gas dissolved in the liquid, the temperature of the liquid, [2], and also the type of gas within the
bubble. A small amount of a noble gas, for example argon, helium or xenon, increases the light
intensity, [18]. For a comprehensive review on the subject of SBSL, see [6].

Mechanoluminescence, also known as triboluminescence or fractoluminescence, is a phenomena
where light emission, sometimes a dim light, is induced by a mechanical action on a solid. For
example, light is emitted when one chews on hard opaque candies made of sugar. Compared to
mechanical actions as grinding and cleaving, shock waves in acoustic cavitation can be used to
generate up to 1000 times brighter luminescence; see [8].

Shrimpoluminescence, caused by a shrimp snapping its claw shut so fast that light emission
occurs, was reported in [20]. The shrimp, Alpheus heterochaelis, has an oversized claw with which
it stuns its prey. The light emission is caused by a cavitation bubble generated in the wake of a
high-velocity water jet formed when the claw is shut. The amount of emitted light is one or two
orders of magnitude less than for sonoluminiescence and not visible to the naked eye.

In this paper we consider both experimental and numerical results. In the experimental part
of this paper we investigate the light emission that occurs during shock wave focusing using the
same shock tube as we employed in previous studies [11, 10, 9]. We consider several aspects of the
light emission, such as where the shock is positioned when the light appears, how long the light
is emitted and how different geometrical shapes of the converging shock wave influence the light
emission. Two types of test gases, air and argon, are used and compared. It is shown that argon is
associated with more light than air. To explain how the various geometrical shapes of converging
shock waves are generated in the experiment, we start by a short review of our earlier work on
how to produce and design converging shock waves of various shapes.

In [11] we used a horizontal shock tube to generate annular shock waves that were focused in
a thin cylindrical test section mounted at the rear part of the shock tube. Various geometrical
shapes of converging shock waves were created by changing the geometry of the outer reflector
boundary of the test section. Three different reflector boundaries were tested: circular, smooth
pentagonal and octagonal. Results showed that the shape of the converging shock wave was initially
influenced by the shape of the reflector boundary and later by the non-linear interaction between



the local strength and the curvature of the shock. Very close to the center of convergence, the
shock wave obtained a square-like shape for the octagonal and circular reflectors. This was thought
to be caused by disturbances in the flow caused by the supports for the inner body, creating the
annular part of the shock tube. The square-like shape was not observed for the case with the
smooth pentagonal reflector; it appears that the disturbances from the supports were too weak to
transform a shock wave with an odd number of sides into an even number of sides.

A heptagonal outer boundary was used in [9] in the same experimental setup as in [11]. It
was shown that the shock wave initially became shaped as a heptagon and then oscillated between
that and a double heptagonal shock wave, until the shock wave reached the center of convergence.
There were no visible disturbances from the supports of the inner body of the shock tube.

In [10] we continued the research on polygonally shaped shock waves. In these experiments
the polygonal shock waves were created through carefully placed artificial disturbance elements
inside the test section. The disturbance elements consisted of metal cylinders, with three different
diameters; 7.5 mm, 10 mm and 15 mm, placed in various positions and patterns inside the test
section. A symmetrical pattern produced a symmetrically deformed shock front, that later devel-
oped into a polygonal shape. If n obstacles were placed inside the test section, at first an n-sided
polygonal shock wave was created. The corners of the polygonal shock wave propagate faster than
the adjacent plane parts, due to the high curvature of the shock front in the corners. This results
in new plane sides, emerging from the corners, transforming the shock with n corners into a 2n
corner shock. This subsequently evolves back to a shape with n corners. If there are no other dis-
turbances present, this reconfiguring process will continue until the shock wave reaches the center
of convergence. The results showed that the supports for the inner body of the annular part of the
shock tube created significant disturbances so that all even-sided polygonal shapes transformed
into square-shaped shocks close to the center of convergence. However, it was not possible to see
any square-shaped shocks close to the center for the polygonal shaped shocks with an initially odd
number of sides.

The type of reflection that occurs at the vertices of a reconfiguring polygonal shock wave is a
Mach reflection. Mach reflections take place when the incident angle between two sides are larger
than a critical angle, and in this case, the Mach number will increase during the focusing process.
If the incident angle between the two sides is less than the critical angle, a regular reflection will
occur, and both the shape and the Mach number will be preserved throughout the convergence
process. An extensive review on the subject on Mach reflections and other shock wave reflection
phenomena can be found in [3] and [4].

The numerical simulations in this paper are accomplished using the Overture suite, [14]. The
use of this tool allows us to examine the shapes of the shock waves close to the center of convergence
and investigate the temperature field generated by the converging shocks.

2 Experimental setup

The experimental setup, shown in figure 1, consists of a horizontal annular shock tube where a
plane shock wave is generated and transformed into an annular shape. The annular shock is then
focused in a thin test section mounted at the rear part of the shock tube. The experimental setup
is the same as in [11] and [10] and a detailed description can be found in those two references. A
laser serves as a light source for the visualization system consisting of schlieren optics and a CCD
camera. Both the CCD camera and the laser are triggered by an output signal from a shock sensor



placed on the annular part of the shock tube. The signal from one of the shock sensors is delayed
via a time-delay unit to obtain schlieren images of the converging shock wave at different positions
in the test section. A photomultiplier (PM) tube is connected to the rear end of the shock tube.
The PM tube (RCA 4526) is a light detector; the time resolved output signal is proportional to
the number of photons detected at each moment. The PM tube is placed in a light-sealed plastic
cover to ensure that the detected light is originating from the converging shock wave and not from
light sources within the laboratory. The PM-tube and the light-cover is shown in figure 2. It is
possible to mount the PM-tube in two different positions inside the cover, and one of these will
allow the use of schlieren optics and the PM-tube simultaneously.

Figure 1: Schematic overview of the experimental setup: 1. Shock tube, 2. Pulse laser, 3. Schlieren
optics, 4. PCO CCD camera, 5. Lens, 6. Schlieren edge, 7. PM tube with light cover, 8. Shock

SEensors.

Figure 2: The PM-tube connected to the light cover.

2.1 Shaping the shock waves

Two different methods were used to shape the converging shock waves. The first method, described
in [11] uses a circular, a heptagonal and an octagonal outer boundary of the test section. The
circular boundary has a radius of 80 mm. Both the heptagonal and octagonal boundaries have a



radius of 80 mm, which is the radius of the outer circumscribed circle. These two reflectors will
block parts of the flow from entering the test section, since the open area inside them are smaller
than that of the circular boundary.

The second method, see [10], consists of placing cylindrical obstacles in various patterns inside
the test section. The cylinders consist of metal rods with a diameter of 15 mm. They are placed at
a radial position of 46.25 mm from the focal point, in various patterns. The circular boundary for
the test section is used to create an initially converging cylindrical shock that becomes perturbed
and shaped by the cylindrical obstacles. The one cylinder case consists of one cylindrical obstacle.
In the triangular case, the cylinders are placed in an equilateral triangular shape centered on
the convergent spot, with the cylinders placed in the corners of the triangle. In the last case,
the cylinders are placed in the corners of a square-formation centered about the convergent spot.
Compared to the circular case, the cylinders will influence the flow and partially block it.

3 Experimental results

The results from the present experimental work will be discussed in the four following subsections.

3.1 The shape of the shock wave close to the center of convergence

First, we begin by investigating the shock shape close to the center of convergence for different
geometrical shapes of shock waves. The different shapes are generated either by a change of shape
in the outer reflector boundary of the test section or by introducing cylindrical obstacles inside the
test section. The various geometrical shapes that we investigate and compare to each other are; a
cylindrical shock, an initially cylindrical shock that is influenced by one, three or four cylindrical
obstacles, a heptagonal and an octagonal shock wave created by changing the outer boundary of
the reflector.

A close-up of various geometrical shapes of shock waves, close to the center of convergence,
is shown in figure 3. The scale used in all figures is nearly identical. A cylindrical shock wave
is unstable and hence it will be influenced even by small disturbances present in the shock tube.
Disturbances are generated by the supports for the center body of the shock tube. Although the
supports are shaped as wing profiles to minimize disturbances, they still affect the flow. Owing to
the inherent instability of converging cylindrical shocks, an initially cylindrical shock wave becomes
square-shaped close to the center of convergence; see figure 3 (a). The square-like shape becomes
visible close to the focal point. For the case with one cylinder the shape resembles a teardrop; see
(b). A triangular shape is formed for the case with three obstacles (¢). In (d), four obstacles are
used and close to the center of convergence the shock wave is square-shaped. The square in (d) is
oriented differently compared to the square in (a), suggesting that the four supports are not the
reason for the final shape, but the four cylinders. The shape in (d) is a result of an alternating shock
wave, starting with four sides and corners that transforms into eight sides and corners and back
again. A heptagonal reflector boundary creates a heptagonal shape close to the center of focusing,
while an octagonal reflector boundary creates a square-like shape, see (e) and (f) respectively.

Results show that converging shock waves with an even number of sides, generated by the
reflector boundaries, will be influenced by the four supports and become square-shaped close to
the center of convergence. However, shock waves with an even number of sides generated by the



cylindrical obstacles will not be influenced by the four supports. All shocks with an odd number
of sides will also remain unaffected by the four supports.

Figure 3: Schlieren photographs of shock waves close to the center of convergence for different
shapes (a) Cylinder (b) One cylinder (c¢) Three cylinders (d) Four cylinders (e) Heptagon (f)
Octagon.

3.2 Shock position at the instant of light emission

To determine the shock position when the light emission appears a PM-tube signal was monitored
with an oscilloscope together with the signal from the second shock sensor, see figures 1 and 4 (a).
The upper curve is the signal from the shock sensor and the lower curve is the signal from the
PM-tube. The sharp excursions in the upper and lower curves correspond to the passage of the
shock wave and the later instant of light emission. A longer sampling time was used for the same
experiment and the result is shown in 4 (b). The upper and lower signals are from the PM tube and
the shock sensor respectively. The first indication of light from the PM-tube signal originates from
the converging shock and then, after about 3.4 ms, there is more light emission. This originates
from small pieces of the aluminum membrane, originally placed between the high and low pressure
parts of the shock tube. Both incidents can be seen by the naked eye. However, a change in
gas, from air to argon, dramatically increases the light emission from the shock wave and reduces
the light from the glowing particles. A comparison between air and argon as test gas in the low
pressure part is carried out in section 3.5. Using the PM-tube together with the shock sensors, an
approximate location of the shock wave was found. We first tried to take schlieren photographs



using a time delay estimated from the time signal from the PM-tube, (see figure 4 (a)). However,
because each run in the shock tube produces slightly different conditions, it was difficult to time
the schlieren photo precisely with the instant of the light emission. To ensure simultaneity, both
the PM-tube and the schlieren optics were used at the same time. By comparing the time instants
for the laser pulse and the light emission in the same run, it was possible to determine the shock
position at the instant of light emission. Two typical signals from the PM tube and the laser in
this setup are shown in figures 4 (c)-(d). The octagonal outer boundary was used for this test. The
first peak in figure 4 (c¢), labeled A, corresponds to the laser pulse and the second peak, labeled
B, corresponds to the light emission from the shock wave. The shock position, corresponding to
the instant when the laser pulse is captured by the PM-tube is shown in the lower left corner of
figure 4 (c). This photograph is taken just before the light emission caused by the shock occurs. In
figure 4 (c), the laser fires when the light emission from the gas compressed by the shock is near its
end. The schlieren photo is shown in the lower right corner of the same figure. It is seen that the
shock has collapsed and just started to reflect. It could now be concluded that the light emission
appears when the shock wave is very close to the center of convergence.

A clarification about the triggering signal for the last two tests, 4 (c)-(d) should be made. The
oscilloscope was triggered when the Q-switch on the laser was energized, thus going from 0 V to
5 V. This happened a very short time, about 80 ns, before the laser was fired, see [22].

3.3 Features of the PM-tube signal during the light emission

The PM-tube was connected to an oscilloscope and a typical output signal from the PM-tube is
shown in figure 5. The signal from the PM-tube shows the light intensity level as a function of
time. At first nothing happens, it is dark. As soon as light is detected, the signal from the PM-tube
decreases below zero. The deviation from the reference voltage level, (the reference level is when
there is no light), is proportional to the intensity of the detected light and also dependent on the
voltage level used to operate the PM-tube itself. The same voltage level (-1100 V) was used for
all experiments. When the light intensity was too high and the output signal became saturated a
filter was attached to the PM-tube, decreasing the light intercepted by the tube. The filter was
a 6BL-filter, reducing the light intensity by 2° times. In figure 5, it is possible to see when the
maximum intensity of the light is emitted; it corresponds to the minimum level. The full width
at half maximum (fwhm) of the light pulse in figure 5 is 200 ns. The slope of the signal gives
the measure of the speeds at which the light intensity is increased to the maximum level and then
decreased during the relaxation phase.

A test was made to ensure that the PM-tube was fast enough to resolve temporally the light
emission from the converging shock wave. We used the laser as light source for the PM-tube. The
laser pulse has a duration of 5 ns, which is shorter than the width of the light pulse from the
converging shock. The PM-tube was able to resolve the light emission from a laser pulse with a
slope of 9.51-107 V/s. The slope of the light emission caused by the converging shock is 2.86 - 105
V/s; this is an order of magnitude lower than the laser pulse. Thus the response time of the
PM-tube is rapid enough to resolve the signal from the light emission caused by the converging
shock wave.

PM-tube signals from a set of runs from each geometrical configuration are shown in figure 6.
Because less than 10 runs were made for each setup, we can only report the trends and not true
statistical values. The sampling of data started when the voltage level from the PM-tube became
less than —0.05 V, this corresponds to the time instant ¢ = 0 in the following results. Also, the
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Figure 4: (a) The signal from the second shock sensor (top signal, left y-axis) and the signal from
the PM-tube (bottom signal, right y-axis) during the light emission. (b) The same signals are
shown for a longer time span. The shock sensor signal (bottom signal, left y-axis) shows both the
incoming (0.4 ms) and reflected shock (1 ms). The PM-tube (top signal, right axis) signal shows
the light emission from the converging shock wave (0.6 ms) and the glowing particles (3.4 ms). In
(c) and (d) the PM-tube signals showing both laser pulse for the schlieren imaging (labeled A)
and light emission from the converging shock (labeled B) and the schlieren photograph obtained
during the run.

oscilloscope used to capture the signals from the PM-tube was programmed to save data prior to
the start instant by 0.1 us to make sure that the whole light emission process was captured. In
figure 6 (a) eight runs from an initially cylindrical shock wave are shown. The maximum light
intensity varies by a factor of 10 between consequent runs, using the same initial conditions. This
is believed to be caused by the fact that a cylindrical shock wave is unstable. Hence it does not
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Figure 5: A typical signal from the PM-tube in the case with the cylindrical shock.

focus in exactly the same way during all runs. This signal is the only one that is filtered by the
6BL-filter which reduces the intensity 2¢ times, so to get a correct voltage level on the y-axis, it
should be multiplied by 64. In figure 6 (b), the PM-tube signals from five runs with an initially
cylindrical shock, perturbed by one cylindrical obstacle, are shown. Compared to (a), this set of
signals has less spread and the individual runs have almost the same minimum value. In 6 (c),
(d), (e) and (f) cases with 3 obstacles, 4 obstacles, heptagon and octagon shapes are shown. In
all of these cases, the minimum value varies less than for the circular case, (see figure 6 (a)). The
variation of the signals from one set is small, which probably is related to the fact that the shapes
in 6 (b) — (f) are stable and focus similarly every time.

A comparison of the PM-signals between the previously mentioned geometrical configurations
is made in figure 7. In figure figure 7 (a) the cylindrical case is compared to the case with one
obstacle. As can be seen, the minimum levels and the time when the minimum is reached differ.
The cylindrical shock reaches the minimum level before the one cylinder shock. The main reason
for this is that while the shape close to the center of convergence is symmetric for the cylindrical
shock, it is not symmetrical for the shock disturbed by one cylinder, see figure 3 (a) and (b). Also,
the flow is partially blocked by the cylindrical obstacle in (b) as compared to the flow in (a) which
means that the same amount of shock front is not converged to the focal point.

In figure 7 (b), the cases with one (solid) and three (dashed) cylinders are compared. Here it is
seen that the case with one cylinder yields less light and that the minimum level is reached later
than for the triangular shape. A triangular shock evolves with regular reflection at the corners and
thus the shape will be unaltered during the focusing process. According to numerical experiments,
[5], the Mach number of the shock, reaches a constant value during the focusing process and hence
a bound in energy is reached. For the three cylinder case, a larger amount of the shock front is
blocked and reflected by the cylinders, so the amount of energy reaching the focal point is decreased
compared to the one cylinder case. However, the triangular case produced more light than the one
cylinder case. This suggests that the shape of the shock close to the center of convergence has a
large impact on the light emission in this case. The shape for the one cylinder case is elongated as
a teardrop and far from symmetric.



The case with three cylinders (solid) is compared to the case with four cylinders (dashed) in
figure 7 (c). The shape of the signals are similar but the four cylinder minimum is lower than the
minimum for the three cylinder case. This could be explained by the shape of the shock wave close
to the center of convergence. The three cylinder case results in a triangular shape while the four
cylinder case is square-shaped. The triangular shock undergoes regular reflection and the shape
remains unaltered during the focusing process. Mach reflection takes place for the square-shaped
shock and the Mach number increases as mentioned above. On the contrary, a larger amount of
the wave energy is reflected back when it hits the four cylinders than the three cylinders, thus
giving a decreased amount of energy arriving at the focal point. However, this seems to be less
important than the actual shape of the shock wave.

The octagonal and heptagonal cases are compared to each other in figure 7 (d). The signal
from the octagon case reaches the minimum level before the heptagon case and the minimum level
for the octagonal case is about -0.8 V while for the heptagon case it is about -0.6 V. In this case,
the heptagonal boundary of the test section, reflects back a larger amount of the shock than the
octagonal boundary does. Once again, it seems like the shape of the shock wave is more important
than the amount of energy reaching the center point.

3.4 Photographs of light emission

Photographs of the emitted light were taken with the CCD camera. The exposure time on the
CCD camera was set to 250 pus. Photographs are shown in figure 8 with argon as test gas. The
most intense light comes from the case with a circular outer boundary and the shape of the light
spot is square-like, as is the shape of the shock wave close to the focus point as mentioned earlier.
The cases with one and three cylinders give less light and it is not possible to distinguish the shape
of the emitted light. For the four cylinder and the octagonal case, the shape of the light spot can
be seen and is again square-like, as the shape of the converging shock, see figure 3 (d) and (f). The
size of the glowing spot in (a) is about 1 mm. The same scale is used for all cases. Once again, it
is possible to see that a symmetrically shaped shock gives more light emission. The circle, square
formation and the octagon produce more light than the single and three cylinder formation.

3.5 Air and argon

Two different test gases were investigated; air and argon. To fill the low pressure channel with
argon, the following steps are taken. First, air is evacuated from the channel until the pressure
reaches 0.53 kPa (4 torr). Then argon is supplied to the low pressure part until the pressure
reaches 13.33 kPa (100 torr) and then the experiment is performed. Two photographs from the
CCD camera are shown in figure 9 together with plots of the intensity level along a horizontal line
where the maximum value of the light is found. The light emission for air is less than for argon,
the maximum levels are 132 for air and 3607 for argon respectively. To get a good accuracy of
the maximum levels the CCD photographs were saved as 16-bit grayscale data, where only 12 bits
were used for the actual data (because the camera sets the higher four bits to zero) resulting in
4096 shades of gray. The exposure time for the CCD camera was set to 1 ms, very long compared
to the actual length of the light pulse. The geometrical shape used for this test was the octagonal
outer boundary. The size of the light spot in (b) is approximately 1 mm in diameter.



4 Numerical simulations

As a compliment to the experiments, we have performed numerical simulations of two dimensional
converging shocks. The purpose of the simulations was to study the shape of the shock close to
the focal point and the temperature field. As mentioned earlier, the experimental results indicate
that the shape and symmetry of the shock close to the center are factors for the magnitude of the
light production. In the current experimental setup we could not measure the temperature of the
compressed gas. Therefore, we use numerical simulations to study the temperature field for the
various geometrical setups.

Here we use the two dimensional Euler equations, as a model for the converging shock wave
inside the test section. In the computations we assume the gas to obey the ideal gas law with
constant specific heats. This assumption is valid away from the center of convergence (were the
temperature becomes so high that the gas no longer behaves as a calorically perfect gas). The
assumption of constant specific heats is valid up to 1000 K for air, then the vibrational motion
of Oz and N3 molecules affect the specific heats and these are no longer constant. For argon, the
assumption of specific heats is valid up to temperatures where the gas undergoes ionization.

The complex geometry of the experimental setup requires a numerical flow solver that handles
such geometries. An intrinsic numerical difficulty of the converging shock wave problem is the
continuously changing scales associated with the focusing process. The change in scales justifies
the use of adaptive mesh refinement (AMR). The Overture suite, [14], which we used for the
numerical simulations, has support for both geometry and AMR and includes various flow solvers.
For the experiments presented here we use the OverBlown solver for the Euler equations, based
on the second order accurate Godunov method, discussed in [16]. Artificial viscosity is added to
the numerical scheme to stabilize the method and to give sharp shocks without overshoots, this is
further explained in [15].

4.1 Problem setup

The two dimensional model of the test section consists of two background grids, one Cartesian and
one annular grid, and optional cylindrical obstacles described by individual annular grids. The
grid spacing of the annular grids are adjusted to conform with the grid spacing, h, of the Cartesian
grid.

The following cases were simulated; a circular converging shock wave, a circular converging
shock perturbed by one cylinder, three cylinders placed in a equilateral pattern and four cylinders
placed in a square formation. All cylinders were placed at a radial distance of 46.25 mm from the
focal point and had a diameter, D, of 15 mm. The cylindrical obstacles are perfectly reflecting,
which is a simplification compared to the experiments. However, the influence on the flow field
from the waves traveling inside the cylinders in the experiments is negligible compared to the
shock waves traveling in the gas. The diameter of the computational domain was set to 150 mm
for all cases. In all computations considered here, the grid spacing is 0.4959 mm on the Cartesian
grid. The errors are small and the second order accuracy is verified where the solution is smooth.
An example of the initial grids for the case with four cylinders is shown in figure 10 (a). A fine
scale view of the edge of one of the four cylinders is shown in figure 10 (b), where the Cartesian
and the annular background grids are visible, together with the annular grid describing one of
the cylinders. During the simulation the grid spacing is adaptively reduced (AMR) close to shock
fronts and other regions where the solution changes rapidly. Here, two refinement levels are used



with a refinement ratio of four, i.e. the grid spacing on the fine grid is 0.1240 mm. An example
where the grid has been adapted is shown in figure 10 (c).

Given the initial conditions in front of the converging shock, the state behind the shock can
be parametrized with the Mach number. Here we set the initial conditions in front of the shock
to be a gas at rest at room temperature. We then adjust the initial Mach number so that the
radius of the converging and reflecting shock for the circular case, as a function of time, match the
experimental results. A comparison between the numerical and experimental results are shown in
a r —t diagram in figure 11. The best match between the numerical and the experimental results
was obtained when setting the initial Mach number to 2.4. The same initial conditions were then
used for all simulations in this paper. The boundary conditions on the cylinders are modeled by
slip wall conditions. At the perimeter of the computational domain supersonic outflow boundary
conditions are imposed, this is one of the simplest models of non reflecting boundary conditions.

Simulations for both air and argon were made. For air, the ratio between the specific heats
is v = 1.4 and the gas constant is set to R = 287.06 J/KgK. These parameters were changed to
v =1.67 and R = 208.1 J/KgK when simulating argon.

A normal shock in argon, propagating into a gas at p = 13.33 kPa (100 torr) at room tempera-
ture T' = 294 K, has a thickness close to the mean free path of the gas, A\, which is approximately 13
pm. The mean free path is given by A = RT/(v/2rd? N 4p), where R is the universal gas constant
8.314 J/(mol-K), d is the molecular diameter, 0.71 A for Argon, and N4 is Avogadro’s number
6.022 - 1026 mol~!. This may be compared with the finest grid scale of 124 pum. The shock itself
is not resolved, but we assume that the thickness of the shock front does not influence the results
we are interested in.

4.2 Results

‘Schlieren’ plots, i.e. plots of the density gradients, of the converging shocks close to the center
of convergence are shown in figure 12 for the one cylinder, three cylinder and four cylinder case.
The diameter of a cylindrical obstacle is indicated in each plot. For the case with one cylinder,
the shape of the shock resembles a teardrop, for the triangular case it is shaped as a triangle
and the square formation produces a square-like shape close to the center of convergence. The
numerical simulations agree well with the experimental results discussed earlier, compare figures 3
and 12. Also, the locations of triple points and shock-shocks match the experimental results. An
advantage of the numerical simulations is the increased level of detail and the flexibility to follow
the convergence process closely by animations.

The temperature field of the gas, during the time when the converging shock is close to the
focal point, has been investigated. A series of temperature plots for the four cylinder case is shown
in figure 13. The plotted region is the 2 mm x 2 mm square around the center. The temperature
field shows that the triple points, located at the corners of the converging polygonal shock wave,
are hot spots that will increase the temperature at the focal point dramatically when they arrive
there. The maximum temperature in each plot, T;,qz, is made dimensionless with respect to the
dimensionless gas constant v and the room temperature, in this case 294 K.

The maximum temperature, in a 2 mm x 2 mm region centered at the focal point, for each
time step was calculated for the circular, one, three and four cylinder cases for both air and argon,
see figure 14. A blow up of the peaks in figures 14 (a) and (c) are shown in figures 14 (b) and (d)
respectively. The temperature is the same for all cases in the beginning due to the initial conditions.
When the shock front arrives in the monitored region the temperature is increased sharply. As



the shock wave is reflected and travels outward the temperature decreases. The highest maximum
temperature is obtained for the circular case, followed by the single, four and finally the three
cylinder case. The main difference between the air and argon cases is that the peak temperatures
are much higher for argon than for air.

Because the shape of the shock wave seems to be a large influencing factor on the amount of
light that is produced, the regions where high temperature exists are investigated. Temperature
fields are plotted in figures 15 (a)-(d). The circular case is shown in (a), the one cylinder case in
(b), the three cylinder case in (c) and finally the four cylinder case in (d). The time instant for the
plot is chosen as the time when the maximum temperature is reached for the respective case. The
domain is again the 2 mm x 2 mm region around the focal point. The shapes of the hot regions are
similar to the shape of the shock waves close to the focal point, except for the four cylinder case in
figure 15 (d) which is circular. The regions with 95% of the maximum temperature are indicated
in the figures as contour lines.

4.3 Remarks

We have used a simplified model with an ideal gas assumption where the ionization and real gas
effects are ignored. The results from the simulations should be viewed as preliminary and as a first
step to take before continuing with more advanced models. The values of maximum temperatures
are not the true values, because, as the grid is refined further, the artificial viscosity is reduced and
then the values for temperature approach closer to infinity. This would not happen in laboratory
experiments, for the reason that viscosity exists and places a physical limit on the maximum
temperature during the convergence. However, because the simulations of the different cases
are undertaken with the same grid resolution, and therefore suffer the same artificial viscosity,
we regard these numerical simulations as having probed the qualitative influence of shape on
temperatures developed during the convergence.

5 Conclusions

It has been demonstrated in experiments that a converging shock emits light. In this work we
investigated experimentally how the shape of the shock wave influences the amount of emitted
light. It is shown that the shape of the shock wave, close to the center of convergence has a large
influence on the amount of produced light. For example, a shock wave with a square-like shape
close to the center of convergence emits more light than a shock shaped as a teardrop or a triangle.
We believe that a stable shape as close as possible to a circle should produce more light. Stability
ensures a predictable evolution of the converging shock front while symmetry ensures simultaneity
of arrival of different points on the shock front at the focal point.

The time instant when the light appears coincides with the collapse of the shock wave. There
is no significant variation of the length of the light pulse for the various cases. The full width
at half maximum of the light pulse is about 200 ns, compared to hundreds of picoseconds for
single bubble sonoluminescence. The major difference between our experiment and the case with
sonoluminescence is that there is no near-adiabatic compression in our experiment as it is in
sonoluminescence, induced by the rapid motion of the collapsing bubble walls. Moreover, the length
scale is much larger. This suggests that the present process is different from sonoluminescence.



For each geometrical setup a different amount of wave energy is reflected back, due to boundaries
or obstacles, and the amount reaching the focal point is not the same. Hence it is difficult to
compare directly the various cases with each other. However, we found that the reflection losses
had less effect on the amount of emitted light than the shape of the shock close to the center; for
example, the square-shaped shock produced more light than the one cylinder case.

Two different gases, argon and air, were tested in the low pressure channel of the shock tube.
A considerable increase in light emission was registered for argon. This recalls a similar result for
SBSL, where a noble gas increases the light intensity, [18].

The numerical simulations show that both the shape of the shock waves close to the center of
focusing and the radius as a function of time are in good agreement with experimental results.
The temperature fields show that triple points are hot spots that increase the temperature at the
center when they arrive there. The maximum temperatures obtained in a small region close to
the focal point show that higher temperatures are obtained for argon than for air, which is likely
correlated with more light.

To decide finally what geometrical shape of the converging shock is best for producing light,
then the shape should be the only difference between the various cases. In our experiments, the
strength of the shocks close to the center of convergence in the various cases differ. This, due to
the fact that all runs started with the same initial conditions and for all cases, except the circular
configuration, a certain amount of the shock is reflected back before it reaches the center. One
solution might be to vary the initial conditions in the shock tube so that the strength of the shock
wave close to the focal point is the same for all cases.

It would also be interesting to measure the spectra of the light emission and then compare
to those obtained from SBSL, [17]. This could enable further comparison of the two phenomena.
Another future undertaking would be to investigate the ratio of argon and air that produces most
light. Also, other gas combinations should be tested.

An improvement of the experimental setup would be to use a visualization system that allows
several photographs during the same run, for example a high speed camera or a rotating prism
camera with a pulse laser as a light source for the schlieren optics system. It would then be possible
to follow the shock front during the convergence and get an estimation of the shock speed.

To improve the numerical simulations, another equation of state should be used as the shock
converges and the temperatures and pressures rise. It would also be interesting to use a model
where the level of ionization for the various geometrical shock waves can be computed. If a better
model was used, it would then be possible to investigate whether the stair case increase of the
temperature in the numerical simulations, as the shock is very close to the convergence center,
is connected to the oscillations in the light emission signals from the experiments. The stair
case phenomena is observed in figures 14 (b) and (d) and the oscillations from the light emission
experiments are observed in figure 6 (d) in the case of four obstacles.
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Figure 6: PM-tube signals for the various cases, (a) circle with 6BL-filter, (b) one obstacle, (c)
three obstacles, (d) four obstacles, (e) heptagon and in (f) octagon.
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Figure 7: Comparison of PM-tube signals for the various cases, (a) circle with a 6BL-filter (solid) vs
one cylinder (dashed), (b) one (solid) vs three cylinders (dashed), (c) three (solid) vs four cylinders
(dashed), (d) heptagon (solid) vs octagon (dashed).



Figure 8: Photographs from the CCD camera showing the light emission for the different cases,
(a) circle, (b) one cylinder, (c) three cylinders, (d) four cylinders and in (e) an octagon. The test
gas is argon.
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Figure 9: Comparison between light emission from (a) air and (b) argon in the low pressure
channel. The octagonal outer boundary is used. Note that the scaling for the y-axis in (a) and (b)
are different.
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Figure 10: The initial grid used for the case with four cylinders, (a) the whole grid consisting of
six different sub grids and (b) a close-up of an edge of one of the cylinders and the surrounding
grids. (c) A plot at a later time showing the AMR grids and the corresponding schlieren plot.
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Figure 11: A comparison between experiments and simulations on radius as a function of time for
the circular case. The initial Mach number for the simulation is set to 2.4, so as to begin with an
initial condition that allows for comparison with the experimental results.
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Figure 12: Schlieren images from simulations in Overture showing shock waves close to the center
of convergence for different shapes (a) one cylinder, (c) three cylinders and (d) four cylinders. The
diameter, D, of the cylindrical obstacle is indicated in the figures.
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Figure 13: Temperature distribution in a 2 mm x 2 mm square for the four cylinder case during
the collapse of the shock wave. The normalized maximum temperatures are (a) Tnqe = 4.0, (b)
Tinaz = 3.9, (¢) Tmaz = 6.5, (d) Trax = 7.7, (€) Trmaz = 7.4 and (f) Tee = 7.1.
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Figure 15: Maximum temperature, in non-dimensional units, for the (a) circular case, T, = 11.4
(b) one cylinder case, Tinar = 9.5 (c) three cylinder case, Tyq, = 7.3 and (d) four cylinder case

Tnaz = 7.8. The region is a 2 mm x 2 mm square. The contours show the region with 95% of the
maximum temperature.
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On cylindrically converging shock waves shaped by obstacles
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Motivated by recent experiments, numerical simulations were performed of cylindrically con-
verging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space
obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped
patterns near the point of focus. The maximum pressure and temperature as a function of number
of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped

shocks were also investigated.

PACS numbers: 47.10.ab,47.40Nm

I. INTRODUCTION

Converging shock waves can be found in a broad
range of situations, from astronomical size events like
supernovae collapse, to microscopic events such as sono-
luminescence when tiny bubbles collapse so strongly as
to produce light. Shock waves are an effective method to
generate high temperatures and pressures for experimen-
tal and engineering purposes and thus remain an area of
continued research.

Over the years many experiments have been performed
on cylindrically converging shock waves; see e.g. [1, 2]. It
is common to use annular shock tubes to create and study
converging shock waves. The converging shocks are often
visualized by either schlieren photographs or interfero-
grams taken during the focusing process. These methods
give a measure of the shock position and shape develop-
ment as a function of time. With these techniques, it is
not possible to measure other quantities, like tempera-
tures and pressures. In a recent paper [3] Eliasson et al.
presented experimental results on the light emission oc-
curring at the focal point for converging shock waves of
different shapes. By analyzing the response from a photo
mulitplier tube, Eliasson et al. found that the amount
of emitted light depended on the shape of the converging
shock wave. In [3] only a small number of obstacles were
considered which resulted in polygons with a few number
of sides.

In this paper we present numerical simulations of the
experimental setup used in [3]. We consider cylindrically
converging shock waves shaped by zero to sixteen ob-
stacles, yielding seventeen different configurations. From
monitoring the maximum pressure and temperature as
the shocks converge, we find that a low number of ob-
stacles gives a low maximum pressure and temperature,
compared to the case with no obstacles. This is consis-
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tent with the amount of light observed in [3] for 0,1,3
and 4 obstacles. However, as we increase the number
of obstacles we see a gradual increase in the maximum
pressure and temperature; this is somewhat surprising
since a greater portion of the initial cylindrical shock is
reflected by the obstacles. The present model, the Eu-
ler equations for an ideal gas, does not take real gas and
ionization effects into account, thus it is not possible to
make detailed predictions on light production. Our nu-
merical results suggest that further experiments for more
than four obstacles would be of great interest.

Converging shock waves of different polygonal shapes
have been studied for example in [4, 5]. For a polygonal
shock the regions of high curvature, such as corners, gen-
erally travel faster than the planar parts. This leads to
a reconfiguration of the shape of the shock wave during
the focusing process. For example, a square-shaped shock
wave will transform into an octagon and then back to a
square again. This process repeats as the shock focuses
provided there are no other disturbances to interrupt it.

In this work, we use the method suggested and tested
in experiments by Eliasson et al. ,[4], to produce con-
verging polygonal shock waves. The numerical simu-
lations were performed using a state of the art adap-
tive mesh refinement (AMR) flow solver. Disturbances
in the form of cylindrical obstacles were introduced in
front of an initially cylindrical converging shock. The
obstacles used to shape the shock are not small. There-
fore it takes some time for the shock front to reach the
asymptotic state described by the theory of Schwende-
man and Whitham, [5]. From our highly resolved nu-
merical simulations we find that, only at the very final
stage of the convergence, a shock perturbed by four ob-
stacles becomes square-shaped. At this stage, the mean
radius of the shock is well described by Guderley’s, [6],
self-similar solution, giving a base solution around which
geometrical shock dynamics, [5], can be utilized. The
fact that the polygonal shape of the shock is attained
only at the final stage, where characteristic length scales
(the sides of the polygon) are very small compared to the
initial scales (the diameter of initial shock), means that
the numerical simulations become quite challenging.
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FIG. 1: Experimental and numerical schlieren photographs of
a converging polygonal shock wave. Top: experimental results
for seven obstacles. Lower left: numerical results. Lower
right: An AMR grid with two levels of refinement adapted to
the shock structures (every 8th line is plotted).

II. NUMERICAL METHOD

The Euler equations of gas dynamics are solved nu-
merically using using a high-order accurate Godunov
method, [7, 8]. The geometry is discretized with over-
lapping structured grids. Adaptive mesh refinement is
used to dynamically track the shocks and contacts. The
software, along with references describing the approach
can be found at www.llnl.gov/casc/Overture.

III. NUMERICAL EXPERIMENTS

The initial conditions in front of the shock are set to be
a gas at pressure p = 13.33 kPa (100 torr) and at room
temperature 7' = 294 K, where v = 1.4, R, = 287.06
J/KgK and p = pR,T'. The shock front is given an initial
shock Mach number of M = 2.4. The state behind the
shock is determined by the standard shock relations. The
diameter of the computational domain is set to 150 mm.

The following cases were simulated: an initially cylin-
drical shock wave perturbed by 0-16 obstacles (cylinders
with a diameter of 15 mm) placed in a symmetrical pat-
tern at a radial distance of 46.25 mm from the focal point,
see Figure 1. The boundary conditions on the cylinders
are modeled by slip wall conditions. Supersonic outflow
boundary conditions are imposed at the perimeter of the
computational domain.

In a first set of simulations we compute solutions with
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Nr of Obstacles Nr of Obstacles

FIG. 2: Maximum pressure and temperature near the focal
point as a function of the number of cylinders.

0-16 obstacles to study how quantities like the maxi-
mum pressure and temperature vary with the number
of obstacles. For these computations the initial grid is
composed of a Cartesian background grid (covering most
of the domain), an annular perimeter grid and embedded
cylindrical grids around each obstacle. The annular grids
have a cell size adjusted to the (non-refined) Cartesian
grid which has a grid-spacing of 0.2 mm. We use two
levels of AMR with a refinement ratio of four yielding a
smallest grid size of 50 pm.

In a second set of experiments, we use an initial grid
with a Cartesian grid-spacing of 0.5 mm but with four
levels of AMR with refinement ratio four, yielding a
smallest grid size of 7.8125 pm. With this setup, we limit
our simulations to the cases with 0, 3 and 4 obstacles
and focus on the asymptotic behavior of the converging
shocks.

A. Maximum pressure and temperature as a
function of the number of cylinders

The pressure and temperature near the focal point
were measured for all seventeen cases. Figure 2 shows
the maximum pressure and temperature as a function
of the number of cylinders. Figure 7 shows the numeri-
cally computed schlieren images for some of these cases.
The results show that the undisturbed cylindrical shock
gives the highest pressure and temperature near the focal
point. This should be expected, since in all other cases,
part of the flow is reflected by the obstacles and never
reaches the focal point. For a low number of cylinders,
1-6, the maximum values are low. This is most likely
caused by the fact that all parts of the shock front do
not reach the focal point at the same time and hence
the focusing effect is lost, see Figure 7. Higher pressure
and temperatures are obtained for the cases with a larger
number of obstacles, 7-13.

B. Comparison to Guderley’s self-similar solution

Guderley, [6], derived a self-similar solution for the ra-
dius of the converging shock wave as a function of time,
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FIG. 3: The case with zero obstacles. Left: the solution along
the neg. x axis and the line y = =, > 0, at times 22.28,
22.38, 22.48. The difference between the solutions increases
as the shock sharpens up. Right: the value of the pressure
averaged along the pos. and neg. z and y axes at times
22.34 — 22.56 with time spacing 0.02. Note that the shock is
accelerating.

which can be expressed as
R=¢& (t. —1)". (1)

Here « is the self-similar power law exponent, R is the ra-
dius of the converging shock wave, ¢ is the time, t. is the
time when the shock wave arrives at the center of con-
vergence and &y is a constant. Guderley found the self-
similar power law exponent for cylindrical shock waves
to be a = 0.834 and this has been confirmed by many
other investigations, see Table I.

In this study, we investigate when the converging
shocks shaped by obstacles are described by Guderely’s
solution. We fit data from the numerical experiments to
equation (1) in order to find the similarity exponent, a.
We do this for the three cases of a cylinder, a triangle
and a square-shaped shock.

Zero Obstacles. To test the accuracy of the numeri-
cal algorithms we first consider an unperturbed converg-
ing shock and extract the distance between the shock
front and the focal point. Starting at time 20 we save so-
lutions every 0.02 time units until time 22.46. For each of
the saved solutions we find the position along rays start-
ing at the focal point, where the pressure is half of its
global maximum. Precisely, we use rays along the posi-
tive and negative x and y axis and the four diagonals in
between. We fit the extracted data to equation (1) by
minimizing Y, |R(¢;) — & (tc — ¢;) |?, thus finding o, t.
and &. Here R(t;) is taken as the average of the data
from the eight rays at time ¢;. The value of the self-
similar power law exponent, o = 0.844, agrees well with
other values in the literature, see Table I. Note that for
the rays used here, the anisotropy in the solution due to
grid effects is largest (see Figure 3), thus the errors in the
results obtained using these values are likely maximized.

Three Obstacles. The triangular shape was gener-
ated by placing three obstacles in an equilateral trian-
gular pattern. Close to the focal point, the shock wave
assumes a triangular shape and the similarity exponent
can be found. The shock front just before the trian-
gular shape appears is shown in Figure 4 (a)-(b). The

_‘ (b) t = 22.18,_

FIG. 4: Contours of the pressure for three obstacles showing
the formation of the triangular converging shock.

0
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FIG. 5: The value of the pressure with three obstacles aver-
aged along the lines t1, t2, t3, of Figure 4. The solutions are
displayed at times 22.28 — 22.5 with time spacing 0.02. The
solution to the left of the origin corresponds to the part of the
lines t1, ta, ts closest to the obstacles.

plane sides develop as soon as the reflected part of the
shock, originating from the reflection off the cylinder, has
passed the whole side of the triangle. In Figure 4 (a) the
reflected shock is still interacting with the sides of the
triangle. In (b), the reflected shocks have passed the
sides of the triangle and in (c) a triangle-shaped shock
is observed. Once the triangle-shaped shock has formed,
it remains for the duration of the focusing process since
the plane sides undergo regular reflection,this is consis-
tent with results in [9].

For this experiment the self-similar exponent was com-
puted from solution data along the three lines shown in
Figure 4 (d). The pressure, averaged along the three
lines, is plotted in Figure 5. Referring to Figure 5, there
is a significant difference in the profile of the pressure in
the regions to the left and right of the focal point at the
origin; we therefore make two fits to the data. Using the
averaged values of the solutions at times 22.34 to 22.56
we get a self-similar exponent o = 1.155 for the data to
the left and a@ = 0.977 to the data on the right. The



fact the similarity exponent is not exactly equal to unity
probably results from the sides not being perfectly plane
until the very last stages of the focusing process (see,
Figure 4 (c)).

Four Obstacles. A square-shaped shock was ob-
tained by perturbing a cylindrical shock with four ob-
stacles placed in a square formation, see Figure 6. A
square-shaped shock undergoes Mach reflection if the
shock Mach number is larger than 1.24, [9], as is the
case here. This means that when two plane sides meet in
a corner, a new shock (Mach stem) is created. The Mach
stem travels faster than the adjacent plane sides and will
consume these; repeating for the rest of the focusing pro-
cess. In the present setup, the Mach stem will form along
the lines so and s4 (see Figure 6 (d)) and expand out-
wards towards the lines s; and s3. When adjacent stems
meet the square has turned 45 degrees.

Because of this reconfiguration process it is impractical
to detect the location of the shock along rays. Instead
we compute the area of the domain where the pressure is
within 5% of its quiescent state. Assuming the area to be

Self similar exponent

Present results (zero obstacles) 0.844
Present results (four obstacles) 0.835

Guderley (1942), [6] 0.834
Butler (1954) 0.835217
Stanyukovich (1960) 0.834
Welsh (1967) 0.835323
Mishkin & Fujimoto (1978) 0.828

Nakamura (1983) 0.8342, My, = 4.0

0.8345, M = 10.0

de Neef & Nechtman™ (1978)  0.835+0.003
Kleine® (1985) 0.832 + 0.028, -0.043
Takayama” (1986) 0.831 +0.002

TABLE I: Self similarity exponents for converging cylindrical
shock waves. *Experiments.

proportional to the square of the mean radius, we can use
the square root of the area instead of R to find « from (1).
Using solutions from the final stages, corresponding to
times 21.96 to 22.7 (with a time step of 0.02), we obtain
a self-similar exponent o = 0.835. This in agreement
with the theory in [5].

It should be noted that in general the computed value
of the self-similar exponent depends slightly on the data
set used. In particular for the case of four obstacles, there
is a tendency for the computed value of & to be somewhat
larger when solutions at earlier times are included.

IV. CONCLUSIONS

The shape of the shock front and the diffraction pat-
tern behind the shock in the numerical simulations agree

(b) t = 22.48

FIG. 6: Contours of the pressure for four obstacles. The
square shaped shock front periodically reforms, rotated by 45
degrees.

well with the experimental results in [4]. The maxi-
mum pressure and temperature near the focal point were
computed using 0-16 cylindrical obstacles. The high-
est maximum pressure and temperature occurred with
zero obstacles. With a small number of obstacles, 1-6,
the maximum pressure and temperature were lower than
with a large number of obstacles, 7-16. During the final
stages of the focusing process, a self-similar solution is
obtained for the triangular and the square-shaped shock.
The triangle-shaped shock undergoes regular reflection
and the same shape remains during the focusing process.
For the triangle, the self-similar exponent depends on
the direction in which the location of the shock front is
measured. For the two directions measured here, the ex-
ponents were o = 0.977 and « = 1.155, compared to the
expected value of one. The square-shaped shock under-
goes Mach reflection and the self-similar exponent was
found to be a = 0.835 in agreement with other published
results.
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FIG. 7: Numerically computed schlieren images for a converging shock diffracted by 0, 1, 2, 3, 4, 5, 8, 12 and 16 cylindrical
obstacles. The dominant portion of the shock is located near the focal point. This part of the shock front is far from circular
in cases 1-5, whereas it is close to circular in cases 8—16.
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