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Integral representation of channel flow with interacting particles
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We construct a boundary integral representation for the low-Reynolds-number flow in a channel in the presence
of freely suspended particles (or droplets) of arbitrary size and shape. We demonstrate that lubrication theory
holds away from the particles at horizontal distances exceeding the channel height and derive a multipole
expansion of the flow which is dipolar to the leading approximation. We show that the dipole moment of an
arbitrary particle is a weighted integral of the stress and the flow at the particle surface, which can be determined
numerically. We introduce the equation of motion that describes hydrodynamic interactions between arbitrary,
possibly different, distant particles, with interactions determined by the product of the mobility matrix and the
dipole moment. Further, the problem of three identical interacting spheres initially aligned in the streamwise
direction is considered and the experimentally observed “pair exchange” phenomenon is derived analytically
and confirmed numerically. For nonaligned particles, we demonstrate the formation of a configuration with
one particle separating from a stable pair. Our results suggest that in a dilute initially homogenous particulate
suspension flowing in a channel the particles will eventually separate into singlets and pairs.
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I. INTRODUCTION

Hydrodynamic interactions among particles flowing in the
fluid confined between two parallel walls at low Reynolds
number have recently attracted a considerable attention [1–24].
The case of particles driven by thermal noise in the absence
of a macroscopic flow was studied in Refs. [1–11]. The
hydrodynamic interactions cause long-range correlations in
their diffusive motions that are measurable even at distances
ten times larger than the particle size [1,9]. In the case of
pressure-driven Poiseuille or shear flow the particles are, in
addition, dragged by the flow [12–23].

Identical particles at similar positions inside the channel
move at the same velocity if not for hydrodynamic interactions.
These interactions induce particle relative motions, which can
result in considerable changes of their configuration inside
the channel. In the case of a large number of particles, the
interactions cause also chaotic collisions among the particles
[21].

Theoretical progress has mainly relied on the observation
that the far flow caused by a particle confined in a channel is a
dipolar flow decaying quadratically with the distance [9]. For
disklike particles with thickness close to the channel height h,
the dipolar flow and its moments were derived from lubrication
theory in Ref. [11]. The dipolar flow holds at distances much
larger than the disk radius, where it gives also the leading-order
hydrodynamic interactions among particles [11–13,21].

It was observed in Ref. [13], however, that hydrodynamic
interactions of pancakelike disks can also be described at
much smaller distances between the disks where dipolar
approximation breaks down, yet lubrication theory still holds
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[25–28]. This theory predicts that at distances from the particle
boundary much larger than h the depth-averaged flow is an
ideal two-dimensional flow with potential obeying the Laplace
equation. The boundary condition (b.c.), derived somewhat
heuristically, is the usual ideal flow b.c. prescribing the velocity
component normal to the particle surfaces [29], which allowed
us to find the hydrodynamic interactions of two close disks;
see Ref. [13]. Moreover, it was observed that the nonrigidity
of the particles makes the lubrication theory valid up to
distances from the particles smaller than h. The calculation
of the hydrodynamic interactions for disks of different radii
requires solving the Laplace equation with the help of bipolar
coordinates; see Ref. [14].

Recently, a practical application of hydrodynamic inter-
actions among particles in a channel has been proposed. In
particular, it is suggested that the combined action of adhesive
(nonhydrodynamic) forces and hydrodynamic interactions
between microdroplets can result in the formation of regular
particle clusters and can thus be potentially used for the
production of new materials [22,23]. The hydrodynamic forces
are believed to be a significant factor in these structure
formation. Though the particles forming the structure are in
a close proximity in the experiments mentioned above, the
hydrodynamic interactions are described phenomenologically
by a dipolar flow, formally only valid at larger distances.
Despite the use of the far-field dipolar flow beyond its domain
of validity, the numerical simulations in Ref. [22] showed
very good agreement with the experimental results [23]. This
motivates the need for the detailed theoretical study of hydro-
dynamic interactions among particles in narrow channels.

In this work, we introduce a boundary integral representa-
tion of the channel flow in the presence of freely suspended
particles. The particles can be rigid or soft (droplets). The
representation does not depend on the particle equation of
motion, defined by inertia. Boundary integral representations
are known to be useful in unconfined flows and can also
be applied to confined geometries [30,31]. The flow is here
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expressed as the sum of the undisturbed Poiseuille flow and an
integral over the surfaces of all particles, where the particles
can have arbitrary shapes. The derivation is performed for
a pressure-driven flow, but identical considerations can be
applied to shear flows.

Our representation results in a formula for calculation of
the dipole moment, which was previously available only for
the case of disklike particles. The moment is given in terms of
a weighted integral of the stress tensor and the flow over the
surface(s) of the particle(s). Once this integral is numerically
tabulated, the result can be used to approximate the flow in
different configurations. Here, we perform simulations for the
case of neutrally buoyant rigid spherical particles and compute
the integral for different positions of the particle center and
different ratios of the particle radius to the channel height, i.e.,
different confinements.

We use this new integral representation to show that the
lubrication theory holds at the particle near proximity, closer
than what is typically expected. As an example, we solve
the problem of three aligned particles moving along the line
defined by their centers and the case of three nonaligned
particles. We conjecture that this solution is the attractor to
which the long-time evolution of arbitrary initial condition
converges. We conclude by proposing a mean field description
of strong hydrodynamic interactions of close particles in a
dense suspension.

II. INTEGRAL REPRESENTATION FOR CHANNEL
FLOW WITH PARTICLES

In this section, we derive the boundary integral representa-
tion for channel flow in the presence of an arbitrary number
of particles of arbitrary shape (see Fig. 1, where spherical
particles are shown for illustration). It is assumed that the
Reynolds number is low and the Stokes equations hold. The
derivation uses the reciprocal theorem with the reciprocal
flow given by the Stokeslet in a channel [32], similarly to
the derivations in infinite space, see, e.g., Ref. [31]. In this
section, we make no assumptions on the form of the equation
of motion of the particles which may change according to the
relevance of inertia. The particles can be rigid, droplets or, e.g.,
viscoelastic.

The undisturbed flow u0, in the absence of particles, is the
Poiseuille flow driven by the constant pressure gradient ∇p0,

u0
x = z(z − h)∇xp

0

2η
, ∇p0 = η∇2u0, (1)

FIG. 1. Schematic configuration of spherical particles flowing in
the pressure-driven (Poiseuille) flow in a channel.

where η is the fluid viscosity, z is the vertical coordinate, and
h is the channel height. The flow is in x direction, ∇xp

0 =
−|∇xp

0|x̂. In the presence of a freely suspended particle, we
look for the solution of

∇p = η∇2u, ∇ · u = 0, u(z = 0) = u(z = h) = 0,

ux(∞) = z(z − h)∇xp
0

2η
, (2)

which holds outside the particle. The flow is completely
determined when solving for the particle motion, i.e., know-
ing the instantaneous particle position as it determines the
boundary condition uS(x) on the particle surface S. In the
case of a rigid particle, uS(x) = v + ω × (x − y), where v

and ω are the particle translational and angular velocities and
y = (xp,yp,zp) is the coordinate of the particle center of mass.
The velocities v and ω are determined by the solution of
the equation for the particle motion coupled with the flow.
These velocities could be time independent as in the case of
the steady motion of a neutrally buoyant rigid particle or the
case of a non-neutrally buoyant particle after sedimentation
when reaching the bottom wall (the theoretical determination
of these velocities is impossible generally because of the
interaction with the walls). These velocities can also be time
dependent as in the case of a transient flow or the gravitational
settling of a non-neutrally buoyant particle. If several particles
are considered, a time-dependent configuration can be induced
by their interactions. We assume here that the time variations
are not fast so that the unsteady time-derivative term of
the Navier-Stokes equations is negligible (for the steady
motion of one particle, the time derivative is the spatial
derivative of the flow along the streamline which is small
because of the smallness of the Reynolds number). In the
case of droplets, the boundary condition on the surface is
determined by matching with the inner flow. However, there
is no need for solving for this inner flow since the detailed
form of uS(x) is irrelevant for the derivation of the present
representation. The generalization of the problem to the case
of many particles is obvious.

A. Implications of lubrication theory

Some conclusions on the flow at distances from the particle
much larger than the channel height h can be obtained from
lubrication theory [25–28]. The lubrication theory predicts that
at these distances,

u = z(z − h)∇p

2η
, (3)

with a certain z-independent p. Clearly, at large distances,
p ≈ p0 at the leading order. The depth-averaged velocity ud

is the ideal potential two-dimensional flow,

ud = ∇φ, φ = −h2p

12η
, ∇2φ = 0. (4)

In some cases, this helps determining the flow completely.

B. Large disks

Large nonwetting droplets squeezed between the walls of
a Hele-Shaw cell have pancakelike shapes. These can be
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modeled as disks with radius a � h and height close to h;
i.e., they almost fill the entire channel height [11–13,21]. In
this case, one can use Eqs. (3) and (4) at distances from the
body that are much larger than h but much smaller than a.
Thus the ideal flow holds outside the narrow boundary layer
near the particle surface whose characteristic size l0 is of the
order h, much smaller than the particle horizontal size a. We
call the layer containing the flow vorticity the viscous layer
and assume that there is no flux of mass through the surface
of the droplet, which keeps its shape and volume. Thus, in the
frame of reference moving with the disk, the normal velocity
component is zero at the outer boundary of the layer and the
ideal flow outside the layer is determined uniquely by this
boundary condition. However, the geometry of the layer is
not always known and the complete determination of the flow
is not possible. If we are only interested in the flow outside
the immediate l0 vicinity of the viscous layer, we can set
the boundary condition for the ideal flow on the disk itself,
exploiting the fact that l0 � a. The flow is then found as the
dipole potential [11],

φ = −h2p0

12η
− d · r̂

r
, ∇2φ = 0, d = a2v, (5)

where d is the dipole moment and v = −v x̂ is the difference
between the disk velocity and −h2∇p0/(12η). It is readily
seen that the normal, radial component of the velocity ∇φ on
the surface of the disk is [v − h2∇p0/(12η)] · r̂ . Note that the
velocity v > 0 since the particle moves more slowly than the
fluid.

The tangential velocity component on the outer boundary
of the viscous layer obtained from Eq. (5) does not match the
tangential velocity of the droplet surface. In contrast with the
normal component, which can be considered almost constant
through the viscous layer, the tangential component changes
quickly through this layer to match the inner flow at the droplet
surface. As example, in the limit of high droplet viscosity, the
condition on the disk surface is that the flow is the appropriate
superposition of translation and solid body rotation. Similar
viscous layers occur for rigid bodies oscillating in the fluid
[29]. The ideal flow was obtained in Ref. [11] and here we
describe how this ideal flow fits the complete equations for the
viscous flow.

C. Boxes

Another case where the flow can be fixed without detailed
calculations is the case of a box whose smallest dimension
is close to h and the longer dimensions are much larger than
h. If the box is located in the channel so that the flow is
perpendicular to its longer axis with length l � h, then far
from the ends of the box we find the ideal two-dimensional
flow with constant velocity on the line. The solution for the
ideal flow with constant velocity on an infinite linear boundary
is the uniform flow. We thus conclude that in the frame moving
with the box there is a region of stagnant flow behind the box,
whose size is of order l.

Generally, the flow can be inferred from the lubrication
theory in detail for particles whose horizontal dimensions are
much larger than h and whose vertical dimension is close to h.
The flow outside the narrow viscous layer near the particle

surface is z(z − h) times the two-dimensional ideal flow
determined by the boundary condition of zero normal velocity
on the particle surface. The tangential velocity changes quickly
across the viscous layer. However, if the particle horizontal
dimensions are not large or the dimensions are large but the
vertical dimension is not close to h, a different approach is
needed.

D. Boundary integral representation from
the reciprocal theorem

We use the reciprocal theorem [30,31] using as the
reciprocal flow the solution of Ref. [32] for the point-force
or Stokeslet between two parallel plates, i.e.,

−∇pS + η∇2uS + gδ(x − x0) = 0, ∇ · uS = 0,

uS(z = 0) = uS(z = h) = 0, uS(x2 + y2 → ∞) = 0. (6)

Analogously to the flow due to a point force acting on a viscous
fluid in infinite space (e.g., Ref. [31]), the solution depends
linearly on the source forcing g,

uS(x) = 1

8πη
Sik(x,x0)gk, (7)

where we introduced the tensor Sik independent of g. Similarly
for the stress tensor of the Stokeslet solution we can write

σS
ik(x) = −pSδik + η

(∇ku
S
i + ∇iu

S
k

) = Tilk(x,x0)gl

8π
,

∇kTilk = −8πδilδ(x − x0), Tilk = −plδik + ∇kSil + ∇iSkl,

(8)

where Tilk is a third-rank tensor independent of g and we
defined the g-independent pl by pS = p · g/(8π ). We use the
Lorentz identity,

∇k

[
uiσ

S
ik − uS

i σik

] + u · gδ(x − x0) = 0, (9)

readily inferred from the Stokes equations with σik being the
stress tensor of the flow defined by Eqs. (2),

σik = −pδik + η(∇iuk + ∇kui). (10)

Substituting uS and σ S from Eqs. (7) and (8) in Eq. (9) and
using the above identity, we find that

8πηul(x′)δ(x′ − x) = ∂

∂x ′
k

[Sil(x′,x)σik(x′)

− ηui(x′)Tilk(x′,x)]. (11)

Integrating this equation over x′ outside the particles,

ul = fl −
∑

n

∫
Sn

Sil(x′,x)σ ′
ikdS ′

k

8πη

+
∑

n

∫
Sn

ui(x′)Tilk(x′,x)dS ′
k

8π
, (12)

where f is the integral over the far surface at infinity, Sn is the
surface of the nth particle and dSk is aligned with the outward
normal to the particle surface. There is no contribution from the
channel boundaries z = 0 and z = h since both flows vanish
there.
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We assume that the particles are confined in a finite region so
that the flow far from the particles is the Poiseuille flow given
by Eq. (1); see Eq. (2). Since the Stokeslet decays far from the
source, the second and the third terms on the right-hand side
of Eq. (12) decay to zero at large distances from the particles.
Thus, the asymptotic approach of u to the Poiseuille flow at
large distances implies the asymptotic equality of f to the
Poiseuille flow. It is readily seen using the asymptotic form
of the Stokeslet at large horizontal distances, provided in the
next section, and the asymptotic, Poiseuille, form of the flow,
that f is determined by terms independent of the particles, that
is, terms that would be the same for the case of no particles.
Thus, necessarily f is the Poiseuille flow given by Eq. (1).
This is confirmed by the direct calculation in Appendix A. We
therefore conclude that

ul = δlxz(z − h)∇xp
0

2η
−

∑
n

∫
Sn

Sil(x′,x)σ ′
ikdS ′

k

8πη

+
∑

n

∫
Sn

ui(x′)Tilk(x′,x)dS ′
k

8π
. (13)

This integral representation of the flow involves no approxi-
mations and holds for particles of arbitrary shape. The flow is
determined by the values of u and σik at the particle surface.
When the distances between the particles are much larger than
their size, the hydrodynamic interactions are negligible and
u and σik are approximately those of an isolated particle.
However, the current representation works also when the
particles are close to each other so that the hydrodynamic
interactions change significantly the values of u and σik at the
particle surface.

E. Simplification for rigid surface

The integral representation above simplifies in the case of
rigid surfaces when the flow on the surface of the particles is
the superposition of translation and solid-body rotation. This
is not only the case of rigid particles described after Eq. (2), but
often also the case of small bubbles where impurities present
in the fluid accumulate at the surface, making it effectively
rigid. In this case, experiments demonstrate that the behavior
of these bubbles is similar to that of rigid particles [30,33]. In
these and similar cases, the flow at the particle surface ui(x′)
has the form ci + εirmx ′

mc̃r where both c and c̃ are independent
of x′. Hence the last term in Eq. (13) drops out because for x
outside the particle interior Vp,∫

Sp

dS ′
kTilk(x′,x) =

∫
Vp

dV ∇′
kTilk = 0,

εirm

∫
S

dS ′
kx

′
mTilk(x′,x) = εirm

∫
Vp

dV δmkTilk = 0; (14)

cf. Ref. [31]. Note that we made use of the fact that εirm is
antisymmetric over indices i, m whereas Tilm is symmetric
with respect to those indices. We conclude that in the case of
many particles with rigid surfaces

ul = δlxz(z − h)∇xp
0

2η
−

∑
n

∫
Sn

Sil(x′,x)σ ′
ikdS ′

k

8πη
. (15)

The representations derived here are thus useful to describe
the flow.

III. DERIVATION OF LUBRICATION THEORY

In this section, we demonstrate that Eqs. (13) and (15)
imply that the predictions of the lubrication theory hold at
horizontal distances from the particles larger than h. This is
less restrictive than the usual condition of applicability of
the lubrication theory for distances much larger than h; cf.
Ref. [14]. This property comes from the Stokeslet flow which
obeys the lubrication theory at distances larger than h. We use
the representation

Sil(x′,x) = 12z′(h − z′)z(z − h)∇i∇l ln ρ

h3
+ S̃il(x′,x), (16)

where ρ is the length of ρ = (x − x ′,y − y ′) (thus ∇i∇l ln ρ =
0 if one of the indices is z). It was observed in Ref. [32] that S̃il

decays exponentially in ρ with exponent at least π/h; that is,
the smallness is at least exp(−πρ/h). Thus, already at ρ ≈ h

we can discard the last, nonpotential term in Eq. (16). The
resulting approximation to the Stokeslet flow,

Sil(x′,x) ≈ S0
il(x′,x) = 12z′(h − z′)z(z − h)∇i∇l ln ρ

h3
, (17)

is the two-dimensional potential flow times z′(h − z′), in
agreement with the predictions of the lubrication theory; see
Eq. (3). Note that S0

il(x′,x) is a symmetric function of x and
x′, whose dependence on the horizontal coordinates is via the
difference ρ only. We consider the corresponding pressure p0

that approximately solves the corresponding Stokes equation
∇′

ip
0
l (x′,x) = ∇′2S0

il(x′,x); see the second of Eqs. (8). Here
∇′

i designates the derivative over x ′
i and we do not write the

δ(x′ − x) term on the right-hand side. We thus find (l 	= z)

p0
l (x′,x) = 24z(z − h)ρl

h3ρ2
= 24z(z − h)

h3
∇l ln ρ. (18)

Here, p0 is the leading order approximation for the pressure
of the Stokeslet at large distances [32], with an exponentially
small correction. We can write (l 	= z but i or k can be z),

Tilk(x′,x) = −p0
l δik + ∇′

kS
0
il + ∇′

iS
0
kl + T̃ilk(x′,x), (19)

where T̃ilk(x′,x) decays exponentially in ρ with exponent
at least π/h; cf. Eq. (8). The stress tensor Tilk(x′,x) is
exponentially small when one of the indices is z. We find
using the expressions for p0 and S0

il ,

Tilk(x′,x) ≈ 24z(h − z)

h3
∇l[(δik + z′(h − z′)∇i∇k) ln ρ]

+ 12(h − 2z′)z(z − h)

h3
(δkz∇i + δiz∇k)∇l ln ρ,

(20)

where we neglected exponentially small correction. We find
from Eq. (13) that

u(x) = z(z − h)∇p

2η
+ O(e−π min[ρn]/h); ∇2p = 0, (21)

where u = (ux,uy) and min[ρn] is the distance from x to the
closest boundary of a particle. The pressure p in this formula
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is independent of z as predicted by the lubrication theory used
in Eq. (3) with

p = p0 +
∑

n

δpn, δpn = 3∇i

πh3

∫
Sn

z′(z′ − h) ln ρσ ′
ikdS ′

k

− 6η

πh3

∫
Sn

dS ′
k[δik + z′(h − z′)∇i∇k]ui(x′) ln ρ

+ 3η

πh3

∫
Sn

dS ′
k(h − 2z′)(δkz∇i + δiz∇k)ui(x′) ln ρ,

(22)

where δpn is the pressure perturbation due to the nth particle
and the summation over repeated indices is from 1 to 3.
Equations (21) and (22) are some of the main results of
our work. These provide a refinement of the lubrication
theory, demonstrating that Eq. (3) holds under the condition
exp (−π min[ρn]/h) � 1, which is difficult to show using the
classic lubrication theory as it demands the strong inequality
min[ρn] � h. For instance, at min[ρn] = h the exponential
factor is ∼ 0.04. The result holds both for droplets and rigid
particles where for rigid particles the last two lines of Eq. (22)
become zero and the equation reduces to

p = p0 + 3∇i

πh3

∑
n

∫
Sn

z′(z′ − h) ln ρσ ′
ikdS ′

k. (23)

We have good control of the correction terms to Eqs. (21)–
(23) from the series representation of S̃il(x′,x) provided in
Ref. [32].

The pressure p solves the two-dimensional Laplace equa-
tion in the domain between the particles since it is formed by
integrals of the fundamental solution of the Laplace equation
ln ρ over the particle boundaries. The formula for p matches
the ideal flow that holds beyond the horizontal distance h from
the particles with the fully viscous flow near the particles. The
viscous layer is the neighborhood of the boundary of each
particle where Eq. (22) breaks down. Though the solution for
p is given in terms of the unknown velocities and stress tensors
on the surfaces of the particles, it seems that this is as much as
can be done generally: The matching problem is not solvable
for any general particle shape. It does simplify for disklike
particles as described previously.

A. Hydrodynamic interactions of pancakelike droplets

Equations (21) and (22) provide support for the observation
that the width of the viscous layer around disklike droplets is
not larger than h. The formulas tell that, unless the distance
between the droplet surfaces is smaller than h, the (horizontal)
flow outside the viscous layers near the particles is an ideal
potential flow. This flow can be determined using the boundary
condition that the normal velocity at the outer boundary of the
viscous layer coincides with the normal component of the
translational velocity of the particle. Since the layer width is
of the order of h, and as long as the distance between the
droplets is larger than h (but possibly much smaller than a)
we can impose the boundary condition on the particle surface,
neglecting the finite width of this viscous layer as we did for
the case of the single large disk; see Eq. (5). Similarly, in the
presence of many particles whose separation is larger than h,

the flow outside the boundary layer is described by a pressure
field p that obeys [13,14]

∇2p = 0,

(
vn + h2∇p

12η

)
n̂n = 0, (24)

where vn is the velocity of nth particle and n̂n is the unit
vector normal to the surface of the nth particle. The pressure
gradient is taken at the outer boundary of the viscous layer of
the nth particle. However, since the latter is narrow, one can
consider ∇p on the surface of the nth particle without affecting
significantly the solution for the pressure outside the viscous
layers. To find the pressure inside the layers would require
a separate study. For close droplets, the pressure determined
by Eq. (24) is different from the superposition of the dipole
solutions given by Eqs. (4) and (5) due to the near-field
interactions.

Finally, we demonstrate that the force exerted on the
particles, determined by the viscous stress tensor at the particle
surface, can be obtained from the ideal flow description. The
force Fn on particle n is determined by the following integral
over the particle surface,

Fn
i =

∫
Sn

σikdSk =
∫

outer
σikdSk, (25)

where the last integral is over the outer boundary of the viscous
layer of the nth particle and we used ∇kσik = 0. We can
neglect the viscous contribution to the stress tensor at the outer
boundary and find

Fn ≈ −
∫

outer
pdS ≈ −

∫
Sn

pdS, (26)

where we must use the pressure p determined from Eq. (24)
in the last term and not the true pressure on the surface of the
particle. Thus, the force coincides with that in an ideal flow and,
effectively, we can assume that the ideal flow holds everywhere
disregarding the no-slip boundary condition. This provides a
consistent basis for the study of hydrodynamic interactions
between large droplets at small distances as performed in
Refs. [13,14].

IV. MULTIPOLE EXPANSION

The flow at large distances from the particles can be ef-
fectively studied using the multipole expansion. The distances
must be larger than h and much larger than the particle size.
We perform here this expansion in terms of δpn in Eq. (22),
solution of the two-dimensional Laplace equation. We write
δpn as

δpn = 3

πh3

∫
Sn

dS ′
k{z′(z′ − h)σ ′

ik∇i − ηui(x′)[2δik

+ 2z′(h − z′)∇i∇k + (h − 2z′)(δkz∇i + δiz∇k)]} ln ρ.

(27)

We provide next the expansion in Cartesian and polar coordi-
nates as in three-dimensional electrostatics [34].

We set the origin of the coordinate system inside the nth
particle. To determine the multipole expansion in Cartesian
coordinates, we consider the Taylor series (remember that
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ρ = |r − r ′|)

ln ρ = ln r − r ′
l∇l ln r + r ′

l r
′
p

2
∇l∇p ln r + · · · , (28)

where dots stand for higher order terms. Substituting into
Eq. (27), one obtains the Cartesian form of the multipole
expansion. The leading-order ln r term in the series,

δpn = 3

πh3

∫
Sn

dS ′
k{z′(z′ − h)σ ′

ik∇i − ηui(x′)[2δik

+ 2z′(h − z′)∇i∇k + (h − 2z′)(δkz∇i + δiz∇k)]} ln r,

(29)

has a contribution proportional to
∫

u · dS, i.e., proportional
to ln r . Further assuming the droplet is incompressible,

∫
u ·

dS = 0. In this case, the leading-order term at larger distances
is given by the dipole term,

δpn = 3

πh3

∫
Sn

dS ′
k[z′(z′ − h)σ ′

ik∇i − ηui(x′)(h − 2z′)

× (δkz∇i + δiz∇k)] ln r + 6η∇l ln r

πh3

∫
Sn

r ′
l u · dS,

(30)

where the last term comes from the next-order term in the
expansion of the logarithm. This term can be simplified for
droplets that do not change their shape, such as the pancakelike
droplets considered previously, since the slip and flow on the
surface are irrelevant. For instance, for a spherical droplet
whose center moves with velocity v, one obtains

∫
Sn

r ′
l u ·

dS = vk

∫
Sn

r ′
l dSk = 4πa3vl/3. The complete expansion

becomes

δpn = 3

πh3

∫
Sn

dS ′
k{z′(z′ − h)σ ′

ik∇i − ηui(x′)[2δik

+ 2z′(h − z′)∇i∇k + (h − 2z′)(δkz∇i + δiz∇k]})

×
(

ln r − r ′
l∇l ln r + r ′

l r
′
p

2
∇l∇p ln r + . . .

)
. (31)

The expansion in polar coordinates is found, observing that
for r ′ < r ,

ln |r − r ′|

= ln r −
∞∑

n=1

(
r ′

r

)n cos(nθ ) cos(nθ ′) + sin(nθ ) sin(nθ ′)
n

.

(32)

This formula represents the fundamental solution ln |r − r ′|
in terms of the elementary solutions of Laplace equation,
r−k exp(ikθ ) and r ′p exp(ipθ ′) with k and p positive in-
tegers. This is the counterpart of the expansion of |r −
r ′|−1 in spherical harmonics adopted in three-dimensional
multipole expansion in electrostatics [34] and, in fact, it
can be derived from that expansion by confining r , r ′
in a plane. We provide here a simpler derivation. We
consider

ln |r − r ′| = ln r + ln(1 − 2ε cos γ + ε2)

2
, ε = r ′

r
, (33)

where γ is the angle between r and r ′ and ε < 1. We recall
the Fourier series,

ln(1 − 2ε cos γ + ε2) = −
∞∑

n=1

2εn cos(nγ )

n
, (34)

where the integrals for the Fourier coefficients can be obtained
using the residue theorem [35]. Finally, introducing the polar
angles θ and θ ′ for r and r ′, respectively, and using γ =
θ ′ − θ , we obtain Eq. (32). The multipolar expansion in polar
coordinates is finally

δpn = 3

πh3

∫
Sn

dS ′
k{z′(z′ − h)σ ′

ik∇i − ηui(x′)[2δik

+ 2z′(h − z′)∇i∇k + (h − 2z′)(δkz∇i + δiz∇k)]}
[

ln r

−
∞∑

n=1

(
r ′

r

)n cos(nθ ) cos(nθ ′) + sin(nθ ) sin(nθ ′)
n

]
,

(35)

which gives the pressure as a superposition of elementary so-
lutions r−k exp(ikθ ). The formulas simplify for rigid particles
to

δpn = 3

πh3

∫
Sn

dS ′
kz

′(z′ − h)σ ′
ik∇i

(
ln r

− r ′
l∇l ln r + r ′

l r
′
p

2
∇l∇p ln r + · · ·

)
(36)

and

δpn = 3

πh3

∫
Sn

dS ′
kz

′(z′ − h)σ ′
ik∇i

[
ln r

−
∞∑

n=1

(
r ′

r

)n cos(nθ ) cos(nθ ′) + sin(nθ ) sin(nθ ′)
n

]
.

(37)

The multipole expansion of the flow is derived by taking the
gradient of the pressure using Eq. (21). As an example, the
perturbation of the Poiseuille flow due to a rigid particle, δuk ,
is up to a cubically decaying term,

δuk = −3z(z − h)si

2πh3η
∇k∇i ln r − 3z(z − h)

2πh3η

×∇k∇i

1

r

∫
S

dS ′
kz

′(z′ − h)σ ′
ikr

′ cos(θ − θ ′), (38)

where we introduced

si =
∫

S

z′(h − z′)σ ′
ikdS ′

k. (39)

The first term in Eq. (38) is a dipole and the second term is
a quadrupole. Similarly, we can write the corresponding and
higher order terms for droplets.

V. LEADING-ORDER BEHAVIOR AT LARGE DISTANCES

In this section, we consider the leading-order behavior of
the flow at large horizontal distances from the particle(s). The
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distances must be larger than h (but not much larger) and
much larger than the size of the particles. The far-field flow
perturbation δun due to the nth particle is given by the dipole
flow,

δun = z(z − h)

2η
∇δpn, δpn = − 3

πh3
(sn · ∇) ln r, (40)

where

(sn)i =
∫

Sn

dS ′
kz

′(h − z′)σ ′
ik + η

∫
Sn

dS ′
z(h − 2z′)ui(x′)

+ η

∫
Sn

dS ′
i(h − 2z′)uz(x′) − 2η

∫
Sn

r ′
i u · dS; (41)

see Eqs. (21) and (30). For rigid particles, this reduces to
Eq. (39), which is why we use the same letter for the coefficient
si . We find that the perturbation of the potential of the depth-
averaged flow δφn = −h2δpn/(12η) is

δφn = − d̃n · r̂

r
, d̃n = − sn

4πηh
; (42)

see Eq. (4). Thus, the flow perturbation at large distances is the
dipolar flow with effective dipole moment d̃. We can describe
the far-field impact of a particle of arbitrary shape on the
flow introducing the source in the potential equation, ∇2δφn =
−2π (d̃n · ∇)δ(x)δ(y) so that the full potential φ obeys

∇2φ = −2π
∑

n

(d̃n · ∇)δ(x − xn)δ(y − yn), (43)

where (xn,yn) are the horizontal coordinates of some point
inside the nth particle (observe that p0 is a linear function and
has zero Laplacian).

The resulting correction to the Poiseuille flow is that of a
particle that moves in direction of s [see Eq. (5)]:

δuk(x) = 3siz(h − z)

πηh3(x2 + y2)

[
δik

2
− xixk

x2 + y2

]
, ρ � h. (44)

The lateral, y and z, components of s vanish for particles that
have fore-and-aft symmetry. This can be shown in the same
way as for the absence of lateral migration of spheres in a
channel [36,37]. The reversal of the sign of u and p produces
another solution of the system of Eqs. (2). This solution has
opposite sign of the stress tensor and velocity and thus of s.
However, it describes the same physical situation and thus must
have the same lateral components of s; hence these components
must vanish. Thus, for spheres or ellipsoids s = s x̂. In contrast,
for particles whose shape is an arc or similar, one can have a
nonzero sy and sz.

We consider a spherical particle as an example of a particle
with fore-and-aft symmetry. We can introduce si = s(zp)δix ,
where

s(zp) =
∫

S

z′(h − z′)σ ′
xkdS ′

k + η

∫
Sn

dS ′
z(h − 2z′)ux(x′)

+ η

∫
Sn

dS ′
x(h − 2z′)uz(x′) − 2η

∫
Sn

r ′
xu · dS, (45)

TABLE I. Relative particle velocity δup/Ub and magnitude of ŝ

as function of the particle center position zp/h for spherical particles
of radius a = h/6 obtained from the numerical simulations.

zp/h 0.50 0.55 0.60 0.65 0.70 0.75 0.80

δup/Ub −0.06 −0.06 −0.06 −0.07 −0.07 −0.09 −0.17
ŝ × 10−3 1.8 2.2 3.7 6.3 10.6 17.8 30.0

with zp being the vertical position of the particle center. In this
case, the flow is

δux(x) = 3s(zp)z(h − z)

2πηh3(x2 + y2)

y2 − x2

x2 + y2
,

δuy(x) = − 3s(zp)z(h − z)

2πηh3(x2 + y2)

2xy

x2 + y2
. (46)

It is plausible that s(zp) > 0 because the particle is always
lagging behind the local flow. This is confirmed by the direct
numerical simulations reported below.

The formulas provided here give the possibility of tabulat-
ing the particle dipole moments from numerical simulations
for future use. For a spherical particle of fixed radius, the dipole
moment depends on the vertical coordinate zp. The solution of
the flow equations in the presence of an isolated sphere would
give the stress tensor and the surface velocity with which we
can find s(zp). We illustrate this procedure for the case where
the particle is a rigid sphere with same density as that of the
fluid. The equation of motion is

m
dvi

dt
=

∫
S

σikdSk, (47)

where m is the mass of the particle and gravity does not
influence the motion since the particle is assumed to be
neutrally buoyant. This equation is coupled to the time-
dependent Navier-Stokes equations where the unsteady term
is not negligible during the transients. The particle eventually
reaches a constant velocity and the fluid flow is governed
by the steady Stokes equations due to the small Reynolds
number. Thus, our derivation of the far flow holds with the
dipole coefficient for rigid particles,

s(zp) =
∫

S

z′(h − z′)σ ′
xkdS ′

k. (48)

We computed here s(zp) using the numerically determined σxk

for different zp and different radii of the sphere. The results
are summarized in Tables I–III (see Appendix B for details).
Here, the particle relative velocity, defined as δup = up − u0

x ,
where up is the particle center velocity, is nondimensionalized
by the bulk velocity of the undisturbed channel flow Ub =

TABLE II. Relative particle velocity δup/Ub and magnitude of ŝ

as function of the particle center position zp/h for spherical particles
of radius a = h/3 obtained from the numerical simulations.

zp/h 0.50 0.55 0.60 0.65

δup/Ub −0.24 −0.25 −0.30 −0.45
ŝ × 10−2 4.1 4.9 7.6 15.8
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TABLE III. Relative particle velocity δup/Ub and magnitude of ŝ

as function of the particle center position zp/h for spherical particles
of radius a = h/2.25 obtained from the numerical simulations.

zp/h 0.50

δup/Ub −0.52
ŝ × 10−1 2.1

−h2∇xp
0/(12η). The reduction of the translational velocity

as the particle is placed closer to one wall or as the particle
size increases is consistent with previous computations using
the boundary integral method [38].

We also report the values of ŝ(zp) = 3s(zp)/(2πηh3), the
common prefactor in Eq. (46). We note that, though overall
small, ŝ increases as the particle approaches one wall or
as the confinement increases, as the relative velocity δup.
The resulting ŝ, quantifying the local velocity disturbance
generated by one particle, along with the spatial dependence
in the horizontal plane, allows for predictions of the far-field
interactions of spheres. These will be examined in Sec. VI.

Finally, we return to the lubrication theory by showing
some typical depth-average velocity field in Fig. 2 and the
velocity decay in Fig. 3. As mentioned earlier, the lubrication
theory is valid at horizontal distances larger than the height
of the channel. Figure 2 depicts the flow field due to a
sphere of diameter equal to 2/3 of the channel height. The
nonzero vertical vorticity outside the particle indicates the
nonideal structure of the depth-average flow, in contrast
to the simple mass dipole of a disk [see Eq. (5)]. However, as
the confinement increases, the disturbance velocity asymptotes
the leading-order quadratic decay, as shown in Fig. 3.

FIG. 2. Depth-averaged disturbance flow around a sphere from
the numerical simulations. The heavy arrows indicate the magnitude
and light arrows the direction. The color in the background depicts
the decay of the vorticity outside the sphere. The particle travels in
the x ′ direction and is located at the midchannel (zp/h = 0.5), with
h/(2a) = 1.5. Only half of the plane is shown due to symmetry.

FIG. 3. Spatial variation of the normalized streamwise depth-
averaged disturbance velocity, δud/Ub, along the streamwise (y =
0, circle) and spanwise (x = 0, triangle) directions away from the
particle center. The particle is located at the midchannel (zp/h = 0.5),
with h/(2a) = 1.125. The collapse of the disturbance velocity away
from the particle confirms the leading-order dipolar decay (dashed
line).

VI. INTERACTIONS

In this section, we introduce equations that describe
interactions of well-separated particles and solve them in
some specific cases. We start by observing that because of
the linearity of the problem, the steady-state (horizontal)
velocity v0 of an isolated particle driven by the Poiseuille
flow according to Eq. (2) is given by

v0 = −M̂∇p0, (49)

where we assume v0 is a function of ∇p0 that can be any
constant vector in the plane. Indeed, v0 is a linear function
of ∇p0 that is zero when there is no driving flow. Since
M̂ connects the velocity v0 with the force per unit volume
of the fluid, we call M̂ the mobility matrix though it differs
from the more commonly used coefficient between the velocity
and the force on the particle [30]. The two-by-two mobility
matrix M̂ depends on the shape of the particle, whether
the particle is rigid or droplet, and the particle position
in the channel. The equation neglects gravitational settling,
absent for neutrally buoyant particles or particles whose
sedimentation is stopped by interactions with the walls (as
the pancakelike droplets) or because settling is negligible at
relevant time scales. In cases with sedimentation velocity vs

so low that the particle stays in quasi-steady state, we have

v0 = −M̂(t)∇p0 + vs , (50)

where the matrix M̂(t) is determined by the instantaneous
configuration in the channel, which may depend on time due
to sedimentation.

We next consider interactions of many well-separated
particles. The flow induced at the position of the ith particle
by the other particles is a quasi-Poiseuille flow,

u = z(z − h)∇p

2η
, p = p0 −

∑
k 	=i

3

πh3
(sk · ∇) ln |r − rk|,

(51)
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where rk is the horizontal position of the kth particle; see
Eqs. (21) and (40). We observe that we can neglect variations
of ∇p over the particle since the rest of the particles are well
separated. Thus, at the leading order in large distances between
the particles the ith particle assumes the horizontal velocity,

d r i

dt
= −M̂i∇

(
p0 −

∑
k 	=i

3

πh3
(sk · ∇) ln |r − rk|

)
r=r i

, (52)

where M̂i describes the geometry of the ith particle. The
sedimentation velocity can be included in a straightforward
way. This is the equation that describes the long-range
interactions of the particles. The presented derivation avoids
the problem with boundary conditions encountered in the
derivation of Ref. [21] for the case of droplets. In that case,
the derivation started with the flow induced by other particles
at the position of the ith particle and not the pressure. Since
for particles of finite extent it becomes nonobvious where
the three-dimensional flow must be considered, our derivation
seems to be useful for a proper consideration of particles whose
vertical size is smaller than h.

We consider the case of spherical particles or droplets of
radius a smaller than h/2. In this case, M̂i is M(zi) times
the unit matrix where the scalar coefficient M depends on the
vertical coordinate zi of the ith particle. Similarly, sk = s(zk)x̂
where s(z) was introduced previously. We find

ṙ i = −M(zi)∇p0 +
∑
k 	=i

3M(zi)s(zk)

πh3r2
ik

[
x̂ − 2(r ik · x̂)r ik

r2
ik

]
,

where r ik = r i − rk . Thus, for pair of particles,

ṙ = [M(z1) − M(z2)]∇p0 + 3δ12

πh3r2

[
x̂ − 2xr

r2

]
, (53)

where r = r2 − r1 = (x,y,z) and we introduced

δ12 = M(z2)s(z1) − M(z1)s(z2). (54)

Another case when Eqs. (52) simplify significantly is for
pancakelike droplets that almost completely fill the channel in
the vertical direction. In this case, M and s are constant since
no variation of the vertical position of the particles is possible.
We see immediately that the configuration of two droplets is
stable in the dipole approximation where ṙ in Eq. (53) is zero
(in a higher-order quadrupole approximation proportional to
r−3 the pair would not be stable). For many particles, the
equations of motion in the frame that moves with the velocity
of the isolated droplet −M∇p0 become

d r i

dt
=

∑
k 	=i

q

r2
ik

[
x̂ − 2(r ik · x̂)r ik

r2
ik

]
, q = 3Ms

πh3
. (55)

These equations hold also for spherical particles located at the
same distance from the midplane where we must use for M and
s the values at the corresponding z. This is the case where the
particles have identical vertical coordinate or their coordinates
can be obtained by reflection with respect to the midplane.
Other cases of symmetric particles where Eq. (55) hold can be
considered. If gravitational settling is relevant, r ik will change
via time-dependent s = s(z(t)). It is assumed below that the
change of s = s(z(t)) can be neglected over the time scales of
interest.

It is often the case that we have two spherical particles
at the same vertical distance from the walls. This can be the
case of spherical droplets created at some fixed place in the
channel and then transported down the flow [22]. In this case,
an isolated pair is stable in the dipole approximation: We have
ṙ = 0 in Eq. (53) for z1 = z2.

This characterizes the basic property of the interaction given
by Eq. (55), that the velocity induced by particle i at the
position of the kth particle is equal to the velocity induced
by particle k at the position of the ith particle. Thus, the
interparticle distances can change only if there are three or
more particles. We can rewrite the equation of motion as

d r ik

dt
=

∑
l 	=i,l 	=k

(
q

r2
il

[
x̂ − 2(r il · x̂)r il

r2
il

]

− q

r2
kl

[
x̂ − 2(rkl · x̂)rkl

r2
kl

])
. (56)

We start by considering in more detail the simplest case of two
particles whose distance is constant in time. If the particles
have the same y coordinate then the x coordinates obey

dx1

dt
= dx2

dt
= − q

(x1 − x2)2
. (57)

In this case, the particles form a simple cluster with fixed
distance that moves as a whole more slowly than the particles
separately. We consider now two particles at different spanwise
locations, y1 = y, y2 = 0,

dx1

dt
= dx2

dt
= q

(y1 − y2)2 − (x1 − x2)2

[(x1 − x2)2 + (y1 − y2)2]2
,

dy1

dt
= dy2

dt
= −q

2(x1 − x2)(y1 − y2)

[(x1 − x2)2 + (y1 − y2)2]2
. (58)

The right-hand sides are constant because interparticle dis-
tances are, but the velocity of the cluster of the two particles
can change sign, unlike the previous case. For two particles
with the same x coordinate, the x component of their velocity
increases while the y component is zero; see Ref. [22] for
experimental observations.

Next, we consider the simplest case with changing inter-
particle distances: three particles at the same height. From
the analysis of the two-particle dynamics, a possible solution
is that particles form a cluster of two particles with the third
farther away. The interactions of the single distant particle with
the clustered particles decay quadratically with the distance
and can be assumed negligible. Thus, the isolated particle
moves with the velocity of one single sphere. The cluster
keeps its configuration and moves at a constant velocity
(q/r2)[x̂ − 2(r · x̂)r/r2] with respect to the third particle. If
this velocity is such to increase the separation between the
cluster and the third particle, this solution will continue ad
infinitum. It is thus plausible to assume that any arbitrary initial
configuration of three particles will separate asymptotically in
one cluster and one particle. We will prove this below for
the practically important case of three particles aligned in the
streamwise, x, direction. This case can be observed when the
particles are injected in the flow at the same location.
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The distances between three particles are determined by
two vectors r12 and r13 that obey

ṙ12 = q

r2
13

[
x̂ − 2(r13 · x̂)r13

r2
13

]
− q

r2
23

[
x̂ − 2(r23 · x̂)r23

r2
23

]
,

ṙ13 = q

r2
12

[
x̂ − 2(r12 · x̂)r12

r2
12

]
− q

r2
23

[
x̂ − 2(r23 · x̂)r23

r2
23

]
.

(59)

The solution described above pertaining the cluster of two
particles (named here 2 and 3) and the faraway particle 1
corresponds to neglecting the first terms in the right-hand sides,

ṙ12 ≈ ṙ13 ≈ − q

r2
23

[
x̂ − 2(r23 · x̂)r23

r2
23

]
≈ const., (60)

where r23 is approximately constant. At large times, the
constant vector r23 has become much smaller than the linearly
growing r12 and r13. We have that r23 = r13 − r12 obeys the
equation

ṙ23 = q

r2
12

[
x̂ − 2(r12 · x̂)r12

r2
12

]
− q

r2
13

[
x̂ − 2(r13 · x̂)r13

r2
13

]
,

where the right-hand side decays quadratically with time, in
agreement with the assumption of constant r23.

We prove that the separation of three particles into one
binary cluster and one isolated particle holds for arbitrary
initial conditions when all three particles lie on the same line
in the x direction. It is clear that the separation can occur in
two ways in this case: Either particles 1 and 2 form a cluster
or 2 and 3. Here we assume the ordering x1 > x2 > x3. As the
cluster moves more slowly than the isolated particle, the third
particle would catch up with the binary cluster, made of 1 and
2. Hence, the only stable configuration is a cluster of particles
2 and 3 whose distance from particle 1 increases linearly with
time due to the cluster deceleration. Formally,

ẋ12 = −q

[
1

x2
13

− 1

(x13 − x12)2

]
,

ẋ13 = −q

[
1

x2
12

− 1

(x13 − x12)2

]
.

Introducing x = x12 and r = x13/x12 where r > 1, we can
write

ẋ = − q

x2

[
1

r2
− 1

(r − 1)2

]
= − q(1 − 2r)

x2r2(r − 1)2
,

ẋ + xṙ

r
= − q

x2

[
1

r
− 1

r(r − 1)2

]
. (61)

The distance r obeys

x3ṙ = −q

[
1 − 1

(r − 1)2

]
+ q

[
r − r

(r − 1)2

]

= −q(r − 1)

r
− q

r − 1
= −q(r2 − r + 1)

r(r − 1)
. (62)

Hence, r(t) decreases in time monotonously, and we can write

d ln x

ds
= q

[
(r − 1)2 − 1

r2

]
,

dr

ds
= −q(r2 − r + 1)

r(r − 1)
,

ds

dt
= 1

x3(t)
. (63)

We can solve for s(r),

ds

dr
= − 1

q
+ 1

q(r2 − r + 1)
, s(r) = r0 − r

q

+ 2

q
√

3
arctan

(
2r − 1√

3

)
− 2

q
√

3
arctan

(
2r0 − 1√

3

)
,

(64)

where r0 = r(s = 0). The inversion of this formula, to find
r(s), gives a transcendental equation. However, the asymptotic
properties of the solution can be derived without solving the
equation. When s increases, r decreases, reaching r = 1 at a
finite value s = s∗ where

s∗ = r0 − 1

q
+ π

3q
√

3
− 2

q
√

3
arctan

(
2r0 − 1√

3

)
. (65)

The situation of r reaching 1 would correspond to coalescence
of the second and the third particles. This happens only
asymptotically, as s = s∗ corresponds to infinite physical time,
t(s∗) = ∞. We have directly from Eq. (64) that s ′(r = 1) = 0
and s ′′ = (1 − 2r)/[q(r2 − r + 1)2], which gives

s(r) ≈ s∗ + (r − 1)s ′(r = 1) + (r − 1)2s ′′(r = 1)

2

= s∗ − (r − 1)2

2q
, (r − 1)2 = 2q(s∗ − s). (66)

We can find x as a function of r , observing that

d ln x

dr
= d ln x

ds

ds

dr
= −

(
1

r − 1
+ 1

r

)
1

r2 − r + 1
. (67)

Integration of the above gives [with x0 = x(t = 0)]

ln

(
x

x0

)
= ln

r0(r0 − 1)

r2
0 − r0 + 1

− ln
r(r − 1)

r2 − r + 1
, (68)

where we used∫ (
1

r − 1
+ 1

r

)
1

r2 − r + 1
dr = ln

r(r − 1)

r2 − r + 1
. (69)

We find from Eq. (68) that

x = x0
r0(r0 − 1)(r2 − r + 1)

r(r − 1)
(
r2

0 − r0 + 1
) . (70)

In the limit of large times where r approaches 1 from above,
we have

x ≈ r0(r0 − 1)x0

(r − 1)
(
r2

0 − r0 + 1
) ≈ r0(r0 − 1)x0(

r2
0 − r0 + 1

)√
2q(s∗ − s)

,

(71)
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FIG. 4. Pair exchange phenomenon as obtained from numerical
simulations. Initially particles 1 are 2 are close and particle 3 is trailing
behind the pair. As a result of hydrodynamic interactions, the trailing
particle is catching up with the pair, the leading particle breaks away
from the newly formed pair, and the trailing particles 2 and 3 are
separated by the same distance as 1 and 2 were initially.

where we used Eq. (66). Finally, we restore the physical time
using

dt

ds
= x3(s) ≈ r3

0 (r0 − 1)3x3
0(

r2
0 − r0 + 1

)3
(2q)3/2(s∗ − s)3/2

(72)

and obtain

t(s) ≈ r3
0 (r0 − 1)3x3

0

q
(
r2

0 − r0 + 1
)3√

2q(s∗ − s)
. (73)

We conclude from Eqs. (66) and (71) that the long-time
asymptotic form of the solution is

x(t) = qt
(
r2

0 − r0 + 1
)2

r2
0 (r0 − 1)2x2

0

, r(t) = 1 + x3
0r3

0 (r0 − 1)3

qt
(
r2

0 − r0 + 1
)3 . (74)

This implies that the distance between the second and the
third particles reaches a constant value at large times,

x23(t) = x(t)[r(t) − 1] ≈ x0r0(r0 − 1)

r2
0 − r0 + 1

= x13(0)x23(0)x12(0)

x13(0)x23(0) + x2
12(0)

. (75)

To conclude, we can write

x(t) = qt

x2
23

, (76)

in agreement with the form given by Eq. (60). This relation
proves the separation in cluster and faraway particle and
provides the distance between the particles in the cluster as
function of the initial conditions.

The obtained formulas provide a theoretical explanation
for the pair exchange observed in the experiments by [22], and
confirmed by numerical simulations as illustrated in Fig. 4.
We consider initial conditions for which particles 1 and 2 are
close and the third particle is trailing behind. In this case,
x2

12(0) � x13(0),x23(0) and Eq. (75) becomes

x23(t) = x12(0). (77)

Thus, for long times the distance between the third and the
second particles becomes equal to the initial distance between
the first and the second particles, that is, an exchange takes
place.

We can also prove the separation in one cluster and one
faraway particle for initial conditions where the particles
are “almost” aligned, i.e., y12 and y13 are much smaller
than the smallest of x12 and x13. If the y components of

the particle positions are linearly ordered, the equations for
xik do not change and the evolution of xik is as above. The
y components obey

ẏ12 = −2qy13

x3
13

+ 2qy23

(x13 − x12)3
, ẏ23 = 2qy13

x3
13

− 2qy12

x3
12

,

ẏ13 = −2qy12

x3
12

+ 2qy23

(x13 − x12)3
, (78)

where xik(t) are determined from the previous solution. Since
x12, x13 grow linearly with time at large times, then the
asymptotic form of the solution is

y12 = y13 = 2qct

x3
0

, y23 = c = const.

This solution indicates that the first particle separates from the
binary cluster at constant small but finite angle φ with respect
to the x direction given by

φ = y12

x12
≈ y13

x13
≈ c

x0

√
2
. (79)

Self-consistency with the assumption of smallness of yik

demands that c � x0. This assumption can be guaranteed by
the smallness of the initial conditions on yik because of the
linearity of the equations in yik .

Thus, we demonstrated the for initial conditions where the
particles are aligned in the x direction, or almost aligned, the
solution at large times takes the form of a cluster of particles 2
and 3, those two initially upstream, with constant distance r23

and the first particle separating from the cluster according to
Eq. (60).

We formulate the hypothesis that any arbitrary initial
configuration of three particles will lead at large times to
a binary cluster and the third particle linearly separating
from it. It seems that the evolution from any arbitrary
initial conditions cannot be solved analytically, but only
numerically: A reduction from four to three degrees of freedom
can be obtained, but the resulting equations could not be
solved.

To conclude, we describe the properties of cluster solutions
assuming constant r23 of magnitude r23 and angle φ with
respect to the x axis. Using Eq. (60), we write

ẋ12 ≈ ẋ13 ≈ q cos(2φ)

r2
23

, ẏ12 ≈ ẏ13 ≈ q sin(2φ)

r2
23

.

We can assume with no loss of generality that x2 � x3

so that φ is in the range −π/2 � φ � π/2. Four different
solutions can therefore be identified, assuming the cluster at
large time can be denoted as a point at the origin. In the
range 0 � φ � π/4, the first particle leaves the cluster behind
when going to infinity inside the first quadrant. In the range
−π/4 � φ � 0, the first particle leaves the cluster behind
when going to infinity inside the second quadrant. In the
case of π/4 � φ � π/2, the cluster leaves the first particle
behind and to the right. Finally, in the case of −π/2 � φ �
−π/4, the cluster leaves the first particle behind and to the
left.

It is clear from the above that the configuration with
distant pairs or singlets of particles is stable: The singlets
separate ballistically from the stable pairs which maintain
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the pair distance constant. In contrast, clusters of three and
probably more particles are unstable. Thus, we conjecture
that under arbitrary initial conditions an arbitrary number of
distant particles will separate at large times into a collection
of singlets and pairs if the solution is dilute. For suspensions
of many particles, this implies that hydrodynamic interactions
increase the probability of particles to be isolated or in pairs,
rather than forming clusters composed of many particles. In
dense suspensions, the interactions discussed above do not
have time to occur and we rather expect chaotic collisions of
particles [21].

VII. CONCLUDING REMARKS

In the present paper, we provided a boundary integral rep-
resentation for the flow due to particles (rigid ones or droplets)
freely suspended in a channel flow. The particle number, size,
and shape and the interparticle distances are arbitrary. We have
thus demonstrated the utility of this representation.

For an isolated particle, the proposed representation is
useful for the study of the far-field flow. At the leading order,
the far flow is dipolar flow with the dipole moment given by a
weighted integral of the stress tensor and the flow over the par-
ticle surface. This defines the far flow completely. The flow was
previously available only for strongly confined pancakelike
droplets that almost block the channel in the vertical direction.
We also determine the dipole moment integral numerically
for neutrally buoyant rigid sphere. Further, we provide the
multipole expansion from which the far flow can be found
with any desired accuracy.

For close particles, the representation is helpful for the
study of hydrodynamic interactions. It demonstrates clearly
that the range of validity of the lubrication theory is larger than
expected from the usual approach [25–28]. Our representation
also solves the problem of matching the ideal flow holding far
from the particles with the fully viscous flow near the particle
surface. The solution is expressed in terms of the unknown
surface velocity and stress tensor. This sheds light on the use
of the ideal flow approximation in previous works on disklike
particles [14,21] and helps to consider particles of other
shapes.

We introduced the equation of motion of particles
interacting at long distances, refining previous derivation for
droplets [21] and extending it to the case of arbitrary, possibly
different, interacting particles. We solved the three-body
problem of hydrodynamic interactions for the case of identical
symmetric particles aligned in the streamwise direction. This
solution provides theoretical support for the pair exchange
phenomenon observed previously in experiments [22]. We
provide special solutions for the three-body problem and
demonstrate that it is plausible that these solutions describe the
long-time asymptotic evolution for arbitrary initial conditions.
We further demonstrate the application of the theory to the
many body problem.

We did not consider potential lateral migration induced
by hydrodynamic interactions. It can be readily seen that
a pair of distant spherical particles with different vertical
coordinates will separate laterally because the coordinate-
dependent mobility matrices and dipole moments will differ

for these particles. The study of this instability will be the
object of future work.

The representation proposed here is a good starting point for
a mean-field description of strong hydrodynamic interactions
of close particles. We notice after Eq. (15) that the effect
of the interactions can be described by a change of the
stress tensors and velocities at the particle surfaces. Thus the
model description of the interaction boils down to the model
description of surface stress tensors and velocity. This can be
done by introducing the mean field ∇p whose direction can
differ from the direction of the undisturbed flow. We assume
that the stress tensor and flow on the surface of each particle is
that for an isolated particle in the Poiseuille flow with pressure
gradient ∇p (e.g., the particle velocity is equal to minus the
mobility matrix times ∇p). Using this in Eq. (15), one can
find the flow in terms of ∇p. A closed integral equation for
∇p can then be obtained from the Stokes flow equations. The
study of this equation is planned as future work.

This study was primarily motivated by recent experiments
on the formation of droplet clusters in a microfluidic channel
[22,23]. The theoretical modeling in Ref. [23] assumed that
flow-assisted clustering of weakly confined spherical droplets
in close proximity is driven by the combination of nonhydro-
dynamic (adhesive, e.g., depletion forces) and hydrodynamic
interactions of dipolar nature similar to interactions of strongly
confined (pancakelike) droplets in Hele-Shaw cells. The
qualitative agreement between the results of the numerical
simulations and experimental results in Ref. [23] suggested
that ad hoc modeling of hydrodynamic interactions by dipolar
flow is admissible. The present study shows that far-field
interactions of weakly confined droplets are indeed of dipolar
nature; however, their magnitude is too weak to lead to
relative motion between freely suspended particles on the
time scale of the experiment. Moreover, the present study, as
well as the calculations of the interactions at small distances
in Refs. [13,14], suggest that hydrodynamic interactions at
close proximity cannot be described by dipolar flows. We thus
believe that the reason for the qualitative agreement between
the numerical results and the experiment (using unknown
magnitude of the adhesive forces as an adjustable parameter)
is that the adhesive force diverges at contact, dominating
the particle dynamics. The dipolar hydrodynamic interactions
provided the source of sliding (tangential) motions of the
particles necessary for the particle rearrangement and not pro-
vided by the adhesive (radial) forces. However, the particular
functional form (e.g., dipolar or other) of these interactions
seems to be of minor importance as long as these provide
some tangential mobility. An accurate quantitative predictive
theory of flow-assisted clustering requires the knowledge of
the near-field hydrodynamic interactions, including an accu-
rate treatment of the nonuniform flow near the inlet. This will
be the object of a future work.
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APPENDIX A: CALCULATION OF THE FAR-FIELD TERM fl (x0)

In this appendix, we present a direct calculation of the far-field term fl(x0) in Eq. (12). We find from volume integration
of Eq. (11) the boundary term,

fl(x0) = 1

8πη

∫ L

−L

dy

∫ h

0
dz[Sil(L − x0,y − y0,z,z0)σix(L,y,z) − Sil(−L − x0,y − y0,z,z0)σix(−L,y,z)]

+ 1

8πη

∫ L

−L

dx

∫ h

0
dz[Sil(x − x0,L − y0,z,z0)σiy(x,L,z) − Sil(x − x0, − L − y0,z,z0)σiy(x, − L,z)]

− 1

8π

∫ L

−L

dy

∫ h

0
dz[Tilx(L − x0,y − y0,z,z0)ui(L,y,z) − Tilx(−L − x0,y − y0,z,z0)ui(−L,y,z)] − 1

8π

×
∫ L

−L

dx

∫ h

0
dz[Tily(x − x0,L − y0,z,z0)ui(x,L,z) − Tily(x − x0, − L − y0,z,z0)ui(x, − L,z)]; L → ∞.

The Stokeslet decays exponentially in the z direction, so fz = 0. To find the remaining components, we use

σix(L,y,z) = −L∇xp
0δix + (2z − h)∇xp

0δiz

2
. (A1)

We find that fx is determined by the asymptotic solution for channel flow and is not affected by the presence of the spherical
particle,

fx(x0) = −L∇xp
0

8πη

∫ L

−L

dy

∫ h

0
dz[Sxx(L,y − y0,z,z0) + Sxx(−L,y − y0,z,z0)]

− ∇xp
0

8πη

∫ L

−L

dx

∫ h

0
dzx[Syx(x − x0,L,z,z0) − Syx(x − x0, − L,z,z0)]

− 1

8π

∫ L

−L

dy

∫ h

0
dz

z(z − h)∇xp
0

2η
[Txxx(L,y − y0,z,z0) − Txxx(−L,y − y0,z − z0)]

− 1

8π

∫ L

−L

dx

∫ h

0
dz

z(z − h)∇xp
0

2η
[Txxy(x − x0,L,z,z0) − Txxy(x − x0, − L,z − z0)]; L → ∞. (A2)

Thus, this must be the unperturbed channel flow as readily verified. Rescaling the integration variable by L and keeping
leading-order terms, we have

fx(x0) = −L2∇xp
0

8πη

∫ 1

−1
dy

∫ h

0
dz[Sxx(L,Ly,z,z0) + Sxx(−L,Ly,z,z0)]

− L2∇xp
0

8πη

∫ 1

−1
dx

∫ h

0
dzx[Syx(Lx,L,z,z0) − Syx(Lx, − L,z,z0)]

− L

8π

∫ 1

−1
dy

∫ h

0
dz

z(z − h)∇xp

2η
[Txxx(L,Ly,z,z0) − Txxx(−L,Ly,z − z0)]

− L

8π

∫ 1

−1
dx

∫ h

0
dz

z(z − h)∇xp

2η
[Txxy(Lx,L,z,z0) − Txxy(Lx, − L,z − z0)]. (A3)

So far the calculation involved the complete Stokeslet solution. To determine fl , we can use the asymptotic form of the Stokeslet
at large distances, which is for the stress tensor

Tilk = −24
rl

ρ2
(z0/h2)(1 − z0/h)δik + O

(
1

ρ2

)
. (A4)

Using these formulas for Sik and Tilk , one can write

fx = ∇xp
0

8πη

∫ 1

−1
dy

∫ h

0
dz

24z(z − h)z0(z0 − h)(y2 − 1)

(1 + y2)2h3
− ∇xp

4πη

∫ 1

−1
dx

∫ h

0
dzx2

[
24z(z − h)z0(z0 − h)

(1 + x2)2h3

]

− 1

4π

∫ 1

−1
dy

∫ h

0
dz

z(z − h)∇xp

2η

[
24

z0(z0 − h)

(1 + y2)h3

]
.
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Integrating over z, this can be written as

fx = ∇xpz0(z0 − h)

2η

(∫ 1

−1

dy

π (1 + y2)

[
2

1 + y2
− 1

]
+ 1

π

∫ 1

−1
dx

2x2

(1 + x2)2
+ 1

π

∫ 1

−1
dy

[
1

(1 + y2)

])
. (A5)

Performing the integrals, we confirm that indeed fx is the flow given by Eq. (1).

APPENDIX B: NUMERICAL INTEGRATION OF s

We compute the weighted dipole moment s in Eq. (39)
by directly simulating a rigid spherical particle of radius a

transported in a doubly periodic channel using the immersed
boundary method (IBM); see Refs. [39–41] for more details
and validations.

In the IBM, there are two meshes: one Eulerian mesh for the
flow and one Lagrangian mesh for the moving particle. The two
meshes are coupled through a multidirect forcing scheme that
ensures the approximate no-slip and no-penetration condition
on the particle surface.

The motion of the particle is described by the Newton-Euler
equations, given for the translational velocity by Eq. (47).
The equation does not contain the gravitational force which
is assumed to be balanced either by the particle interactions
with the bottom wall (the case of particle near the wall) or
by buoyancy (the case of density-matched particle). We also
assume that particle-wall collisions are absent (cf. Eq. (3a) in
Ref. [39]).

The flow outside the particle is governed by the incompress-
ible Navier-Stokes (NS) equations with the no-slip boundary
conditions on the surface of the rigid particle described in
connection with Eq. (2). Although the steady-state flow obeys
the Stokes equations, computation of the transients demands
inclusion of the time derivative in the NS equations. In our
simulations, the full NS equations are computed at a small
Reynolds number (∼10−1), viz.,

Re

(
∂u
∂t

+ ∇ · (uu)

)
= ∇ · σ + f , (B1)

where Re = ρf Ub(2a)/η is the Reynolds number, Ub is the
channel bulk velocity, ρf (= ρp) is the fluid density, and f is

the IBM force enforcing that the no-slip boundary condition
(in this formulation pressure is rescaled by Re.) We discretize
these equations using a second-order finite volume scheme.
Finding the flow at given translational and rotational particle
velocities, we obtain the viscous stress which is used for
updating these velocities as in Eq. (47). Numerically, the
left-hand side of Eq. (47) is computed at each time step by
summing the forces exerted on all the Lagrangian points,
in addition to the volumetric forces inside the particle (see
Eq. (8a) in Ref. [39] for the full expression). In our case, this
is simply

m
dv

dt
≈ −

Nl∑
l=1

Fl�Vl + ρf

d

dt

( ∫
Vp

udV

)
, (B2)

where −Fl is the force acting on the l Lagrangian point
centered at a shell element of volume �Vl , and Nl is the
total number of Lagrangian points.

At the steady state,∫
S

σ · d S ≈ −
Nl∑
l=1

Fl�Vl, (B3)

corresponding to the solution of the steady-state Stokes
equations, Eq. (2).

Provided that the interpolation and spreading between
f i,j,k and −Fl preserves the local stress, we obtain the
dimensionless weighted dipole moment s̃ needed to compute
particle interactions as

s̃ = −
Nl∑
l=1

zl(h − zl)Fl�Vl. (B4)

The dimensional s is thus ηUb(2a)3 s̃.
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